JPS61270299A - Method for growing group ii-vi compound semiconductor crystal - Google Patents

Method for growing group ii-vi compound semiconductor crystal

Info

Publication number
JPS61270299A
JPS61270299A JP8740485A JP8740485A JPS61270299A JP S61270299 A JPS61270299 A JP S61270299A JP 8740485 A JP8740485 A JP 8740485A JP 8740485 A JP8740485 A JP 8740485A JP S61270299 A JPS61270299 A JP S61270299A
Authority
JP
Japan
Prior art keywords
crystal
solution
substrate
heat sink
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8740485A
Other languages
Japanese (ja)
Inventor
Masaaki Sakata
雅昭 坂田
Susumu Kagaya
進 加賀谷
Akira Otsuka
晃 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP8740485A priority Critical patent/JPS61270299A/en
Publication of JPS61270299A publication Critical patent/JPS61270299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain a Groups II-VI compound semiconductor crystals having a high crystal growth rate with little defects, by adding an element of Group VI and Te to a solution containing polycrystal grains present therein, and adjusting the specific gravity. CONSTITUTION:A heat sink 1 consisting of carbon free of residual impurities is put in a quartz tube 6, and a substrate 2 is placed on the heat sink 1 to secure the substrate 2 with a quartz tube 3. After evacuation, the quartz tubes 6 and 3 are fused at a fusing part 8. An element of Group VI, Te 5 and polycrystal grains 4 are put into the tube 6 to adjust the specific gravity of the resultant solution to a higher value than that of the aimed Groups II-VI compound. The mouth of the tube 6 is then vacuum-sealed. The heat sink part 1 is turned upward, and melting is carried out. The sealed part of the tube 6 is turned upward with the side of the heat sink part 1 down to provide a temperature gradient and grow the aimed Groups II-VI compound semiconductor crystals on the substrate 2 by the epitaxial method.

Description

【発明の詳細な説明】 且土豆1 本発明は、n−VI族化合物半導体結晶成長法に関し、
特に溶媒と、溶媒中に浮遊させる多結晶粒子との比重を
11節し、多結晶粒子が結晶成長を阻害しないようにし
た結晶成長方法間する。
[Detailed description of the invention] And Tudou 1 The present invention relates to an n-VI group compound semiconductor crystal growth method,
In particular, the specific gravity of the solvent and the polycrystalline particles suspended in the solvent is set to 11, so that the polycrystalline particles do not inhibit crystal growth.

l圭且土 従来、石英アンプル中で単結晶或いはエピタキシャル結
晶成長を行わせる場合、ソースとしての多結晶粒子を溶
媒中に入れたものをアンプ中に封入し、温度制御を行う
ことによって目的の結晶成長を行わせる方法がとられて
いる。この場合、多結晶粒子と溶媒の比重関係により、
多結晶粒子が溶媒上に浮遊する場合、沈降する場合、そ
れらの中間になる場合が生ずる。
Traditionally, when single crystal or epitaxial crystal growth is performed in a quartz ampoule, polycrystalline particles as a source are placed in a solvent and sealed in an amplifier, and the target crystal is grown by controlling the temperature. Methods are being taken to encourage growth. In this case, due to the specific gravity relationship between the polycrystalline particles and the solvent,
Polycrystalline particles may float on a solvent, may settle, or be somewhere in between.

例えば第1図及び第2図にZn5e単結晶(13)を成
長させる場合の例を示すと、溶媒(12゜15)及びソ
ース(源)(11)が石英管中に真空封入されている。
For example, FIGS. 1 and 2 show an example of growing a Zn5e single crystal (13), in which a solvent (12° 15) and a source (11) are vacuum sealed in a quartz tube.

