JPS6127076Y2 - - Google Patents

Info

Publication number
JPS6127076Y2
JPS6127076Y2 JP18586380U JP18586380U JPS6127076Y2 JP S6127076 Y2 JPS6127076 Y2 JP S6127076Y2 JP 18586380 U JP18586380 U JP 18586380U JP 18586380 U JP18586380 U JP 18586380U JP S6127076 Y2 JPS6127076 Y2 JP S6127076Y2
Authority
JP
Japan
Prior art keywords
ray
insulating material
core wire
data
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18586380U
Other languages
Japanese (ja)
Other versions
JPS57108171U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18586380U priority Critical patent/JPS6127076Y2/ja
Publication of JPS57108171U publication Critical patent/JPS57108171U/ja
Application granted granted Critical
Publication of JPS6127076Y2 publication Critical patent/JPS6127076Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)

Description

【考案の詳細な説明】 本考案はX線の検出に用いられるエンドウイン
ドー型比例計数管に関する。
[Detailed Description of the Invention] The present invention relates to an end-window type proportional counter used for X-ray detection.

エンドウインドー型比例計数管を使用している
とX線検出動作の開始時点から時間が経つにつれ
て計数率が次第に変化して安定するまでには10〜
20分程度かゝり、X線入射を停止すると短時間で
もとに戻り、X線再入射では再び同じ経過で長時
間かかつて安定に達する。しかもこの計数率の経
時的変化は増加方向に変化する場合減小方向に変
化する場合の両方があつて一定していない。本考
案はエンドウインドー型計数管に見られる上述し
た不安定を除くことを目的としてなされた。
When using an end-window type proportional counter, the counting rate will gradually change over time from the start of X-ray detection operation, and it will take 10~10 seconds to stabilize.
After about 20 minutes, when the X-ray injection is stopped, it returns to its original state in a short time, and when the X-ray is re-entered, the same process occurs again until it reaches a stable state for a long time. Moreover, the change in the counting rate over time is not constant, both in the increasing direction and in the decreasing direction. The present invention was made with the aim of eliminating the above-mentioned instability observed in end window type counters.

第1図は上述した変化の一例を示すもので縦軸
は計数率即ちX線強度、横軸は時間である。上述
した変化の原因は芯線の支持構造にあると思われ
る。第1図aは第2図aに示す構造の計数管につ
いてのデータ、同bは第2図bに示すもの、同c
は第2図cに示す計数管についてのデータであ
る。第1図aのデータでは計数率はX線入射時の
92OKCPSから500秒後927Kcpsと約0.7%増加
し、500秒の所から1000秒間休止して1500秒から
再びX線を入射させた所全く同じ経過をとつて変
化している。他のb,cのデータも同じようなタ
イムスケジユールで実験した結果である。第1図
bのデータでは経時的に0.11%の減が見られ、デ
ータcでは変動は0.1%幅で上下し漸増、漸減の
傾向はない。上のデータはX線強度が計数率
1000Kcps以下の場合であり、X線強度が増すと
変化率が大きくなる。第1図b′c′がそのことを示
す。第1図b′,c′のデータは第1図b,cと同じ
計数管においてX線強度を2400Kcps程度に強め
たときのデータで、第2図cの型は第1図cのデ
ータからは比較的良好なものと認められたが、X
線強度が大になると、漸増傾向を示すようにな
り、250秒後で既に0.09%を超す漸増を示し、こ
れを500秒に延長して見ると0.2%位に及ぶと予想
される。
FIG. 1 shows an example of the above-mentioned change, in which the vertical axis represents the count rate, that is, the X-ray intensity, and the horizontal axis represents time. The cause of the above-mentioned change is thought to be in the support structure of the core wire. Figure 1a is data for the counter having the structure shown in Figure 2a, Figure 2b is the data shown in Figure 2b, Figure 2c is
is the data for the counter shown in FIG. 2c. In the data in Figure 1a, the counting rate is at the time of X-ray incidence.
After 500 seconds from 92OKCPS, it increased by about 0.7% to 927Kcps, and after a pause of 1000 seconds from 500 seconds and when the X-rays were re-injected from 1500 seconds, the change followed exactly the same process. The other data b and c are the results of experiments using a similar time schedule. In the data in Figure 1b, a decrease of 0.11% over time is seen, and in data c, the fluctuation is up and down in a range of 0.1%, with no tendency for gradual increase or gradual decrease. In the data above, the X-ray intensity is the counting rate.
This is a case of 1000Kcps or less, and the rate of change increases as the X-ray intensity increases. Figure 1 b'c' shows this. The data in Figure 1 b' and c' are obtained when the X-ray intensity was increased to about 2400 Kcps in the same counter as in Figure 1 b and c, and the type in Figure 2 c is based on the data in Figure 1 c. was recognized as relatively good, but
As the line intensity increases, it begins to show a gradual increasing tendency, and after 250 seconds it already shows a gradual increase of more than 0.09%, and if this is extended to 500 seconds, it is expected to reach about 0.2%.

