JPS61271633A - Optical head device - Google Patents
Optical head deviceInfo
- Publication number
- JPS61271633A JPS61271633A JP60114609A JP11460985A JPS61271633A JP S61271633 A JPS61271633 A JP S61271633A JP 60114609 A JP60114609 A JP 60114609A JP 11460985 A JP11460985 A JP 11460985A JP S61271633 A JPS61271633 A JP S61271633A
- Authority
- JP
- Japan
- Prior art keywords
- astigmatism
- optical
- optical head
- head device
- light beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Head (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光学ヘッド装置の構成、より詳しくは光学式情
報記録媒体である光ディスクより信号全流出し/書込む
光学ヘッドに関するものであり、特に購成光学部品の設
計からの配置ずれや、光源自身の欠陥にて媒体への集光
光束に非点収差が発生した場合の収差補正法として適用
して最適なものでおる。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the structure of an optical head device, and more specifically to an optical head that outputs/writes all signals from an optical disk, which is an optical information recording medium. This method is most suitable for use as an aberration correction method when astigmatism occurs in the light beam focused on the medium due to deviations in the design of purchased optical components or defects in the light source itself.
この種の従来技術としては例えば■特開昭58−102
342号、■「Modern Opt、1cal En
gineeringJ(M、C6Gray−Hill
N、Y、 1966 ) 、■「レンズの設計技法P、
35〜36」(工学工業技術協会)、■[0ptics
P、156 J (vilsy N、Y、) 、に記
載のものがある。Examples of this type of prior art include ■ Japanese Patent Application Laid-Open No. 58-102
No. 342, ■ “Modern Opt, 1cal En
gineeringJ (M, C6Gray-Hill
N, Y, 1966), ■ “Lens Design Techniques P,
35-36” (Engineering and Industrial Technology Association), ■[0ptics
P, 156 J (vilsy N, Y,).
このような技術のほか従来この種の装置として例えば第
3図に示したものがあった。図においてfi+は半導体
レーザ等の光源、(2)は光源(11より出射された出
射光束、(3)は出射光束(2)を3本の光束に分離す
る回折格子、(4)は照射光束(5)と反射光束(6)
を分離するハーフプリズム、(7)は照射光束(5)を
平行光束(8)にするコリメートレンズ、(9)は平行
光束(8)をはゾ直交方向に反射させる反射プリズム、
α1は平行光束aυを円板状の記録担体σ2の情報トラ
ックα湯上に光スポットα4として集光する対物レンズ
である。なお記録担体α3は対物レンズa1の焦点付近
に置かれている。また光スポットα4は実際には3つの
光スポラ) (14a)。In addition to this technique, there has been a conventional device of this type, for example, the one shown in FIG. In the figure, fi+ is a light source such as a semiconductor laser, (2) is the emitted light beam emitted from the light source (11), (3) is a diffraction grating that separates the emitted light beam (2) into three light beams, and (4) is the irradiated light beam. (5) and reflected luminous flux (6)
(7) is a collimating lens that converts the irradiated light beam (5) into a parallel light beam (8); (9) is a reflection prism that reflects the parallel light beam (8) in a direction orthogonal to the beam;
α1 is an objective lens that focuses the parallel light beam aυ onto the information track α of the disc-shaped record carrier σ2 as a light spot α4. Note that the record carrier α3 is placed near the focal point of the objective lens a1. Moreover, the light spot α4 is actually three light spora) (14a).
(14b)、 (14c)よりなる。また情報トラック
α漕は・ビットα9とランドHよりなる。さらに記録担
体α〔はモーター(図示せず)により回転させられてい
る。また上記記録担体a2により反射させられた光束は
、再び対物レンズQl 、コリメートレンズ(7)を透
過し、ハーフプリズム(4)によりはゾ直交方向に曲げ
られ反射光束(6)となる。(Iηは反射光束(6)の
収束角を小にし反射光学系の倍率を拡大する凹レンズ、
側は凹レンズαDを透過した光束に非点収差を生じさせ
るシリンドリカル凹レンズ、(11は光検知器で素子(
19a)、(19b)。(14b) and (14c). Also, the information track α consists of bit α9 and land H. Furthermore, the record carrier α is rotated by a motor (not shown). Further, the light beam reflected by the recording carrier a2 passes through the objective lens Ql and the collimating lens (7) again, and is bent by the half prism (4) in a direction orthogonal to the beam, becoming a reflected light beam (6). (Iη is a concave lens that reduces the convergence angle of the reflected light beam (6) and increases the magnification of the reflective optical system;
On the side is a cylindrical concave lens that produces astigmatism in the light beam transmitted through the concave lens αD (11 is a photodetector element (
19a), (19b).
