JPH03135787A - X-ray detector - Google Patents

X-ray detector

Info

Publication number
JPH03135787A
JPH03135787A JP1274532A JP27453289A JPH03135787A JP H03135787 A JPH03135787 A JP H03135787A JP 1274532 A JP1274532 A JP 1274532A JP 27453289 A JP27453289 A JP 27453289A JP H03135787 A JPH03135787 A JP H03135787A
Authority
JP
Japan
Prior art keywords
window
detection window
ray
ray detector
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1274532A
Other languages
Japanese (ja)
Inventor
Masayuki Taira
平 正之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP1274532A priority Critical patent/JPH03135787A/en
Publication of JPH03135787A publication Critical patent/JPH03135787A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To use a light element thin film window and improve pressure resistance performance and to detect X rays with high sensitivity by decreasing the thickness of the X-ray detection window gradually from the outer peripheral part supported on a tube in a vacuum state to the center part of the window. CONSTITUTION:The detector part of an energy dispersion type X-ray spectroscope is arranged nearby a sample 9 between magnetic pole pieces 8 of an objective while penetrating the lens barrel 7 of an electron microscope. Then the lens barrel 7 and a protection barrel 4 are connected by a bellows 5 to attain vacuum sealing and the vacuum in the lens barrel 7 is maintained. The inside of the spectroscope is arranged hermetically in the protection barrel 4 in a vacuum state and a semiconductor detector 1 which is cooled by a cooling tank 2 at all times detects X rays transmitted through a beryllium window 10 from the sample. This window 10 is formed decreasing gradually in thickness from the window outer peripheral part to the detection center part according to the phenomenon that stress applied to the thin film window with uniform thickness decreases toward the center part. Therefore, even if the center part is thin, the pressure resistance performance is good and higher sensitivity is obtained at the center part.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は試料に電子ビームを照射した際に発生する特性
X線を検出するエネルギー分散形X線検出器の窓部の構
造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a window of an energy dispersive X-ray detector that detects characteristic X-rays generated when a sample is irradiated with an electron beam.

[従来の技術] 従来、電子顕微鏡の試料から発生するX線等の電磁波を
該試料近傍に配置された半導体検出器によって検出する
ことが行われている。
[Prior Art] Conventionally, electromagnetic waves such as X-rays generated from a sample of an electron microscope are detected by a semiconductor detector placed near the sample.

このX線検出に用いられるX線分析装置として、第7に
示すような構成の装置が知られている。
As an X-ray analyzer used for this X-ray detection, an apparatus having a configuration as shown in the seventh example is known.

第7図において1は半導体検出器、2は半導体検1を冷
却するための冷却槽、3は冷却槽2と半導体検出器1を
接続するための熱伝導棒、4は内部が真空状態にされた
保護筒、5はベローズ、6は調整ねじ、7は電子顕微鏡
筐筒、8は磁極片、9は試料、10はベリリウム窓であ
る。
In FIG. 7, 1 is a semiconductor detector, 2 is a cooling tank for cooling the semiconductor detector 1, 3 is a heat conductive rod for connecting the cooling tank 2 and the semiconductor detector 1, and 4 is a device whose inside is in a vacuum state. 5 is a bellows, 6 is an adjustment screw, 7 is an electron microscope housing, 8 is a magnetic pole piece, 9 is a sample, and 10 is a beryllium window.