上述した変動の原因を第2図によつて考えてみ
る。第2図では1は外筒、2は芯線で外筒はアー
スされ、芯線に正の高電圧が印加される。このた
め芯線は外筒に対して絶縁して保持しなければな
らない。3は外筒端部材に設けた窓でベリリウム
等の箔が張設してあり、X線はこの窓から入射す
る。窓3は図の紙面に垂直の方向に長い横長の形
をしている。第2図aの型では芯線2は窓3をま
たぐ金属線材のフレーム4にガラス絶縁材5によ
つて熔着してある。この構造が第1図aのを与え
ている。この原因はX線に直接照射される位置要
するに計数管の中心線上にガラス絶縁物5がある
所にあり、当初ガラス絶縁物5は芯線2に近い電
位にあるが、X線の入射で管内ガスがイオン化さ
れると電子の一部はガラス絶縁物5に付着する。
この付着分は芯線電流とならないから計数減を来
す。時が経つとガラス絶縁物5は相当の電子が付
着し電位が下つて電子の入射を妨げ計数率が上昇
した所で安定する。X線の入射を止めればガラス
絶縁物5に付着していた電子はガラス内を伝導電
流となつて通りリークするから状態はもとに戻
る。第2図bでは芯線は外筒1内面にガラス絶縁
座5′を作つてこれに支柱4′を立てゝ支柱端に保
持させてある。この構造ではガラス絶縁座5′は
入射X線の当らない位置にあるが当初この座は外
管1と同電位でイオンが入射し正電位になつて行
く。このため計数管のX線入射端側では芯線か
ら、外管の一部(座5′の所)に向う電位勾配が
弱くなり、この所ではガス電離による増幅作用が
低下する。この範囲は計数管全体の体積から見れ
ばわづかであるが、とにかく計数率を低下させる
作用を呈する。これが第1図bのデータが得られ
る理由であろう。第2図cの型は支柱4″の途中
をガラス絶縁材5″で熔接したもので、絶縁材
5″は第2図aのように直接X線の入射する所に
はないが、X線は若干発散する線束となつて計数
管に入射するので線束の外周部分の一部は絶縁材
5″の一部に入射している。従つて傾向としては
弱いが第2図aの構造と同じ変化傾向を示す筈
で、そのことが第1図c′に現れている。
Let us consider the causes of the above-mentioned fluctuations with reference to FIG. In FIG. 2, 1 is an outer cylinder, 2 is a core wire, and the outer cylinder is grounded, and a positive high voltage is applied to the core wire. For this reason, the core wire must be held insulated from the outer cylinder. Reference numeral 3 denotes a window provided in the end member of the outer cylinder, which is covered with foil such as beryllium, and X-rays enter through this window. The window 3 has an oblong shape that is long in the direction perpendicular to the plane of the drawing. In the type shown in FIG. 2a, the core wire 2 is welded to a metal wire frame 4 that straddles the window 3 with a glass insulating material 5. This structure gives the structure shown in FIG. 1a. The reason for this is that the glass insulator 5 is located directly on the center line of the counter tube, which is directly irradiated with X-rays. Initially, the glass insulator 5 is at a potential close to that of the core wire 2, but due to the incidence of X-rays, the gas inside the tube When the electrons are ionized, some of the electrons adhere to the glass insulator 5.
This adhesion does not become a core wire current, resulting in a decrease in the count. As time passes, a considerable amount of electrons adhere to the glass insulator 5, and the potential decreases, preventing the incidence of electrons, and the counting rate becomes stable at a point where it increases. When the incidence of X-rays is stopped, the electrons attached to the glass insulator 5 leak through the glass as a conduction current, and the state returns to its original state. In FIG. 2b, the core wire has a glass insulating seat 5' formed on the inner surface of the outer cylinder 1, and a support 4' is erected on this and held at the end of the support. In this structure, the glass insulating seat 5' is located at a position where the incident X-rays do not hit, but ions are incident on this seat initially at the same potential as the outer tube 1, and the potential becomes positive. Therefore, on the X-ray incident end side of the counter, the potential gradient from the core wire toward a part of the outer tube (seat 5') becomes weaker, and the amplification effect due to gas ionization is reduced at this point. Although this range is small in terms of the volume of the entire counter, it has the effect of reducing the counting rate. This may be the reason why the data shown in Figure 1b is obtained. The type shown in Fig. 2c has a glass insulating material 5" welded to the middle of the column 4", and although the insulating material 5" is not in a place directly exposed to X-rays as shown in Fig. 2a, enters the counter tube in the form of a slightly divergent wire bundle, so a portion of the outer circumferential portion of the wire bundle enters a portion of the insulating material 5''. Therefore, although the tendency is weak, it should show the same change tendency as the structure in Figure 2a, and this is shown in Figure 1c'.