(19c)より構成されている。(19c).
次に動作について説明する。半導体レーザから出射した
光束(2)は回折格子(3)、ハーフプリズム(4)、
コリメートレンズ(7)を透過し1反射プリズム191
で進行方向を曲げられた陵、対物レンズα1により3つ
のビーム(14a)、(14b)、(t4c)として記
録担体a3上に集光される。担体(13で反射された光
束は、対物レンズを透過し2反射プリズムで再度反射さ
れ、ハーフプリズム(4)にて反射された後、凹レンズ
αη、シリンドリカル凹しンズ贈を透過後光検知器a値
を構成する3つのエレメント(19a)、(19b)、
(19c)上に3つのビームとして入射する。この際、
中央の検知器(19a)は記録担体@の回転によりピッ
トα啼、ランド(Ieのいずれかより光スポラ) (1
4a)が反射される時の反射光量の題により担体に記録
された情報を電気信号に変換し、この後ここには特に図
示していない回路により例えばオーディオ信号、ビデオ
信号、デジタルデータ等として利用される。又、担体t
L2は回転に従って面振れ、振動等により対物レンズ(
11の焦点位置より光軸方向に変位する。この焦点ずれ
量は公知の方法(文献■)により中央の光検知器σI(
a)上の光束の形状変化より検出され、特に図示しない
サーボ回路により補正され常にディスク上光束が合焦に
保たれる。Next, the operation will be explained. The light beam (2) emitted from the semiconductor laser passes through a diffraction grating (3), a half prism (4),
Transmitted through collimating lens (7) 1 reflection prism 191
The beam whose traveling direction is bent at , is focused onto the record carrier a3 by the objective lens α1 as three beams (14a), (14b), and (t4c). The light beam reflected by the carrier (13) passes through the objective lens, is reflected again by the reflecting prism (2), is reflected by the half prism (4), and then passes through the concave lens αη and the cylindrical concave lens before passing through the photodetector a. The three elements that make up the value (19a), (19b),
(19c) as three beams. On this occasion,
The central detector (19a) detects pit α, land (light spora from either Ie) by the rotation of the record carrier (1
The information recorded on the carrier is converted into an electrical signal based on the amount of reflected light when 4a) is reflected, and then used as an audio signal, video signal, digital data, etc. by a circuit not particularly shown here. be done. Also, carrier t
L2 is the objective lens (
11 in the optical axis direction. This defocus amount is determined by a known method (Reference ■) using the central photodetector σI (
a) It is detected from a change in the shape of the light beam on the disk, and is corrected by a servo circuit (not shown) so that the light beam on the disk is always kept in focus.
さらに担体α2が回転する際にトラックαjの蛇行。Furthermore, when the carrier α2 rotates, the track αj meanders.
振動により中央ビーム(14a)がトラック13の上に
正しく位置しないことに対しては公知のようにトラック
ずれ址を両[0光検知器(19b)、(19c)の出力
差よりトラックとスポット(14a)のずれ量全検知し
補正するという手段がとられる。(文献■参照)このよ
うな光学ヘッド装置においては、記録担体t17J上に
蓄積される情報密度を可能な限り高め、大容散情報媒体
として利用する為にピット長及びトラック間隔は半導体
レーザより対物レンズに至る光学ヘッドの集光系が回折
限界の理想的状態にある場合に限界的に読取り得るほど
の小さい寸法となっている。When the central beam (14a) is not positioned correctly on the track 13 due to vibration, it is known that the track misalignment can be corrected by detecting the track and spot ( 14a) is taken to detect and correct the entire amount of deviation. (Refer to Document ■) In such an optical head device, in order to increase the information density stored on the record carrier t17J as much as possible and use it as a large-capacity dispersive information medium, the pit length and track spacing are set to be shorter than that of a semiconductor laser. The dimensions are small enough to be marginally readable when the condensing system of the optical head leading to the lens is in an ideal diffraction-limited state.
すなわち、典型的にはレーザ波長λ−780nm、対物
レンズの開ロ数NA−0.5程度の場合には回折限界λ
に集光されたスポット径は約 /NA−1,6μm程I
Kであるが、これに合わせてトラック間隔1.6μm、
最3小ビット長は0.5μmすなわち最小スポット径の
約手分位である。上述したように光学ヘッド装置の集光
系が回折限界の集光特性となる為には。That is, typically when the laser wavelength is λ-780 nm and the numerical aperture of the objective lens is about NA-0.5, the spot diameter focused at the diffraction limit λ is about /NA-1.6 μm I.