溶媒としては、n−VI族化合物結晶を成長させる場合
、蒸気圧の低さ、溶質に対する溶解度の大きさからTe
(12)を用いるが一般的であるが、Zn5eの場合に
は5e(15)を用いることもある。第1図(a)で成
長開始前に、温度を成長開始可能温度(例えば900〜
1100℃)とすることにより、溶媒中に溶質としてZ
n5eを含む液相成長用溶液が得られる。TefJ液で
は多結晶Zn5e粒子(11)の方が比重が軽し)ので
、それら粒子は溶液上部に浮遊しており、一定速度、例
えば10℃/時で降温させることによりダレインの大き
な粒子のZn5e結晶(13)を成長させることができ
る。一方策2図ではSe溶液(15)よりZn5e多結
晶粒子(II)の方が重いため、それら粒子が沈降して
結晶成長を阻害することがないように、アングル状のス
トッパー(16)を取付けて、その上にZn5eの多結
晶粒子(11)が乗るようにする必要がある。結晶成長
は第1図の場合と同様に、一定速度で降温させることに
よりアンプル底部で行わせることができる。
When growing n-VI group compound crystals, Te is used as a solvent because of its low vapor pressure and high solubility for solutes.
(12) is generally used, but in the case of Zn5e, 5e(15) may also be used. In FIG. 1(a), before starting growth, set the temperature to the temperature at which growth can start (for example, 900~
1100℃), Z as a solute in the solvent.
A solution for liquid phase growth containing n5e is obtained. In the TefJ solution, polycrystalline Zn5e particles (11) have a lower specific gravity), so these particles are suspended at the top of the solution, and by lowering the temperature at a constant rate, e.g. 10°C/hour, Zn5e particles with large dalein Crystals (13) can be grown. On the other hand, in Figure 2, since the Zn5e polycrystalline particles (II) are heavier than the Se solution (15), an angled stopper (16) is installed to prevent these particles from settling and inhibiting crystal growth. It is necessary to place the Zn5e polycrystalline particles (11) thereon. Crystal growth can be performed at the bottom of the ampoule by lowering the temperature at a constant rate, as in the case of FIG.

Zn5eのエピタキシャル成長法の一例を第3図及び第
4図に示すと、最初基板(18)の溶解を起こさないよ
うにするため、基板と溶液とが接触しないように最初基
板が上になるようにアンプルを置(。成長を開始させる
時にアンプルを逆転させて基板と溶液とを接触させる。
An example of the epitaxial growth method of Zn5e is shown in FIGS. 3 and 4. In order to prevent the substrate (18) from dissolving, the substrate is initially placed on top so that the substrate does not come into contact with the solution. Place the ampoule (when starting growth, invert the ampoule to bring the substrate into contact with the solution.

それ以降は単結晶の場合と同様温度制御を行うことによ
ってエピタキシャル結晶層(17)の成長を行わせる。
After that, the epitaxial crystal layer (17) is grown by controlling the temperature as in the case of single crystal.

このような従来の方法では、Te fJ液を用いた場合
、成長中のZn5e内に微量なTeの混入<0.05〜
0.2%程度)が起こり、Teのイオン半径の大きさな
どから結晶中に歪ができ、光学的特性が悪く、室温(約
300°K)でのフォトルミネッセンスでは半値幅の広
い禁制帯幅中の深いエネルギー準位が生ずる。
In such conventional methods, when a Te fJ solution is used, a trace amount of Te is mixed into the growing Zn5e <0.05~
(approximately 0.2%), distortion occurs in the crystal due to the large ionic radius of Te, resulting in poor optical properties, and photoluminescence at room temperature (approximately 300°K) has a forbidden band with a wide half-width. A deep energy level is created.

更にSe溶液を用いてZn5eを成長させた場合光学的
特性は改善されるが、Se溶液のZn5eに対する溶解
度が小さく、また比重が多結晶Zn5e粒子よりも軽い
ため、それらZn5e粒子が結晶成長部分へ落下するこ
とが避けられず、品質のよい均一表面状態のZn5e成
長結晶が得られにくい。しかもSsの蒸気圧が高いため
、1000℃以上での石英アンプル中での成長が困難で
ある。
Furthermore, when Zn5e is grown using a Se solution, the optical properties are improved, but since the solubility of Se solution in Zn5e is low and the specific gravity is lighter than polycrystalline Zn5e particles, those Zn5e particles tend to grow in the crystal growth area. Falling is unavoidable, making it difficult to obtain a Zn5e grown crystal with a good quality and uniform surface condition. Furthermore, since the vapor pressure of Ss is high, it is difficult to grow it in a quartz ampoule at temperatures above 1000°C.