上述した計数率不安定の原因の説明は一応の推
定であつてそれが正しいと断言はできないが、芯
線2と外筒1との間を絶縁する絶縁材の位置と大
きさが関与していることは確かであると認められ
る。以上の考察に基き本考案は以下実施例で述べ
るようなエンドウインドー型計数管を提供する。
The above explanation of the cause of count rate instability is a tentative assumption, and it cannot be confirmed that it is correct, but the position and size of the insulating material that insulates between the core wire 2 and the outer cylinder 1 are involved. This is admittedly true. Based on the above considerations, the present invention provides an end window type counter as described in the following embodiments.

第3図に本考案の一実施例を示す。1は外筒、
2は芯線、3はX線入射窓である。X線入射側の
端部材6に支柱7を立て、先端を管中心方向に曲
げ、曲げた直後の所でガラス絶縁材8で支柱7′
を熔接し、支柱7′の端に芯線2を保持させる。
ガラス絶縁材8の計数管中心からの距離は次のよ
うに選定される。X線入射窓3に入射するX線は
ソーラスリツトのようなものを通して入射すると
きは平行線束とみなせるから格別問題はないが、
彎曲結晶で回折されたX線の収束位置にあるスリ
ツトの背後に計数管を置くときは入射X線が発散
線束となつているので、この場合でも絶縁材8に
X線が当らないようにする必要がある。分光用彎
曲結晶は幅が4〜5cmであり、この結晶からX線
収束点までの距離は20cm位と云うのが大体一般的
なX線分光器の寸法であるから、これからX線束
の広り角を求めると約15゜片側7.5゜である。そ
こで第3図で窓3の上縁から水平線より7.5゜上
向きに傾いた線を計数管内に向つて引き、この線
が支柱7′と交る点よりも外筒寄りに絶縁材8を
位置させねばならない。
FIG. 3 shows an embodiment of the present invention. 1 is the outer cylinder,
2 is a core wire, and 3 is an X-ray entrance window. A support 7 is erected on the end member 6 on the X-ray incident side, the tip is bent toward the center of the tube, and immediately after bending, the support 7' is secured with a glass insulating material 8.
are welded to hold the core wire 2 at the end of the support 7'.
The distance of the glass insulating material 8 from the center of the counter tube is selected as follows. When the X-rays entering the X-ray entrance window 3 enter through something like a solar slit, they can be regarded as a parallel ray bundle, so there is no particular problem.
When placing a counter behind the slit where the X-rays diffracted by the curved crystal converge, the incident X-rays become a divergent ray bundle, so even in this case, prevent the X-rays from hitting the insulating material 8. There is a need. The curved crystal for spectroscopy has a width of 4 to 5 cm, and the distance from this crystal to the X-ray convergence point is about 20 cm, which is the size of a typical X-ray spectrometer. The angle is approximately 15° and 7.5° on one side. Therefore, in Fig. 3, a line inclined 7.5° upward from the horizontal line is drawn from the upper edge of the window 3 toward the inside of the counter tube, and the insulating material 8 is positioned closer to the outer cylinder than the point where this line intersects with the support 7'. Must be.

第4図は本考案の他の実施例であつても、支柱
7を管中心に曲げる位置よりも基部に近い所で絶
縁材8で熔接したものである。
FIG. 4 shows another embodiment of the present invention in which the support 7 is welded with an insulating material 8 at a position closer to the base than the position where the support 7 is bent around the center of the pipe.

第5図は上記第3図の実施例における実測デー
タを示す。aはX線強度が1000Kcps以下の場
合、bは3400Kcpsの場合のデータである。aと
bとでタイムスケジユールは異るが変化傾向から
外挿して互に比較することができ、変化は漸増と
か漸減と云つた偏向傾向を示さず、変化幅は0.05
〜0.09%で第2図に示した何れのデータよりも優
れていることが判る。
FIG. 5 shows actual measurement data for the embodiment shown in FIG. 3 above. A is the data when the X-ray intensity is 1000 Kcps or less, and b is the data when the X-ray intensity is 3400 Kcps. Although the time schedules for a and b are different, they can be extrapolated from the change trends and compared with each other, and the changes do not show a biased tendency such as gradual increase or gradual decrease, and the change width is 0.05.
It can be seen that it is 0.09%, which is better than any of the data shown in FIG.