K, but in line with this, the track spacing is 1.6 μm,
The minimum three-dimensional bit length is 0.5 μm, that is, approximately one half of the minimum spot diameter. As mentioned above, in order for the condensing system of the optical head device to have a diffraction-limited condensing characteristic.
■ 半導体レーザーより出射した光が対物レンズα1を
通過してスポットlJ4に至る全光路において無収差に
近い状態にて導かれること
■ 半導体レーザ自身が収差をもたないことの2つの条
件が必要である。Two conditions are required: ■ The light emitted from the semiconductor laser passes through the objective lens α1 and is guided with almost no aberration on the entire optical path leading to the spot lJ4.■ The semiconductor laser itself must have no aberrations. be.
従来の光学ヘッド装置に訃いて前述した集光系が非点収
差を生じ無収差系から外れる要因が3つ存在した。1つ
目は回折格子(3)及びハーフミラ−(4)といりた平
行平面光学部品の光束透過面が出射光束(2)の光軸に
対して傾いていて垂直でない場合に非点収差が発生する
場合、2つ目は半導体レーザの発光点がコリメートレン
ズの光軸から偏芯することにより像高が生じ、コリメー
ト光(8)に非点収差が発生し、同時にコリメート光が
半導体レーザの偏芯によって対物レンズ(1〔に斜め入
射して像高が生じ、非点収差を生ずる場合、3つ目は半
導体レーザーの出射光束自体に非点収差がある場合であ
る。There are three reasons why the conventional optical head device suffers from the above-mentioned condensing system causing astigmatism and deviating from the aberration-free system. The first is astigmatism, which occurs when the light beam transmitting surfaces of parallel plane optical components such as the diffraction grating (3) and half mirror (4) are tilted and not perpendicular to the optical axis of the output light beam (2). In this case, the second problem is that the light emitting point of the semiconductor laser is decentered from the optical axis of the collimating lens, resulting in an image height, causing astigmatism in the collimated light (8), and at the same time, the collimated light is deflected by the polarization of the semiconductor laser. The third case is when the beam enters the objective lens (1) obliquely due to the center, resulting in an image height and astigmatism.The third case is when the emitted light beam of the semiconductor laser itself has astigmatism.
以下上記3つの非点収差の生ずる原因についてより詳細
に説明する。The causes of the above three astigmatisms will be explained in more detail below.
(1) 回折回子又はハーフプリズムの傾き半導体レー
ザから出射する光束(2)は発散光束であり、このよう
な場合でも同様であるが2例えば第4図に図示するよう
に、収束状にある光束の光路(開口数NA−*U)中に
平行平面ガラス(7)を光軸Gυに対してU だけ傾け
て配置するとする。このとき発生する非点隔装置(非点
収差)は文献(2)によれば111式のように表わされ
る。(1) Inclination of diffraction diffraction or half prism The light beam (2) emitted from the semiconductor laser is a diverging light beam, which is the same in this case, but 2 For example, as shown in Fig. 4, it is in a convergent shape. Assume that a parallel plane glass (7) is arranged in the optical path of the light beam (numerical aperture NA-*U) at an angle U with respect to the optical axis Gυ. According to literature (2), the astigmatism (astigmatism) that occurs at this time is expressed as equation 111.
A り 1 −1
88 t
なおt は法線及び光軸を含む而(メリジオナルを
面)内での収束点までの距離、l はこれと直交する面
(サジツタル面)での収束点までの距離である。A ri 1 -1 88 t Note that t is the distance to the convergence point in the plane that includes the normal and the optical axis (the meridional plane), and l is the distance to the convergence point in the plane perpendicular to this (the sagittal plane). It is.
今、従来例を示す第3図において平行平面部品である回
折格子(3)又はノ・−フプリズム(4)が傾いた場合
にはil1式に従って非点収差が発生する。その股の具
体例として屈折率N−1,5でt−1,5msの回折格
子長ヒt−5asのハーフプリズムが1.0@傾いた場
合の発生非点隔差は各々0.17μm、056μmとな
る。Now, in FIG. 3 showing a conventional example, when the diffraction grating (3) or Nof prism (4), which are parallel plane components, are tilted, astigmatism occurs according to the IL1 formula. As a specific example of this, when a half prism with a refractive index of N-1.5 and a diffraction grating length of t-5 as is tilted by 1.0@, the astigmatism difference generated is 0.17 μm and 056 μm, respectively. becomes.