前記半導体検出器1、冷却槽2、熱伝導棒3及び保護筒
4からなるエネルギー分散型X線分光器の検出器部分は
、筐筒7を貫通して対物レンズの磁極片8間の試料9の
近傍に配置されている。このとき、筐筒7内の真空を維
持するために、筐筒7と保護筒4の間はベローズ5によ
って接続され真空封止がなされている。また、前記保護
筒4は調整ねじ6によって固定されているおり、該調整
ねじ6により分光器(特に検出器)の位置が前記試料9
に対して調整される。
The detector portion of the energy dispersive X-ray spectrometer, which consists of the semiconductor detector 1, cooling tank 2, thermally conductive rod 3, and protective tube 4, passes through the housing tube 7 and passes through the sample 9 between the magnetic pole pieces 8 of the objective lens. is located near. At this time, in order to maintain the vacuum inside the housing tube 7, the housing tube 7 and the protection tube 4 are connected by a bellows 5 and vacuum-sealed. The protection tube 4 is fixed by an adjustment screw 6, and the adjustment screw 6 allows the position of the spectrometer (particularly the detector) to be adjusted to the sample 9.
adjusted for.

また、保護筒4の先端には検出器1の有効検出面積と略
等しい面積を有する軽元素膜製の窓、例えばベリリウム
製の窓10が設けられており、該窓材10は保護筒4内
と筐筒内の圧力差を保つ隔壁となるように気密に保護筒
4に取り付けられている。
Further, a window 10 made of a light element film, for example, beryllium, and having an area approximately equal to the effective detection area of the detector 1 is provided at the tip of the protection tube 4 . The protective tube 4 is airtightly attached to the protective tube 4 so as to act as a partition wall that maintains the pressure difference within the housing tube.

[考案が解決しようとする課題] さて、最近では前記窓材を1μ程度の極薄い膜状に形成
することにより、試料中の軽元素から発生する低エネル
ギーのX線を検出することが行われている。しかし、こ
のような1μ程度の極薄い軽元素膜を窓として保護筒4
の先端に取り付けた場合、該窓により保護筒内と筐筒内
の圧力差を保つことは難しく、電子顕微鏡の筐筒内を大
気圧にリークするような場合に、該窓が破損することが
問題となっている。
[Problem to be solved by the invention] Recently, low-energy X-rays generated from light elements in a sample have been detected by forming the window material into an extremely thin film of about 1 μm. ing. However, such an extremely thin light element film of about 1 μm is used as a window in the protective tube 4.
If the window is attached to the tip of the electron microscope, it is difficult to maintain the pressure difference between the inside of the protective cylinder and the inside of the casing, and if the inside of the casing of the electron microscope leaks to atmospheric pressure, the window may be damaged. This has become a problem.

そのため、低エネルギーのX線を検出することができる
極薄い軽元素膜窓を用いたX線分析装置では該窓の前方
にゲートバルブを設け、筐筒内を大気圧にリークする場
合に、バルブを閉じて窓を保護するようにしていた。し
かし、このような方法により窓の破損を防止する場合に
は、バルブなどの構成要素により装置が大形化し、検出
器を試料近傍まで近付けることができなくなり、検出感
度が低下することが問題となる。
Therefore, in an X-ray analyzer that uses an ultra-thin light-element film window that can detect low-energy I closed it to protect the window. However, when using this method to prevent window damage, the problem is that components such as valves increase the size of the device, making it impossible to bring the detector close to the sample, and reducing detection sensitivity. Become.

そこで、該窓に第8図に示すような格子状の補強部材1
1を設けたり、スリット状の補強部材を設けることによ
り耐圧性能を増すようにしている。
Therefore, a lattice-shaped reinforcing member 1 as shown in FIG.
1 or a slit-shaped reinforcing member to increase pressure resistance.

しかし、このような方法により窓の破損を防止した場合
には、試料に検出器を接近させることは可能であるが、
該補強格子の幅や厚みにより、試料から発生する特性X
線が妨害されて検出感度が低下したり、該格子部材の元
素からの2次X線によりゴーストスペクトルが発生する
ため、十分な検出感度が得られないことが問題とされて
いる。
However, if the window is prevented from being damaged by such a method, it is possible to bring the detector close to the sample;
Characteristics X generated from the sample depending on the width and thickness of the reinforcing grid
The problem is that sufficient detection sensitivity cannot be obtained because the radiation is obstructed and the detection sensitivity is lowered, and a ghost spectrum is generated by secondary X-rays from the elements of the grating member.

