JPS6127166Y2 - - Google Patents

Info

Publication number
JPS6127166Y2
JPS6127166Y2 JP10646981U JP10646981U JPS6127166Y2 JP S6127166 Y2 JPS6127166 Y2 JP S6127166Y2 JP 10646981 U JP10646981 U JP 10646981U JP 10646981 U JP10646981 U JP 10646981U JP S6127166 Y2 JPS6127166 Y2 JP S6127166Y2
Authority
JP
Japan
Prior art keywords
heat
metallized
capacitor
multilayer capacitor
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10646981U
Other languages
Japanese (ja)
Other versions
JPS5812932U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10646981U priority Critical patent/JPS5812932U/en
Publication of JPS5812932U publication Critical patent/JPS5812932U/en
Application granted granted Critical
Publication of JPS6127166Y2 publication Critical patent/JPS6127166Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は積層形コンデンサの改良構造に関す
る。 一般に積層形コンデンサは絶縁紙または有機フ
イルムなどの誘電体の片面一方端にマージン部を
残して蒸着または塗布により金属電極1を形成し
た一対の金属化誘電体2を複数層積層しコンデン
サ素子3とし、該素子3の両外側に保護フイルム
層4を設け両側に突出した金属電極1部にメタリ
コン電極5を形成し、該メタリコン電極5にリー
ド線6を取着してなるものである。しかしながら
このような構成になる積層形コンデンサは所要の
容量を単一のコンデンサ素子3から得ているため
該コンデンサ素子3を構成する金属化誘電体2の
ある箇所で絶縁破壊が起こつたときで特にパワー
の大きい電源に接続されている場合またはAC印
加の場合のシヨートのジユール熱で隣接する金属
化誘電体を溶融させ絶縁破壊が連続的に進行し急
激にコンデンサとしての機能を喪失すると同時に
破壊が連続的かつ急激であるため発熱が多く発火
にいたる欠点をもつている。従来積層形コンデン
サとして特開昭54−106855号公報に開示されてい
るように積層フイルムの一箇所以上の積層間にポ
リエチレンテレフタレート、ポリプロピレン、ポ
リエステルなどのプラスチツク絶縁シートを挿入
するようにした構造のものも提案されている。し
かしてこれら絶縁シートの存在によつてシヨート
のジユール熱による積層フイルムの溶融の連続的
進行をある程度鈍化できるがこれらプラスチツク
絶縁シートのみでのジユール熱に対する耐熱効果
は小さく、結局絶縁シートをも溶融させる結果に
なりコンデンサとしての機能喪失はもとより発火
解消の有効な対策とはなり得ない問題をもつてい
た。 本考案は上記の点に鑑みてなされたもので積層
コンデンサ素子を耐熱層で複数に分割することに
よつて絶縁破壊時に発火の危険性のない長期間コ
ンデンサとしての機能を維持できる積層形コンデ
ンサを提供することを目的とするものである。 以下本考案の一実施例につき図面を参照して説
明する。すなわち第2図に示すように絶縁紙また
は有機フイルムなどの誘電体の片面一方端にマー
ジン部を残して蒸着または塗布により金属電極1
1を形成した一対の金属化誘電体12を複数積層
し、該金属化誘電体12の任意な積層間に耐熱層
13を介在させると同時に両外側にも前記と同様
な耐熱層13を設け該耐熱層13間に挾持し複数
領域に分割したコンデンサ素子14を形成する。
しかして該コンデンサ素子14の両側に突出した
金属電極11部にメタリコン電極15を形成し、
しかる後該メタリコン電極15にリード線16を
取着してなるものである。なお前記耐熱層13と
してはポリアミド、ポリイミド、ポリアミドイミ
ド、ナイロン、テフロン、フエノール、ポリ弗化
ビニリデンおよびその他の弗化または塩化炭化水
素、ポリエステル、ポリエチレンテレフタレー
ト、ポリプロピレン、ポリカーボネート、ポリス
ルホンなどの有機物にガラス繊維、シリカ、アル
ミナなどの無機充填剤を混入しフイルム状または
シート状に成形したものまたはガラス繊維、シリ
カ、アルミナなどをシート状か板状に成形したも
のを適宜使用するものとする。 以上のように構成してなる積層形コンデンサに
おいて絶縁破壊が起こつてある部分の金属化誘電
体が溶融したとしても耐熱層13の存在によつて
中断阻止されるためコンデンサ素子14は溶融し
た金属化誘電体によつて構成されている領域部の
みの破壊で終わり、他の領域は全く健全であり破
壊した領域の容量減少はあるがコンデンサとし充
分機能を保つことができる。また破壊は他に拡が
ることはないため発熱も少なく発火にいたる欠点
は解消できる。 つぎに実験例によつて本考案の効果を明らかに
する。すなわち6μのポリエステルフイルムの片
面一方端にマージン部を残してアルミ蒸着を施し
てなる金属化ポリエステルフイルムを複数積層し
6μFの積層形コンデンサにおける絶縁破壊状況
について調査した。本考案(A)は積層間を50μのガ
ラス繊維30%入りポリエステルシートからなる耐
熱層を用い4分割したもので、従来例(B)は積層間
を50μのポリエステルシートを用いたもので4分
割したものである。第3図に本考案(A)と従来例(B)
に420V.ACの電圧を印加した場合の時間−容量
変化率を示した。第3図から明らかなように従来
例(B)が500時間経過した時点で容量が加速度的に
低下するのに対し、本考案(A)は500時間経過時点
で若干の容量減少はあるがその後長時間一定の容
量をキープする結果を示した。しかして試験後本
考案(A)従来例(B)とも分解調査をしてみた結果従来
例(B)が絶縁シートをも含めて金属化ポリエステル
フイルムほとんどが溶融していたのに対し本考案
(A)は耐熱層間の一領域の金属化ポリエステルフイ
ルムが溶融していたか他の金属化ポリエステルフ
イルムは全く健全であり耐熱層のすぐれた効果を
実証した。 つぎに破壊試験によつて発火に対する効果を調
査した結果表に示すようになつた。表は6μのア
ルミ蒸着ポリエステルフイルムからなる6μFの
積層形コンデンサにおける耐熱層または絶縁シー
トの有無および素子の分割領域数に対する600V
スタートで50Vずつ各電圧で3分維持しステツプ
アツプして破壊した時点での発火率を示したもの
であり、試料は各々100個を用いた。
The present invention relates to an improved structure of a multilayer capacitor. In general, a multilayer capacitor is made by laminating multiple layers of a pair of metallized dielectrics 2, each of which has a metal electrode 1 formed by vapor deposition or coating, leaving a margin on one end of one side of a dielectric such as insulating paper or an organic film. A protective film layer 4 is provided on both outer sides of the element 3, a metallicon electrode 5 is formed on a portion of the metal electrode 1 protruding from both sides, and a lead wire 6 is attached to the metallicon electrode 5. However, since the multilayer capacitor with such a configuration obtains the required capacitance from a single capacitor element 3, it is especially difficult to deal with dielectric breakdown at a certain point in the metallized dielectric 2 that constitutes the capacitor element 3. When connected to a high-power power source or when AC is applied, the shot's joule heat melts the adjacent metallized dielectric, causing dielectric breakdown to occur continuously, rapidly losing its function as a capacitor, and causing breakdown at the same time. Since it is continuous and rapid, it generates a lot of heat, which has the disadvantage of causing fire. Conventional multilayer capacitors have a structure in which a plastic insulating sheet made of polyethylene terephthalate, polypropylene, polyester, etc. is inserted between one or more laminated layers of a multilayer film, as disclosed in Japanese Patent Application Laid-open No. 54-106855. has also been proposed. However, although the presence of these insulating sheets can slow down the continuous melting of the laminated film due to the dule heat of the shot, the heat resistance effect