(II) 半導体レーザの偏芯による像高一般にレン
ズ系において物点(本例では半導体レーザの出射点)が
光軸からずれて、像高をもつと。(II) Image height due to eccentricity of semiconductor laser Generally, in a lens system, the object point (in this example, the emission point of the semiconductor laser) is shifted from the optical axis and has an image height.
非点収差が発生する。第5図に文献◎による非点収差発
生の計算例を示す。図の右側に示したグラフのように入
射角、すなわち像高に対して子午光線と球欠光線の結像
位置が分離していき、非点収差が増加する様子がわかる
。光学ヘッド装置用のレンズとして、入射角1°に相当
する像高に対し、コリメートレンズでは例えば10μm
、対物レンズでは5μmの非点収差を生じるものがある
。Astigmatism occurs. FIG. 5 shows an example of calculation of astigmatism generation according to document ◎. As shown in the graph on the right side of the figure, it can be seen that the imaging positions of the meridian ray and the spherical ray become separated with respect to the incident angle, that is, the image height, and the astigmatism increases. As a lens for an optical head device, for an image height corresponding to an incident angle of 1°, a collimating lens has an image height of, for example, 10 μm.
Some objective lenses produce astigmatism of 5 μm.
(iii) 半導体レーザの非点収差半導体レーザの
発光点の面積は通常2μmX0.IA1程度であり、は
ゾ点光原と見なしてより微小面積より光が出射される。(iii) Astigmatism of a semiconductor laser The area of the light emitting point of a semiconductor laser is usually 2 μm×0. It is about IA1, and is regarded as a zo point light source, and light is emitted from a much smaller area.
第6図にダブルへテロ接合半導体レーザの構造の一例を
示す。このような半導体レーザにおいては。FIG. 6 shows an example of the structure of a double heterojunction semiconductor laser. In such a semiconductor laser.
第1図(イ)、(ロ)に示す如く、半導体レーザチップ
(40)の出射光束のモードウェストは、半導体接合面
(X−Y軸面〕内とこれに垂直な面(X−Z軸面)内と
では異なっていることがあり、とりわけこの図に示した
ようなゲイン・ガイディング型の半導体レーザにおいて
この差異が大きいことが知られている。垂直面(X−Z
軸面)内では鏡面(41)に一致するA点がモードウェ
ストになっているのに対し接合面(X−Y軸面)内では
若干半導体レーザチップ(40)の活性層(42)つま
り鏡面(41)より奥の共振器内に入ったB点がモード
ウェストとなっているのである。As shown in FIGS. 1(A) and 1(B), the mode waist of the emitted light beam of the semiconductor laser chip (40) is within the semiconductor junction surface (X-Y axis plane) and in a plane perpendicular to this (X-Z axis plane). It is known that this difference is particularly large in a gain guiding type semiconductor laser as shown in this figure.
On the other hand, in the junction plane (X-Y axis plane), the active layer (42) of the semiconductor laser chip (40), that is, the mirror surface, is slightly (41) Point B, which is further inside the resonator, is the mode waist.
この差異は光学上非点収差となり、上記ゲイン・ガイデ
ィング型のものはとくにこの差異が大きく約25μmも
存在するものがある。This difference results in optical astigmatism, and this difference is particularly large in the above-mentioned gain guiding type lens, and there are some that exist as much as about 25 μm.
さて9回折限界光学系として許容される光学系の許容と
して従来よりMare 、 chalの規範が用いられ
ている。これによると波面収差のRMS値(W )m
S
がw (rLorλでなければならない。(λ;光の
ms−
波長)上に3つの場合について分類して論じた非点隔差
段と、波面収差の関係について第7図のノーチージョン
で以下に説明する。図中Eが半径aの射出ひとみを示し
ており、ひとみ座標を(X 、y)で表わす。球欠像面
P での1方向横収差Iは波面収差W、8
を用いて(2)式で表わされる。Now, the norm of Mare and chal has conventionally been used as the allowable optical system as a nine-diffraction limited optical system. According to this, the RMS value of wavefront aberration (W ) m
S must be w (rLorλ) (λ: ms-wavelength of light) The relationship between the astigmatism step and wavefront aberration, which are classified and discussed in three cases, will be explained below in the no-chance section of Fig. 7. In the figure, E indicates the exit pupil with radius a, and the pupil coordinates are expressed as (X, y).The unidirectional transverse aberration I at the spherical image plane P is calculated using the wavefront aberration W,8. ) is expressed by the formula.
又2図よりR)Δすなわち非点隔差カ非常に小さい場合
には(3)が成り立つ。Also, from FIG. 2, when R)Δ, that is, the astigmatism difference is extremely small, (3) holds true.