更にヒートシンクがアンプル外側に設けられているため
、結晶成長部からの熱は石英アンプルの肉厚及びヒート
シンクと石英アンプルの間にある空気層を通して流れて
い(ため、均一な熱流が起こらず、全体的な熱抵抗も大
きくなる。このため均一な成長結晶が得られにくり、成
長速度も遅くなる。
Furthermore, since the heat sink is provided outside the ampoule, the heat from the crystal growth area flows through the wall thickness of the quartz ampoule and the air layer between the heat sink and the quartz ampoule (therefore, a uniform heat flow does not occur and the overall Thermal resistance also increases, making it difficult to obtain uniformly grown crystals and slowing down the growth rate.

I−一層 本発明は上記従来法の欠点を回避し、大きな結晶成長速
度を維持しながら、従来より一層欠陥の少ない結晶を与
えることができる方法を提供することにある。
I-A further object of the present invention is to provide a method that avoids the drawbacks of the conventional methods described above and can provide a crystal with fewer defects than the conventional method while maintaining a high crystal growth rate.

]−二! 上記目的は、本発明法によれば1. T e以外の■族
元素が存在するII−Vl族化合物半導体結晶を、該結
晶の源としての多結晶粒子を存在させた溶液から温度制
御を行うことにより成長させる方法において、構成元素
である■族元素及びTeを、■−Vl族化合物より比重
が大きくなる比率で混合し、溶媒として使用することに
より達成される。
]-Two! According to the method of the present invention, the above objectives are achieved by: 1. A method for growing a II-Vl group compound semiconductor crystal in which a group II element other than Te is present by controlling temperature from a solution in which polycrystalline particles as a source of the crystal are present. This is achieved by mixing group elements and Te in a ratio such that the specific gravity is greater than that of the -Vl group compound and using the mixture as a solvent.

l皇■ 本発明を一具体例として、Zn5eエピタキシヤル成長
を行う場合をとりあげて、第5図乃至第   □9図を
参照しながら以下に説明する。
As a specific example of the present invention, a case in which Zn5e epitaxial growth is carried out will be described below with reference to FIGS. 5 to 9.

先づヒートシンクとして高純度カーボンを用い、これを
8φX5Qmmに加工した後、真空中1000℃で3時
間空焼きすることにより、カーボン中の残留不純物を取
り除く、このヒートシンク(1)を内径8φの肉厚石英
管(6)中に入れる。
First, high-purity carbon is used as a heat sink. After processing it into a size of 8φ x 5Qmm, it is baked in a vacuum at 1000℃ for 3 hours to remove residual impurities in the carbon. This heat sink (1) has an inner diameter of 8φ and a wall thickness. Place it in the quartz tube (6).

次に焼結法或いは液相成長法によって得られたZn5e
バルク結晶から8φ×500μmの単結晶片を切り出し
、基板(2)としてヒートシンク(1)上に置いた。基
板は(110)で双晶が存在する6次に基板止めとして
内径6φ、外形8φ。
Next, Zn5e obtained by sintering method or liquid phase growth method
A single crystal piece of 8φ×500 μm was cut out from the bulk crystal and placed on a heat sink (1) as a substrate (2). The board is (110) and has an inner diameter of 6φ and an outer diameter of 8φ as a 6th order board stop with twin crystals.

長さ8Hの石英管(3)を基板の上において、油を用い
ないオイルフリーのイオンポンプで真空に引き、然る後
、石英アンプル(6)と基板止め石英管(3)をガスバ
ーナーで溶着(8)し、基板及びヒートシンク(2)を
固定する。
A quartz tube (3) with a length of 8H is placed on the substrate and evacuated using an oil-free ion pump, and then the quartz ampoule (6) and the quartz tube (3) fixed to the substrate are heated with a gas burner. Weld (8) to fix the substrate and heat sink (2).