of these plastic insulating sheets alone against the dule heat is small, and eventually the insulating sheet will also melt. As a result, not only did it lose its function as a capacitor, but it also had the problem that it could not be an effective measure to eliminate ignition. The present invention was developed in view of the above points, and by dividing the multilayer capacitor element into multiple parts with a heat-resistant layer, it is possible to create a multilayer capacitor that can maintain its function as a capacitor for a long period of time without the risk of catching fire in the event of dielectric breakdown. The purpose is to provide An embodiment of the present invention will be described below with reference to the drawings. That is, as shown in FIG. 2, a metal electrode 1 is formed by vapor deposition or coating, leaving a margin on one side of a dielectric material such as insulating paper or an organic film.
1, a plurality of pairs of metallized dielectrics 12 are laminated, heat-resistant layers 13 are interposed between arbitrary laminated layers of the metallized dielectrics 12, and at the same time heat-resistant layers 13 similar to those described above are provided on both outer sides. A capacitor element 14, which is sandwiched between heat-resistant layers 13 and divided into a plurality of regions, is formed.
Then, metallicon electrodes 15 are formed on the metal electrodes 11 that protrude from both sides of the capacitor element 14,
Thereafter, a lead wire 16 is attached to the metallikon electrode 15. The heat-resistant layer 13 may be made of organic materials such as polyamide, polyimide, polyamide-imide, nylon, Teflon, phenol, polyvinylidene fluoride and other fluorinated or chlorinated hydrocarbons, polyester, polyethylene terephthalate, polypropylene, polycarbonate, polysulfone, or glass fiber. , silica, alumina, or other inorganic fillers mixed therein and molded into a film or sheet shape, or glass fiber, silica, alumina, or the like molded into a sheet or plate shape may be used as appropriate. Even if dielectric breakdown occurs in the multilayer capacitor constructed as described above and the metallized dielectric material in a certain portion melts, the interruption is prevented by the presence of the heat-resistant layer 13, so that the capacitor element 14 is made of melted metallization. Only the region formed by the dielectric material is destroyed; the other regions are completely intact, and although the capacitance of the destroyed region is reduced, it can still function satisfactorily as a capacitor. Furthermore, since the destruction does not spread to other areas, there is little heat generation, and the drawbacks that could lead to fire can be eliminated. Next, the effects of the present invention will be clarified through experimental examples. That is, a plurality of metallized polyester films made by depositing aluminum on one side of a 6μ polyester film leaving a margin at one end were laminated to investigate dielectric breakdown in a 6 μF multilayer capacitor. The present invention (A) divides the space between the laminated layers into four using a heat-resistant layer made of a 50μ polyester sheet containing 30% glass fiber, while the conventional example (B) uses a 50μ polyester sheet between the laminated layers and divides the space into four. This is what I did. Figure 3 shows the present invention (A) and the conventional example (B).
The time-capacitance change rate when a voltage of 420V.AC is applied to is shown. As is clear from Figure 3, the capacity of the conventional example (B) decreases at an accelerating rate after 500 hours, whereas the capacity of the present invention (A) decreases slightly after 500 hours, but after that. The results showed that a constant capacity was maintained for a long time. However, after testing, we disassembled both the present invention (A) and the conventional example (B) and found that most of the metallized polyester film in the conventional example (B) had melted, including the insulating sheet, whereas the present invention
(A) The metallized polyester film in one region between the heat-resistant layers was melted, while the other metalized polyester films were completely intact, demonstrating the excellent effect of the heat-resistant layers. Next, we conducted a destructive test to investigate the effect on ignition, and the results are shown in the table below. The table shows the presence or absence of a heat-resistant layer or insulating sheet and the number of divided regions of a 60V multilayer capacitor made of a 6μ aluminum-deposited polyester film.
The graph shows the ignition rate at the time when the voltage was maintained at 50V for 3 minutes at the start and the voltage was stepped up to failure, and 100 samples were used for each voltage.