R
+21 、 +3)よりI を消去し、波面収差を求め
ると(4)式が得られる。但し空気中としてnwlとす
る。By eliminating I from R +21, +3) and finding the wavefront aberration, equation (4) is obtained. However, nwl is assumed to be in the air.
今、横収差の観測面を最小錯乱円にとり、この面が同様
に最小錯乱円におけるy方向の波面収差W は(6)式
のよりになる。Now, assuming that the observation surface of the transverse aberration is the circle of least confusion, the wavefront aberration W in the y direction at the circle of least confusion is similarly expressed by equation (6).
よってy方向を基準にした2次元の波面収差Wは(7)
式のように求まる。Therefore, the two-dimensional wavefront aberration W based on the y direction is (7)
It can be found as shown in the formula.
1 ・ 3.。(7)
X 74
但しに−(−)であり、rは(x 、y)の極座標半径
である。1 ・3. . (7) X 74 where -(-), and r is the polar coordinate radius of (x, y).
この時、にの値はひとみ内で0〜Ha (Na開口数)
内の値をとる。(7)を用いてrma波面収差Wr m
eは
よって、系の関口数Naを与えれば(8)式より”rm
s < ” 72を満たす非点隔差Δがわかる。At this time, the value of is 0 to Ha (Na numerical aperture) within the pupil.
Takes the value within. Using (7), the rma wavefront aberration Wr m
Therefore, if the function number Na of the system is given, then from equation (8), rm
The astigmatism difference Δ that satisfies s<”72 can be found.
例えば光学式ビデオディスク用光学ヘッドではコリメー
トレンズのNaとして+12.半導体レーザの波長α8
μm程度が用いられるが、このとき、 Wrm。For example, in an optical head for an optical video disc, Na of the collimating lens is +12. Semiconductor laser wavelength α8
A value of approximately μm is used, and in this case, Wrm.
<0.07λによる非点隔差の許容量は、Δ(117μ
mとなる。よってこの非点隔差許容に対し、とりわけ前
記(1) 、 (Ii) 、 Qii)項の要因の複合
で出する非点収差が全集光系の回折限界光□学系として
の機能を阻害し。The tolerance for astigmatic difference with <0.07λ is Δ(117μ
m. Therefore, with respect to this astigmatism difference tolerance, the astigmatism produced by a combination of the factors (1), (Ii), and Qii) above inhibits the function of the total focusing system as a diffraction-limited optical system.
OFFの劣化を通じて読出し信号を劣化させる要因とな
っていることがわかる。It can be seen that the deterioration of the OFF state is a factor in deteriorating the read signal.
なお、第7図において、R>>Δの関係にある。In addition, in FIG. 7, there is a relationship of R>>Δ.
(目的)
この発明に係る光学ヘッド装置は9以上の問題の説明で
明らかになった部品の不備による非点収差を光学部品に
より補正し、集光系が回折限界光学系として作用しうる
ように改善する手段を提供するものである。(Purpose) The optical head device according to the present invention uses optical components to correct astigmatism caused by defective components, which was revealed in the explanation of the above problems, and to enable the condensing system to function as a diffraction-limited optical system. It provides a means to improve.
(手段)
本発明の光学ヘッド装置では、集光光学系中の発数光束
部すなわち光束が平行以外のいずれかの部分に置いた平
行平面部品を傾けることにより発生する非点収差により
、もともとヘッド集光系のもっていた非点収差を打ち消
すよう補正するという手段をとっている。(Means) In the optical head device of the present invention, the astigmatism caused by tilting the parallel plane component placed in the emitted light beam part in the condensing optical system, that is, any part where the light beam is not parallel, A method is used to correct the astigmatism of the condensing system.
この発明における光学系ヘッドでは傾けた平行平板部品
が前記111式に従って非点隔差を発生することを利用
して非点収差補正を行なっている。In the optical system head according to the present invention, astigmatism is corrected by utilizing the fact that the tilted parallel flat plate component generates an astigmatism difference according to the above-mentioned formula 111.
第1図に本発明の一実施例による光学ヘッド装置光学系
のうち、集光系の部分のみを抜き出して示す。FIG. 1 shows only the condensing system part of the optical system of an optical head device according to an embodiment of the present invention.
図において(50)は厚さt、屈折率Nの平行平面ガラ
ス板であり、一点錯線で示したコリメートレンズ(7)
の光軸に対し角度θだけ傾けて配置されている。In the figure, (50) is a parallel plane glass plate with thickness t and refractive index N, and collimating lens (7) shown as a dotted line.
is arranged at an angle θ with respect to the optical axis of the lens.