本発明は上述した問題点を考慮した、軽元素薄膜窓を用
いた耐圧性能(耐真空性能)が良く、またX線検出感度
の高いエネルギー分散形X線検出器を提供することを目
的としている。
The present invention takes the above-mentioned problems into consideration and aims to provide an energy dispersive X-ray detector that uses a light element thin film window and has good pressure resistance (vacuum resistance) and high X-ray detection sensitivity. .

[課題を解決するための手段] 第1の本発明は、真空状態の管内に密閉配置され、常時
冷却されているX線検出器により、試料から発生してX
線検出窓を透過してくるX線を検出するエネルギー分散
形X線検出器において、前記X線検出窓の厚みを前記管
に支持される外周部分から検出窓の中心部分に向けて徐
々に薄く形成したことを特徴としている。
[Means for Solving the Problems] The first aspect of the present invention uses an X-ray detector that is sealed in a tube in a vacuum state and is constantly cooled to detect X-rays generated from a sample.
In an energy dispersive X-ray detector that detects X-rays passing through a radiation detection window, the thickness of the X-ray detection window is gradually thinned from an outer peripheral portion supported by the tube toward a central portion of the detection window. It is characterized by the fact that it was formed.

第2の本発明は、真空状態の管内に密閉配置され、常時
冷却されているX線検出器により、試料から発生してX
線検出窓を透過してくるX線を検出するエネルギー分散
形X線検出器において、前記X線検出窓の厚みを前記管
に支持される外周部分から検出窓の中心部分に向けて徐
々に薄く形成すると共に、該窓に添付される補強部材を
設け、該補強部材の間隔を前記管に支持される外周部分
から検出窓の中心部分に向けて徐々に粗く形成したこと
を特徴としている。
The second invention uses an X-ray detector that is hermetically placed in a vacuum tube and is constantly cooled to detect the X-rays generated from the sample.
In an energy dispersive X-ray detector that detects X-rays passing through a radiation detection window, the thickness of the X-ray detection window is gradually thinned from an outer peripheral portion supported by the tube toward a central portion of the detection window. The present invention is characterized in that a reinforcing member is provided attached to the window, and the intervals between the reinforcing members are gradually made coarser from the outer peripheral portion supported by the tube toward the center portion of the detection window.

第3の本発明は、前記窓に添付される補強部材の厚みを
前記管に支持される外周部分から検出窓の中心部分に向
けて徐々に薄く形成すると共に、該補強部材の間隔を前
記管に支持される外周部分から検出窓の中心部分に向け
て徐々に粗く形成したエネルギー分散形X線検出器を特
徴としている。
A third aspect of the present invention is that the thickness of the reinforcing member attached to the window is gradually reduced from the outer peripheral portion supported by the tube toward the central portion of the detection window, and the interval between the reinforcing members is adjusted to The energy dispersive X-ray detector is characterized by an energy dispersive X-ray detector that is gradually roughened from the outer periphery supported by the detection window toward the center of the detection window.

[実施例] 以下、本発明の実施例を図面に基づいて説明する。第1
図は本発明の一実施例を説明するための装置構成図、第
2図は第1の本発明を説明するための要部断面図、第3
図は第2の本発明を説明するための要部断面図、第4図
は第3図のA−A =矢視図、第5図は第3の本発明を
説明するための要部断面図、第6図は第5図のB−B 
”矢視図である。
[Example] Hereinafter, an example of the present invention will be described based on the drawings. 1st
The figure is an apparatus configuration diagram for explaining one embodiment of the present invention, FIG. 2 is a sectional view of main parts for explaining the first present invention, and
The figure is a cross-sectional view of a main part for explaining the second invention, FIG. 4 is a view taken along the line A-A in FIG. 3, and FIG. Figure 6 is B-B of Figure 5.
”This is a view from the arrow.

先ず、第1図に基づいて本発明による装置の構成を説明
する。
First, the configuration of the apparatus according to the present invention will be explained based on FIG.