【表】 以上から従来例(イ)〜(ホ)は高い発火率を示したのに
対し本考案(ヘ)〜(ル)は全々発火せず高い安全性
を示した。 なお金属化誘電体として上記実施例では片面金
属化のものを例示して説明したが両面金属化のも
のでも同様の効果を得ることができる。 以上述べたように本考案によれば金属化誘電体
の任意な積層間に耐熱層を介在し複数領域に分割
したコンデンサ素子を形成することによつてある
部分の絶縁破壊時破壊部分が他の領域に拡がるこ
となく長期間コンデンサとしての機能を維持でき
ると同時に発火の危険性のない積層形コンデンサ
を得ることができる。
[Table] From the above, conventional examples (a) to (e) showed a high ignition rate, while the present inventions (f) to (l) did not ignite at all and showed high safety. In the above embodiments, one side of the metallized dielectric is metallized, but the same effect can be obtained with a metallized dielectric on both sides. As described above, according to the present invention, a heat-resistant layer is interposed between any laminated layers of metallized dielectric material to form a capacitor element divided into a plurality of regions, so that when dielectric breakdown occurs in one part, the breakdown part occurs in another part. It is possible to obtain a multilayer capacitor that can maintain its function as a capacitor for a long period of time without spreading over the area, and at the same time there is no risk of fire.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の参考例による積層形コンデンサ
を示す断面図、第2図は本考案の一実施例による
積層形コンデンサを示す斜視図、第3図は時間−
容量変化率を示す特性曲線図である。 12……金属化誘電体、13……耐熱層、14
……コンデンサ素子、15……メタリコン電極、
16……リード線。
FIG. 1 is a sectional view showing a multilayer capacitor according to a conventional reference example, FIG. 2 is a perspective view showing a multilayer capacitor according to an embodiment of the present invention, and FIG.
FIG. 3 is a characteristic curve diagram showing a rate of change in capacitance. 12...metalized dielectric, 13...heat resistant layer, 14
... Capacitor element, 15 ... Metallicon electrode,
16... Lead wire.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 一対の金属化誘電体を複数積層し両端面に形成
したメタリコン電極にリード線を取着した積層形
コンデンサにおいて前記金属化誘電体の任意の積
層間に耐熱層を介在し複数領域に分割したコンデ
ンサ素子としたことを特徴とする積層形コンデン
サ。
A multilayer capacitor in which a pair of metallized dielectrics are laminated and lead wires are attached to metallized electrodes formed on both end faces, and the capacitor is divided into multiple regions with a heat-resistant layer interposed between arbitrary laminations of the metallized dielectrics. A multilayer capacitor characterized by the fact that it is an element.
JP10646981U 1981-07-16 1981-07-16 multilayer capacitor Granted JPS5812932U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10646981U JPS5812932U (en) 1981-07-16 1981-07-16 multilayer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10646981U JPS5812932U (en) 1981-07-16 1981-07-16 multilayer capacitor