なお光学系の他の部分は従来例を示す第3図と同じであ
るからここでは説明を省略する。Note that the other parts of the optical system are the same as those shown in FIG. 3 showing the conventional example, so their explanation will be omitted here.
次に第1の発明実施例について以下に説明する。Next, a first embodiment of the invention will be described below.
先に説明したように発散(もしくは収束)光束中におか
れた平行平面板は、111式で示した量の非点隔差を生
ずる。従って第1図の平行平面板(50)は、(1)式
のU をθでおきかえた量だけの非点隔差を故意に発生
させていることになる。よって問題点(ト)、(1す。As explained above, a parallel plane plate placed in a diverging (or converging) beam produces an astigmatism difference of the amount expressed by equation 111. Therefore, the parallel plane plate (50) in FIG. 1 intentionally generates an astigmatism difference equal to the amount obtained by replacing U in equation (1) with θ. Therefore, the problem (g) is (1).
Qil)の項で論じた各要因に起因する非点隔差の総和
より生ずる総合的な非点隔差をΔとすると(1ン式のA
をΔでおきかえた方程式を解くことによりガラス板(5
0)以外の光学系の有する非点隔差と同等の隔差を発生
するガラス板(50)の傾きθ、厚みt、屈折率Nが与
えられる。例えばN−ml、5.tm(L5mとすると
、30μmの非点隔差と同等の非点隔差は傾き角θ−2
2,5°により与えられる。よって、ガラス板(50)
により発生する非点隔差が、ガラス板(50)以外の光
学系の有する非点隔差を補正するようガラス板(50)
の光軸方向回転位置■(図示)を設定することにより第
1図の全集光系の非点収差は除去できる。なお前記■の
回転調整は例えば90°回転位置を変えると子午像点と
球欠像点の関係が入れ替わり、要するに第7図における
y方向の焦点ptと1方向の焦点P の前後関係が逆に
なるという原理によっている。If the total astigmatism difference resulting from the sum of the astigmatism differences caused by each factor discussed in the section of Qil) is Δ, then
Glass plate (5
The inclination θ, thickness t, and refractive index N of the glass plate (50) that generate an astigmatism difference equivalent to that of an optical system other than 0) are given. For example, N-ml, 5. tm (assuming L5m, the astigmatism difference equivalent to the astigmatism difference of 30 μm is the inclination angle θ-2
It is given by 2.5°. Therefore, the glass plate (50)
The glass plate (50) is arranged so that the astigmatism difference generated by the glass plate (50) corrects the astigmatism difference of the optical system other than the glass plate (50).
The astigmatism of the total focusing system shown in FIG. 1 can be removed by setting the optical axis direction rotational position {circle around (2)} (as shown). In addition, in the above rotational adjustment (2), for example, if the rotation position is changed by 90 degrees, the relationship between the meridian image point and the spherical defect point will be reversed, and in short, the front-back relationship between the focal point pt in the y direction and the focal point P in one direction in Fig. 7 will be reversed. It is based on the principle of becoming.
前記第1の実施例ではLD出射光束の9発散光束部に新
たに平行平面ガラス板(50)を挿入することによる補
正例を示したが、他にも第2図(1−)〜第2の実施例
のように回折格子(3)を傾ける。第2図(b)〜第3
の実施例のようにハーフプリズム(4)を傾けるという
手段によっても補正の為の非点隔差発生は可能であり、
前述した第1の実施例と全く同じ原理に基づく非点収差
補正集光系が構成できる。又、第1の実施例における平
行平面ガラス板は2回折格子(3)と半導体レーザ(1
)の間に置く例を第1図に示したが、この外にも例えば
第2図(C)〜第4の実施例のようにコリメートレンズ
(7)トハーフプリズム(4)の間であっても、またハ
ーフプリズム(4)と回折格子(3)の間であっても、
あるいは情報記憶担体(lのと対物レンズHの間であっ
ても、要は集光光学系中の平行光線以外の場所であれば
、非点収差補正は可能である。又、平行平面ガラス板(
50)以外にも要するに、#4いた半導体レーザが透過
可能な平行平面板でありさえすれば。In the first embodiment, a correction example was shown in which a parallel plane glass plate (50) was newly inserted into the nine diverging beam parts of the LD output beam, but there are other correction examples as well. The diffraction grating (3) is tilted as in the embodiment. Figures 2(b) to 3
It is also possible to generate an astigmatism difference for correction by tilting the half prism (4) as in the embodiment.