第1図において1は半導体検出器、2は半導体検1を冷
却するための冷却槽、3は冷却槽2と半導体検出器1を
接続するための熱伝導棒、4は内部が真空状態にされた
保護筒、5はベローズ、6は調整ねじ、7は電子顕微鏡
筐筒、8は磁極片、9は試料、10はベリリウム窓であ
る。
In FIG. 1, 1 is a semiconductor detector, 2 is a cooling tank for cooling the semiconductor detector 1, 3 is a heat conductive rod for connecting the cooling tank 2 and the semiconductor detector 1, and 4 is a device whose inside is in a vacuum state. 5 is a bellows, 6 is an adjustment screw, 7 is an electron microscope housing, 8 is a magnetic pole piece, 9 is a sample, and 10 is a beryllium window.

前記半導体検出器1、冷却槽2、熱伝導棒3及び保護筒
4からなるエネルギー分散型X線分光器の検出器部分は
筐筒7を貫通して対物レンズの磁極片8間の試料9の近
傍に配置されている。このとき、筐筒7内の真空を維持
するために、筐筒7と保護筒4の間はベローズ5によっ
て接続され真空封止がなされている。また、保護筒4の
先端にはベリリウム窓10が気密に張られている。
The detector part of the energy dispersive X-ray spectrometer, which consists of the semiconductor detector 1, the cooling bath 2, the thermally conductive rod 3, and the protective tube 4, penetrates the housing tube 7 and detects the sample 9 between the magnetic pole pieces 8 of the objective lens. located nearby. At this time, in order to maintain the vacuum inside the housing tube 7, the housing tube 7 and the protection tube 4 are connected by a bellows 5 and vacuum-sealed. Furthermore, a beryllium window 10 is airtightly placed at the tip of the protective tube 4.

また、前記保護筒4は調整ねじ6によって固定されると
共に、該調整ねじ6により分光器(特に検出器)は試料
に対して調整される。
Further, the protective tube 4 is fixed by an adjustment screw 6, and the spectrometer (particularly the detector) is adjusted with respect to the sample by the adjustment screw 6.

ここで、第1の本発明によるベリリウム窓1゜の構造は
第2図に示すように保護筒に気密に張り付けられる窓外
周部分から検出中心部分(窓中心部)に向けて徐々に薄
く形成されている。この窓は、均一の厚さに形成された
ベリリウム薄膜窓の中心部分をプレス加工やエツチング
などの手法を用いることにより形成されている。
Here, the structure of the beryllium window 1° according to the first aspect of the present invention is as shown in FIG. ing. This window is formed by pressing or etching the center portion of a beryllium thin film window formed to have a uniform thickness.

上述のような構造の窓は、従来のような均一な厚さの薄
膜窓にかかる応力が窓の中心部分へ向かうほど小さくな
るという現象に着目して形成されたものである。従って
、従来構造の薄膜窓の中心部分をプレスなどにより極め
て薄い構造とした場合でも、耐圧性の良い構造の窓が得
られる。そのため、窓の中心部(検出中心)はど感度の
高いエネルギー分散形X線検出器が実現される。
The window having the structure described above was formed by paying attention to the phenomenon that the stress applied to a conventional thin film window of uniform thickness decreases toward the center of the window. Therefore, even if the central portion of a conventionally structured thin film window is made into an extremely thin structure by pressing or the like, a window having a structure with good pressure resistance can be obtained. Therefore, an energy dispersive X-ray detector with high sensitivity at the center of the window (detection center) is realized.