次に石英アンプル中を窒素ガスで充満させ、大気圧に戻
してからSe  :3211vt、Te  :5395
+w(5)とZn5e多結晶粒子3984■(4)を入
れ、再びイオンポンプで1〜2×10−7トールまで真
空に引いた後、5e−Te  (5)を一度溶融し、石
英管の口を真空封緘した・、この時、溶液上部から溶液
下部までの距離は50m5であった・ Se ・Teの溶液(5)に対しては、Zn5eより比
重が重いこと、Zn5eの溶解度が高いこと、熱伝導率
が良いこと、成長結晶が良質となること、蒸気圧が低い
ことなどが要求される。
Next, fill the quartz ampoule with nitrogen gas, return it to atmospheric pressure, and then Se: 3211vt, Te: 5395
+w (5) and Zn5e polycrystalline particles 3984■ (4) were added, and the vacuum was again drawn to 1 to 2 x 10-7 Torr using an ion pump. After melting the 5e-Te (5), the quartz tube was heated. The mouth was vacuum sealed. At this time, the distance from the top of the solution to the bottom of the solution was 50 m5. For Se and Te solution (5), the specific gravity is heavier than Zn5e, and the solubility of Zn5e is higher. , good thermal conductivity, high quality grown crystals, and low vapor pressure are required.

Zn5e成長においては余分な不純物を含まない様にZ
n5e溶液を用いることが理想であるがZn溶液では成
長結晶にSe空孔が出来易く、また石英との熱膨張係数
との違いから昇降温時アンプル破損の問題が出て(る、
またSe溶液を用いた場合、Zn5eより比重が軽いた
めZn5e多結晶が基板に落下し成長の妨げとなる。ま
たZn、Seとも蒸気圧が高< % Z n S eの
溶解度もSeでは1000℃で0.02mo1%、Zn
ではそれ以下と成長溶媒には適しない。熱伝導率の点か
ら見ると、Se はTeの約1/20.Zn の1/3
00であり、Zn >Te >Seの順に大きい。
In Zn5e growth, Z
It is ideal to use an n5e solution, but with a Zn solution, Se vacancies are likely to form in the growing crystal, and due to the difference in thermal expansion coefficient with quartz, there is a problem of ampoule breakage when the temperature is raised or lowered.
Furthermore, when Se solution is used, since the specific gravity is lighter than Zn5e, Zn5e polycrystals fall onto the substrate and hinder growth. Also, the vapor pressure of both Zn and Se is high <%.The solubility of ZnSe is 0.02mol% at 1000℃ for Se, and
If it is less than that, it is not suitable as a growth solvent. From the point of view of thermal conductivity, Se is about 1/20th that of Te. 1/3 of Zn
00, and increases in the order of Zn>Te>Se.

このため本実施例では溶解度を大きくし、比重がZn5
eより重くなるSe45mol  %、Te55sol
 %の混液を溶液として用いた。この溶液ではSe溶液
に較べ熱伝導率も改善されさらに作製された結晶も光学
的に良質なZn5eであることが確かめられた。尚本実
施例では溶質のZn5e多結晶は5e−Te溶液に対し
30s+ol %加えられている。
Therefore, in this example, the solubility was increased and the specific gravity was Zn5.
Se45mol%, Te55sol heavier than e
% mixture was used as a solution. It was confirmed that this solution had improved thermal conductivity compared to the Se solution, and that the crystals produced were of optically good quality Zn5e. In this example, the solute Zn5e polycrystal is added to the 5e-Te solution in an amount of 30s+ol %.

次に封着終了後の石英アンプルは、第5図に示す様にヒ
ートシンク部を上に、封緘部を大にして成長温度より高
い温度T2 (例えば1000℃)で2時間溶融した(
第6図参照)。この時基板と溶液は接触しておらず、基
板中へ溶解することなしに熱処理によって表面が浄化さ
れる。
Next, the quartz ampoule after sealing was melted for 2 hours at a temperature T2 (e.g. 1000°C) higher than the growth temperature with the heat sink part facing up and the sealing part enlarged as shown in Figure 5.
(See Figure 6). At this time, the substrate and the solution are not in contact with each other, and the surface is purified by heat treatment without dissolving into the substrate.

次に第7図に示すように、石英アンプル封緘部を上、ヒ
ートシンク側を下にする。そして第7図の溶液上部と基
板との間に第8図に示すような温度勾配を設け、温度差
に起因する拡散現象によって一定温度でエピタキシャル
成長が行われる様な温度設定にする。本実施例では、T
ff960℃。
Next, as shown in FIG. 7, place the quartz ampoule sealing portion upward and the heat sink side downward. A temperature gradient as shown in FIG. 8 is provided between the upper part of the solution shown in FIG. 7 and the substrate, and the temperature is set so that epitaxial growth is performed at a constant temperature due to a diffusion phenomenon caused by the temperature difference. In this example, T
ff960℃.