An astigmatism correcting condensing system can be constructed based on exactly the same principle as the first embodiment described above. Further, the parallel plane glass plate in the first embodiment has two diffraction gratings (3) and a semiconductor laser (1).
) is shown in Fig. 1, but in addition to this, as shown in Figs. Even if it is between the half prism (4) and the diffraction grating (3),
Alternatively, even if it is between the information storage carrier (l) and the objective lens H, astigmatism correction is possible at a location other than the parallel rays in the condensing optical system. (
50) In other words, as long as it is a parallel plane plate through which the semiconductor laser #4 can pass.
傾き平行平面ガラス板付加による補正(第1の実施例)
と同様の補正が可能であることはいうまでもない。Correction by adding a tilted parallel plane glass plate (first example)
It goes without saying that a similar correction is possible.
以上詳細に説明したように本発明によると光ヘツド装置
の集光光学系中の光束の非平行部において。As described in detail above, according to the present invention, the non-parallel portion of the light beam in the condensing optical system of the optical head device.
平行平面部品を傾けて配置し、もともと集光系の有して
いた非点収差を除去できるので、情報媒体上に集光する
光束のもつ波面収差が極めて小さくなり。By arranging the parallel plane components at an angle, it is possible to remove the astigmatism that the condensing system originally had, so the wavefront aberration of the light beam condensed onto the information medium becomes extremely small.
部品の配置誤差、半導体レーザの非点収差がある場合に
も回折限界の集光特性が得やすくなり、光ヘッドの読出
し特性が向上し、かつ駄産時の歩留り向上に寄与すると
ころ大である。Even when there are component placement errors and astigmatism of the semiconductor laser, it becomes easier to obtain diffraction-limited focusing characteristics, improves the readout characteristics of the optical head, and greatly contributes to improving yields in the event of wasted production. .
第1図は本発明の第1の実施例を示す図、第2図は本発
明の第2.第3.第4の実施例を示す図、第3図は従来
の光ヘツド装置を示す図、第4図は平行平板中に収束光
束が入射するときの発生収差の説明図、第5図はレンズ
入射光が像高(入射角)を有する場合の非点収差発生の
説明図、第6図は半導体レーザの非点収差説明図、第7
図は非点隔差から非点収篭RMS値を求めるノーチージ
ョン図。
図中、:1j・・・レーザ光源装置、(7)及びαト・
・集光レンズ系、a2・・・記録担体、(4)・・・ビ
ームスプリッタ、 (5) 。
aト・・光電変換器FIG. 1 is a diagram showing a first embodiment of the present invention, and FIG. 2 is a diagram showing a second embodiment of the present invention. Third. A diagram showing the fourth embodiment, FIG. 3 is a diagram showing a conventional optical head device, FIG. 4 is an explanatory diagram of aberrations generated when a convergent light beam is incident on a parallel plate, and FIG. 5 is a diagram of incident light on a lens. Fig. 6 is an explanatory diagram of the occurrence of astigmatism when the image height (incidence angle) is
The figure is a no-chage diagram that calculates the astigmatism RMS value from the astigmatism difference. In the figure: 1j... Laser light source device, (7) and αt.
- Condensing lens system, a2... Record carrier, (4)... Beam splitter, (5). a... Photoelectric converter
Claims (8)
束を記録担体の情報記録トラックに照射する集光レンズ
系と、記録担体に集光後反射されて来た光束を前記レー
ザ光源装置の出射光束より分離して光電変換器側に向わ
しめるビームスプリッタ手段よりなる光学系より成る装
置において、前記光学系中の半導体レーザから記録担体
の間の光束が平行ビームでなり部分に配置された平行平
板光学素子を前記集光レンズ系の光軸に対して傾けて配
置して成る光学ヘッド装置。(1) A laser light source device, a condensing lens system that irradiates the information recording track of the record carrier with the emitted light beam of the laser light source device, and a condensing lens system that irradiates the light beam emitted from the laser light source device onto the information recording track of the record carrier, and emits the light beam that has been reflected after being focused on the record carrier and is emitted from the laser light source device. In an apparatus comprising an optical system comprising a beam splitter means for separating a beam of light and directing it toward a photoelectric converter, the beam of light between a semiconductor laser in the optical system and a record carrier becomes a parallel beam, and a parallel beam arranged in a portion An optical head device comprising a flat optical element arranged at an angle with respect to the optical axis of the condenser lens system.
より複数個の光スポットに分けられた特許請求の範囲第
1項記載の光学ヘッド装置。(2) The optical head device according to claim 1, wherein the light beam irradiated onto the information recording track is divided into a plurality of light spots by a diffraction grating.