次に、第3図及び第4図に基づいて第2の本発明を説明
する。第3図に示す第2の本発明の実施例においては、
窓10の外周部分から検出中心部分(窓中心部)に向け
て徐々に薄く形成された薄膜窓に補強格子11を張り付
けると共に、第4図に示すように該補強格子の目を保護
筒の外周部分から検出窓の中心部分に向けて徐々に粗く
形成している。
Next, the second invention will be explained based on FIGS. 3 and 4. In the second embodiment of the invention shown in FIG.
A reinforcing grid 11 is pasted on a thin film window that is gradually made thinner from the outer periphery of the window 10 toward the detection center (window center), and the eyes of the reinforcing grid are covered with a protective tube as shown in FIG. The detection window is gradually roughened from the outer periphery toward the center of the detection window.

上述のような構成は、応力の小さいより、大きな応力を
受ける窓外周部の機械的強度を増すために補強を強化す
ると共に、薄膜窓の中心部分の格子間隔を広げ検出感度
の向上を図るようになされたものである。これにより、
従来の補強格子を張り付は耐圧性を増すようにした検出
器のように、該補強格子の幅や厚みにより、試料から発
生する特性X線が該補強格子によって妨害されて検出感
度が低下したり、格子材の元素からの2次X線によりゴ
ーストスペクトルが発生することが低減されるので、検
出感度の高いエネルギー分散形X線検出器が実現される
The configuration described above strengthens reinforcement to increase the mechanical strength of the outer periphery of the window, which is subject to greater stress than that which is subject to less stress, and widens the lattice spacing in the center of the thin film window to improve detection sensitivity. This is what was done. This results in
As with conventional detectors with reinforced grids to increase pressure resistance, the width and thickness of the reinforcing grids can interfere with characteristic X-rays generated from the sample, reducing detection sensitivity. In addition, since the occurrence of ghost spectra due to secondary X-rays from the elements of the grating material is reduced, an energy dispersive X-ray detector with high detection sensitivity can be realized.

次に、第5図及び第6図に基づいて第3の本発明を説明
する。第5図に示す第3の本発明の実施例においては、
窓外周部分から検出中心部分(窓中心部)に向けて徐々
に薄く形成された薄膜窓10の片面に格子の目を保護筒
4の外周部分から検出窓の中心部分に向けて徐々に粗く
形成した補強格子11を張り付けると共に、該補強格子
11の厚みを前記保護筒に支持される外周部分から検出
窓の中心部分に向けて徐々に薄く形成している。
Next, the third invention will be explained based on FIGS. 5 and 6. In the third embodiment of the present invention shown in FIG.
On one side of the thin film window 10, which is formed gradually thinner from the outer periphery of the window toward the detection center (window center), grid eyes are formed gradually and coarsely from the outer periphery of the protective tube 4 toward the center of the detection window. At the same time, the thickness of the reinforcing grid 11 is gradually reduced from the outer peripheral portion supported by the protection tube toward the center of the detection window.

上述のような補強格子の構造とすることにより、補強格
子の幅や厚みにより、試料から発生する特性X線が妨害
されて検出感度が低下したり、格子材料の元素からの2
次X線によるゴーストスペクトルの発生が低減されるの
で、さらに耐圧性能が良く、且つ検出感度の高いエネル
ギー分散形X線検出器が実現される。
By adopting the structure of the reinforcing grid as described above, the characteristic X-rays generated from the sample may be obstructed by the width and thickness of the reinforcing grid, reducing the detection sensitivity, or
Since the generation of ghost spectra due to secondary X-rays is reduced, an energy dispersive X-ray detector with better pressure resistance and higher detection sensitivity can be realized.

なお、上述した実施例は本発明の一実施例に過ぎず、本
発明は種々変形して実施することができる。例えば、上
述した実施例において、薄膜窓の補強部材は窓外周部と
中心部とで間隔の異なる補強格子であったが、該補強部
材は窓外周部と中心部とで間隔の異なるスリット状や蜂
の巣状の補強部材であっても良い。また、上述した実施
例においては薄膜窓の材質をベリリウムとしたが、該窓
はベリリウム以外の材質であっても良い。
Note that the above-described embodiment is only one embodiment of the present invention, and the present invention can be implemented with various modifications. For example, in the above-mentioned embodiment, the reinforcing member of the thin film window was a reinforcing lattice with different spacing between the outer periphery and the center of the window, but the reinforcing member was a slit-shaped reinforcing lattice with different spacing between the outer periphery and the center of the window. A honeycomb-shaped reinforcing member may also be used. Further, in the above embodiments, the material of the thin film window is beryllium, but the window may be made of a material other than beryllium.