本考案エンドウインドー型比例計数管は上述し
たように芯線支柱を入射X線から見て完全に窓の
陰になる位置で絶縁材で接続したもので、外筒内
面に絶縁材で被われた部分を作らず、管への入射
X線が入射する範囲にも絶縁材を設けないから経
時的な安定性が改善され、しかも構造的には従来
例より何等複雑化する所がない。
As mentioned above, the end window type proportional counter tube of the present invention is one in which the core wire struts are connected with an insulating material at a position completely hidden by the window when viewed from the incident X-ray, and the inner surface of the outer tube is covered with an insulating material. Since no insulating material is provided in the area where the incident X-rays enter the tube, stability over time is improved, and the structure is no more complicated than the conventional example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の測定データ、第2図は従来例
の縦断側面図、第3,第4図は夫々本考案の異る
実施例の要部縦断側面図、第5図は本考案実施例
による測定データを示す。 1……外筒、2……芯線、3……X線入射窓、
6……管端部材、7,7′……支柱、8……絶縁
材。
Figure 1 is the measurement data of the conventional example, Figure 2 is a longitudinal cross-sectional side view of the conventional example, Figures 3 and 4 are longitudinal cross-sectional side views of main parts of different embodiments of the present invention, and Figure 5 is the implementation of the present invention. Measurement data by example is shown. 1...Outer cylinder, 2...Core wire, 3...X-ray entrance window,
6... Pipe end member, 7, 7'... Support column, 8... Insulating material.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 芯線のX線入射側の端を、X線入射窓を設けた
管端部材に立てた支柱によつて保持し、この支柱
の途中でX線入射窓に入射する発散性X線束に対
して完全にX線入射窓の陰になる位置において絶
縁材で継足した形としたエンドウインドー型比例
計数管。
The end of the core wire on the X-ray entrance side is held by a support placed on the tube end member provided with an An end-window type proportional counter with an insulating material added in the shadow of the X-ray entrance window.
JP18586380U 1980-12-23 1980-12-23 Expired JPS6127076Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18586380U JPS6127076Y2 (en) 1980-12-23 1980-12-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18586380U JPS6127076Y2 (en) 1980-12-23 1980-12-23

Publications (2)

Publication Number Publication Date
JPS57108171U JPS57108171U (en) 1982-07-03
JPS6127076Y2 true JPS6127076Y2 (en) 1986-08-13

Family

ID=29987297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18586380U Expired JPS6127076Y2 (en) 1980-12-23 1980-12-23

Country Status (1)

Country Link
JP (1) JPS6127076Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341401Y2 (en) * 1985-02-21 1991-08-30

Also Published As

Publication number Publication date
JPS57108171U (en) 1982-07-03

Similar Documents

Publication Publication Date Title
Dunckel et al. Whistler‐mode emissions on the OGO 1 satellite
JPS6127076Y2 (en)
Suárez et al. Ne ionization induced by the impact of 106-keV/u H+ and He 2+ 3: Two-center effects on the soft-electron emission
Pimbley et al. Infrared optical constants of PtSi
Danigel et al. Beam profile analysis for a 252Cf plasma-desorption time-of-flight mass spectrometer
Fauster et al. Angular distribution of the inverse photoemission from Cu (100)
Rees et al. The diffusion of electrons in dry, carbon dioxide free air
JP2708324B2 (en) Cathode ray tube device
Langstroth Electron polarisation
Anno Secondary Electron Production from Alpha Particles Emerging from Gold
Ondoh et al. Characteristics of VLF saucers and auroral hisses from ISIS satellites received at Syowa station, Antarctica
JPS5952884A (en) Manufacture of semiconductor element for detection of radiant ray or optical ray
JPS55111048A (en) Implosion-proof cathode ray tube and manufacturing method
Bounds et al. A molecular orbital study of the effect of an external electric field on methanol
JPH03135787A (en) X-ray detector
JPS5472667A (en) Electron gun for cathode ray tube
De Beer et al. The angular distribution of mu-mesons in extensive air showers
Heyvaerts et al. Polarization and location of metric radiobursts in relationship with the emergence of a new magnetic field
JPS5819496Y2 (en) High energy charged particle detection device
Alichanow et al. β-Spectra of Some Radioactive Elements
JPS6028029Y2 (en) Braun tube grounding fitting installation device
Schafer et al. Ionosphere measurements during the partial eclipse of the Sun of February 3, 1935
Goetze et al. Secondary electron conduction in low density targets for signal amplification and storage in camera tubes
Burr Design of a 6-Bev Faraday Cup
JPS63115025A (en) Measuring method for gas pressure of cathode-ray tube