前記集光レンズ系の間に配置された特許請求の範囲第1
項記載の光学ヘッド装置。(3) Claim 1, wherein the parallel plate optical element is disposed between the beam splitter and the condensing lens system.
The optical head device described in Section 1.
ムスプリッタの間に配置された特許請求の範囲第1項記
載の光学ヘッド装置。(4) The optical head device according to claim 1, wherein the parallel plate optical element is disposed between the semiconductor laser and the beam splitter.
記回折格子の間に配置された特許請求の範囲第2項記載
の光学ヘッド装置。(5) The optical head device according to claim 2, wherein the parallel plate optical element is arranged between the laser light source device and the diffraction grating.
ムスプリッタ手段の間に配置された特許請求の範囲第2
項記載の光学ヘッド装置。(6) Claim 2, wherein the parallel plate optical element is disposed between the diffraction grating and the beam splitter means.
The optical head device described in Section 1.
請求の範囲第2項記載の光学ヘッド装置。(7) The optical head device according to claim 2, wherein the parallel plate optical element is the diffraction grating.
り、前記平行平板光学素子が前記ビームスプリッタであ
る特許請求の範囲第1項記載の光学ヘッド装置。(8) The optical head device according to claim 1, wherein the beam splitter is composed of a cemented right-angle prism, and the parallel plate optical element is the beam splitter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60114609A JPS61271633A (en) | 1985-05-28 | 1985-05-28 | Optical head device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60114609A JPS61271633A (en) | 1985-05-28 | 1985-05-28 | Optical head device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61271633A true JPS61271633A (en) | 1986-12-01 |
Family
ID=14642141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60114609A Pending JPS61271633A (en) | 1985-05-28 | 1985-05-28 | Optical head device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61271633A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6283221U (en) * | 1985-11-13 | 1987-05-27 | ||
FR2721744A1 (en) * | 1994-06-27 | 1995-12-29 | Nec Corp | Astigmatism correction method for optical head |
EP0908879A2 (en) * | 1997-10-06 | 1999-04-14 | Fujitsu Limited | Optical information storage apparatus |
-
1985
- 1985-05-28 JP JP60114609A patent/JPS61271633A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6283221U (en) * | 1985-11-13 | 1987-05-27 | ||
FR2721744A1 (en) * | 1994-06-27 | 1995-12-29 | Nec Corp | Astigmatism correction method for optical head |
US5777961A (en) * | 1994-06-27 | 1998-07-07 | Nec Corporation | Astigmatic difference correcting method for optical head and apparatus therefor |
US5978345A (en) * | 1994-06-27 | 1999-11-02 | Nec Corporation | Astigmatic difference correcting method for optical head and apparatus therefor |
EP0908879A2 (en) * | 1997-10-06 | 1999-04-14 | Fujitsu Limited | Optical information storage apparatus |
EP0908879A3 (en) * | 1997-10-06 | 2000-02-23 | Fujitsu Limited | Optical information storage apparatus |
US6091692A (en) * | 1997-10-06 | 2000-07-18 | Fujitsu Limited | Optical information storage apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900008380B1 (en) | Optical head apparatus | |
JP2776243B2 (en) | Optical pickup device | |
KR900006954B1 (en) | Optical head apparatus | |
JP3712628B2 (en) | Objective lens, method for correcting manufacturing error thereof, and optical pickup device using the objective lens | |
US6240053B1 (en) | Optical pickup device | |
JP2002123960A (en) | Optical head and optical disk drive | |
JPS60124035A (en) | Optical head device | |
JP4133422B2 (en) | Spherical aberration measuring device | |
US6683838B2 (en) | Optical scanning device | |
US6730896B1 (en) | Optical pickup device | |
US6739730B2 (en) | Optical pickup deformable mirror | |
JPS61271633A (en) | Optical head device | |
JP2004531018A (en) | Optical scanning device | |
US7164624B2 (en) | Optical scanning device | |
JP2001155374A (en) | Recording/reproducing optical system, and optical head device | |
JP4161439B2 (en) | Optical head | |
JPH02195532A (en) | Optical head device | |
JPH04209335A (en) | Light emitting member | |
JP2005116045A (en) | Optical head, and optical information recording and reproducing device | |
JPH09306014A (en) | Condensing optical system for recording and/or reproducing of optical information recording medium and object lens | |
JP4241104B2 (en) | Optical pickup device | |
JPH033127A (en) | Optical head | |
JPH10228665A (en) | Optical disk device and optical head used for it | |
JPS6262441A (en) | Recording and reproducing optical system for optical information medium | |
JPH0447896B2 (en) |