[発明の効果] 以上の説明から明らかなように、第1の本発明によれば
、真空状態の管内に密閉配置され、常時冷却されている
X線検出器により、試料から発生してX線検出窓を透過
してくるX線を検出するエネルギー分散形X線検出器に
おいて、前記X線検出窓の厚みを前記管に支持される外
周部分から検出窓の中心部分に向けて徐々に薄く形成し
たことにより、従来構造の薄膜窓より検出感度の良いエ
ネルギー分散形X線検出器が実現される。
[Effects of the Invention] As is clear from the above description, according to the first invention, an X-ray detector that is hermetically placed in a vacuum tube and is constantly cooled detects X-rays generated from a sample. In an energy dispersive X-ray detector that detects X-rays passing through a detection window, the thickness of the X-ray detection window is gradually thinned from the outer circumference supported by the tube toward the center of the detection window. As a result, an energy dispersive X-ray detector with higher detection sensitivity than the thin film window of conventional structure can be realized.

また、第2の本発明によれば、真空状態の管内に密閉配
置され、常時冷却されているX線検出器により、試料か
ら発生してX線検出窓を透過してくるX線を検出するエ
ネルギー分散形X線検出器において、前記X線検出窓の
厚みを前記管に支持される外周部分から検出窓の中心部
分に向けて徐々に薄く形成すること、また該窓に添付さ
れる補強部材を設け、該補強部材の間隔を前記管に支持
される外周部分から検出窓の中心部分に向けて徐々に粗
く形成したことにより、従来のように均一な補強格子を
張り付は耐圧性を増すようにした検出器よりも、検出感
度の良いエネルギー分散形X線検出器が実現される。
Further, according to the second aspect of the present invention, an X-ray detector that is hermetically placed in a vacuum tube and is constantly cooled detects X-rays generated from a sample and transmitted through an X-ray detection window. In the energy dispersive X-ray detector, the thickness of the X-ray detection window is gradually reduced from the outer peripheral portion supported by the tube toward the center of the detection window, and a reinforcing member attached to the window. , and the spacing between the reinforcing members is gradually made coarser from the outer periphery supported by the tube toward the center of the detection window, thereby increasing pressure resistance compared to pasting a uniform reinforcing grid as in the past. An energy dispersive X-ray detector with higher detection sensitivity than a detector configured in this manner can be realized.

さらに、第3の本発明によれば、前記窓に添付される補
強部材の厚みを前記管に支持される外周部分から検出窓
の中心部分に向けて徐々に薄く形成すると共に、該補強
部材の間隔を前記管に支持される外周部分から検出窓の
中心部分に向けて徐々に粗く形成したことにより、耐真
空性能を維持したまま、検出感度の高いエネルギー分散
形X線検出器が実現される。
Furthermore, according to the third aspect of the present invention, the thickness of the reinforcing member attached to the window is gradually reduced from the outer peripheral portion supported by the tube toward the central portion of the detection window, and the reinforcing member is By gradually increasing the spacing from the outer circumference supported by the tube toward the center of the detection window, an energy dispersive X-ray detector with high detection sensitivity can be achieved while maintaining vacuum resistance. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための装置構成図
、第2図は第1の本発明を説明するための要部断面図、
第3図は第2の本発明を説明するための要部断面図、第
4図は第3図のA−A−矢視図、第5図は第3の本発明
を説明するための要部断面図、第6図は第5図のB−B
″矢視図、第7図及び第8図は従来例を説明するための
図である。 1:半導体検出器    2:冷却槽 3:熱伝導棒      4:保護筒 5:ベローズ      6:調整ねじ7:電子顕微鏡
筐筒   8:磁極片 9:試料       10:ベリリウム窓11:補強
格子 図面の浄書(内容に変更なし)
FIG. 1 is an apparatus configuration diagram for explaining an embodiment of the present invention, FIG. 2 is a sectional view of essential parts for explaining the first present invention,
FIG. 3 is a sectional view of essential parts for explaining the second invention, FIG. 4 is a view taken along the line A-A in FIG. 3, and FIG. 5 is a main part for explaining the third invention. Partial sectional view, Figure 6 is taken along the line B-B in Figure 5.
The arrow view, FIG. 7, and FIG. 8 are diagrams for explaining the conventional example. 1: Semiconductor detector 2: Cooling tank 3: Heat conduction rod 4: Protective tube 5: Bellows 6: Adjusting screw 7 : Electron microscope housing 8: Magnetic pole piece 9: Sample 10: Beryllium window 11: Reinforcement grid drawing (no change in content)