Publications (2)

Publication Number Publication Date
JPS5812932U JPS5812932U (en) 1983-01-27
JPS6127166Y2 true JPS6127166Y2 (en) 1986-08-13

Family

ID=29900943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10646981U Granted JPS5812932U (en) 1981-07-16 1981-07-16 multilayer capacitor

Country Status (1)

Country Link
JP (1) JPS5812932U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514502Y2 (en) * 1986-09-05 1993-04-19

Also Published As

Publication number Publication date
JPS5812932U (en) 1983-01-27

Similar Documents

Publication Publication Date Title
US4459637A (en) Dielectric fluid for a capacitor
KR960012508A (en) Multilayer Capacitor and Manufacturing Method Thereof
JPS6127166Y2 (en)
JP2006286988A (en) Metallization film capacitor
JPH09199371A (en) Metallized film capacitor
GB2276765A (en) Metallised film capacitor
JPH10144563A (en) Metallized film capacitor
JPH11288835A (en) Metallized film capacitor
JPH08288171A (en) Metallized film capacitor
JPH10261542A (en) Capacitor and its manufacture
JPH0982562A (en) Metallized film capacitor
JPS58222517A (en) Condenser
JPS639648B2 (en)
JPH1126275A (en) Metallized film capacitor
JPH0687453B2 (en) Capacitor
JPH0143853Y2 (en)
JPS62279619A (en) Capacitor with self-guard function
JPS59115510A (en) Oil-immersed metallized film condenser
JPS6037612B2 (en) multilayer capacitor
JP2595359B2 (en) Metallized film capacitors
JPS6336672Y2 (en)
JPH0236518A (en) Oil-impregnated capacitor
JPS5866318A (en) Metallized film condenser
JPH0232771B2 (en)
JPH0416929B2 (en)