Claims (3)

【特許請求の範囲】[Claims] (1)真空状態の管内に密閉配置され、常時冷却されて
いるX線検出器により、試料から発生してX線検出窓を
透過してくるX線を検出するエネルギー分散形X線検出
器において、前記X線検出窓の厚みを前記管に支持され
る外周部分から検出窓の中心部分に向けて徐々に薄く形
成したことを特徴とするエネルギー分散形X線検出器。
(1) In an energy dispersive X-ray detector that detects X-rays generated from a sample and transmitted through an X-ray detection window using an X-ray detector that is sealed inside a vacuum tube and constantly cooled. An energy dispersive X-ray detector, characterized in that the thickness of the X-ray detection window is gradually thinned from the outer peripheral portion supported by the tube toward the center of the detection window.
(2)真空状態の管内に密閉配置され、常時冷却されて
いるX線検出器により、試料から発生してX線検出窓を
透過してくるX線を検出するエネルギー分散形X線検出
器において、前記X線検出窓の厚みを前記管に支持され
る外周部分から検出窓の中心部分に向けて徐々に薄く形
成すると共に、該窓に添付される補強部材を設け、該補
強部材の間隔を前記管に支持される外周部分から検出窓
の中心部分に向けて徐々に粗く形成したことを特徴とす
るエネルギー分散形X線検出器。
(2) In an energy dispersive X-ray detector that detects X-rays generated from a sample and transmitted through an X-ray detection window using an X-ray detector that is sealed inside a vacuum tube and constantly cooled. , the thickness of the X-ray detection window is gradually reduced from the outer peripheral portion supported by the tube toward the center of the detection window, and a reinforcing member is provided attached to the window, and the interval between the reinforcing members is set. An energy dispersive X-ray detector characterized in that the detection window is gradually roughened from the outer peripheral portion supported by the tube toward the central portion of the detection window.
(3)前記窓に添付される補強部材の厚みを前記管に支
持される外周部分から検出窓の中心部分に向けて徐々に
薄く形成すると共に、該補強部材の間隔を前記管に支持
される外周部分から検出窓の中心部分に向けて徐々に粗
く形成したことを特徴とする請求項2記載のエネルギー
分散形X線検出器。
(3) The thickness of the reinforcing member attached to the window is gradually made thinner from the outer peripheral portion supported by the tube toward the central portion of the detection window, and the intervals between the reinforcing members are adjusted to reduce the thickness of the reinforcing member attached to the window. 3. The energy dispersive X-ray detector according to claim 2, wherein the detection window is formed gradually coarser from the outer circumference toward the center of the detection window.
JP1274532A 1989-10-20 1989-10-20 X-ray detector Pending JPH03135787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1274532A JPH03135787A (en) 1989-10-20 1989-10-20 X-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1274532A JPH03135787A (en) 1989-10-20 1989-10-20 X-ray detector

Publications (1)

Publication Number Publication Date
JPH03135787A true JPH03135787A (en) 1991-06-10

Family

ID=17543018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1274532A Pending JPH03135787A (en) 1989-10-20 1989-10-20 X-ray detector

Country Status (1)

Country Link
JP (1) JPH03135787A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130051424A1 (en) * 2010-05-06 2013-02-28 Guobing Yuan Optical system and focusing structure for infrared thermometer
JP2015152525A (en) * 2014-02-18 2015-08-24 株式会社堀場製作所 Radiation transmission window, radiation detector and radiation detection device
CN105758344A (en) * 2014-12-19 2016-07-13 中国科学院空间科学与应用研究中心 Semiconductor sensor window thickness measuring method and device
JP2018509635A (en) * 2015-01-22 2018-04-05 ラクセル コーポレーション Improved materials and structures for large area X-ray detector windows
GB2619601A (en) * 2022-04-21 2023-12-13 Oxford Instruments Nanotechnology Tools Ltd Improved X-ray analysis for heated specimens in electron microscopes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130051424A1 (en) * 2010-05-06 2013-02-28 Guobing Yuan Optical system and focusing structure for infrared thermometer
US8870452B2 (en) * 2010-05-06 2014-10-28 Guobing Yuan Optical system and focusing structure for infrared thermometer
JP2015152525A (en) * 2014-02-18 2015-08-24 株式会社堀場製作所 Radiation transmission window, radiation detector and radiation detection device
US10147511B2 (en) 2014-02-18 2018-12-04 Horiba, Ltd. Radiolucent window, radiation detector and radiation detection apparatus
CN105758344A (en) * 2014-12-19 2016-07-13 中国科学院空间科学与应用研究中心 Semiconductor sensor window thickness measuring method and device
JP2018509635A (en) * 2015-01-22 2018-04-05 ラクセル コーポレーション Improved materials and structures for large area X-ray detector windows
GB2619601A (en) * 2022-04-21 2023-12-13 Oxford Instruments Nanotechnology Tools Ltd Improved X-ray analysis for heated specimens in electron microscopes

Similar Documents

Publication Publication Date Title
Brown et al. Faraday‐cup monitors for high‐energy electron beams
EP2202775B1 (en) Silicon drift X-ray detector
US2663812A (en) X-ray tube window
US4275326A (en) Image intensifier tube with a light-absorbing electron-permeable layer
Funabashi et al. Compact fluorescence x‐ray detector for surface EXAFS and x‐ray standing wave measurements
McRae et al. Very low energy electron reflection at Cu (001) surfaces
JPH03135787A (en) X-ray detector
EP0748456B1 (en) Polyethylene naphtalate x-ray window
Mizogawa et al. New readout technique for two-dimensional position-sensitive detectors
US4639597A (en) Auger electron spectrometer capable of attaining a high resolution
WO1994009509A1 (en) Gas proportional scintillation counter for ionizing radiation with medium and large size radiation windows and/or detection volumes
Sugiura et al. Soft x-ray spectra of sulfur in cubic CdS
US4406973A (en) Black glass shield and method for absorbing stray light for image intensifiers
McGee et al. Further Developments of the Spectracon
JP2938134B2 (en) X-ray detector
US3331979A (en) X-radiation-to-electrical signal transducer
McGee et al. An image tube with Lenard window
Bayly et al. A mass and energy spectrometer for secondary ion analysis
US3739170A (en) Auger electron spectroscopy
US4584468A (en) Electron image tube having a trapping space for loose particles
US5404014A (en) Integral window/photon beam position monitor and beam flux detectors for x-ray beams
Rodenburg et al. The recording of microdiffraction patterns in scanning transmission electron microscopy
WO2023026939A1 (en) Radiation detection element, radiation detector, radiation detection device, and method for manufacturing radiation detection element
Williams et al. X-ray Spectrometry
Lowe Problems associated with EDX detectors from a manufacturer's point of view