T4980℃で溶液には4℃/cIlの温度勾配がつい
ていた。この状態で104時間成長した後再び石英アン
プルを逆にすることにより、基板を溶液から分離した。
At T4980°C, the solution had a temperature gradient of 4°C/cIl. After growing in this state for 104 hours, the substrate was separated from the solution by inverting the quartz ampoule again.

成長後の結晶は第9図に示す様に平坦なZn5e工ピタ
キシヤル層で約250μmの厚みが得られた。
As shown in FIG. 9, the grown crystal was a flat Zn5e pitaxial layer with a thickness of about 250 μm.

上記実施例では導伝型不純物を入れない場合の成長につ
いて述べたが、導伝型不純物を入れて本発明に従い結晶
成長させることも勿論可能である。
In the above embodiments, crystal growth without conduction type impurities was described, but it is of course possible to grow crystals according to the present invention with conduction type impurities added.

また三元素のみならず、ZnS+−xse等の如き三元
素、或いは4元素についても本発明の方法により結晶成
長させることができることは云うまでもない。
It goes without saying that not only three elements but also three or four elements such as ZnS+-xse can be grown by the method of the present invention.

1」L■JL! 本発明によって得られる効果及びその理由と考えられる
ものを列挙すると次の通りである。
1”L■JL! The effects obtained by the present invention and their possible reasons are listed below.

i) 縦型アンプルを用いた場合、溶液の比重を成長さ
せようとする■−■族化合物の比重より大きくすること
で、結晶成長部への例えば結晶粒子の沈降を防ぐことが
できる。第10図及び第11図にZn5e、CdSe 
、ZnS、CdSの比重と、Se /Te 、S/Te
の比重の関係がSeとTeの割合及びSとTeの割合に
対して示されている。このグラフを用いてTeの最低含
有率を決定でき、それを溶液として用いることにより本
発明に従って結晶成長を行うことができるようになる。
i) When a vertical ampoule is used, by making the specific gravity of the solution higher than the specific gravity of the ■-■ group compound to be grown, it is possible to prevent, for example, crystal particles from settling in the crystal growth area. Figures 10 and 11 show Zn5e and CdSe.
, ZnS, CdS specific gravity, Se/Te, S/Te
The relationship between the specific gravity of is shown for the ratio of Se and Te and the ratio of S and Te. This graph can be used to determine the minimum content of Te, which can be used as a solution for crystal growth according to the invention.

1i)Vl族元素は、蒸気圧の高いものが多いがTeは
Sに較べ3桁Seに較ぺ2桁蒸気圧が低いためTe と
S、TeとSsを混液とすることにより蒸気圧が低くな
る(例えば1000℃、Se−Se−5O%Teの時約
300トールSeだけの特約3000)−ル)、このた
め石英アンプル真空封入内での成長が可能である。
1i) Most Vl group elements have high vapor pressures, but Te has a vapor pressure that is three orders of magnitude lower than S and two orders of magnitude lower than Se, so by mixing Te and S or Te and Ss, the vapor pressure can be lowered. (e.g., 1000° C., Se-Se-5O%Te: about 300 torr, Se-only special about 3000 torr), therefore, growth in a quartz ampoule vacuum enclosure is possible.

1ii)  Seの熱伝導率は0.0007〜0.00
183 Cul / +IJQ / ad / sec
 / ”Cそれに較べTeの熱伝導率は、0.014C
ul /cs/ad/sec /’C(25℃)と非常
に大きい。このため混液を用いることにより熱がヒート
シンクを通して流れ易く成長速度が大きくなる。
1ii) The thermal conductivity of Se is 0.0007 to 0.00
183 Cul / +IJQ / ad / sec
/ "C Compared to that, the thermal conductivity of Te is 0.014C
ul/cs/ad/sec/'C (25°C), which is very large. Therefore, by using a mixed solution, heat flows easily through the heat sink, increasing the growth rate.

1v)Se、Sに対するn−VI族化合物の溶解度は小
さくSeに対するZn5eの溶解度は1000℃で約0
.0:2wol %にしかならないがSe −50mo
l %Teにすることにより1000℃で約0.1mo
l %に増加する。この様にTe と他の■族元素との
混液を溶媒とすることにより溶解度が増加し結晶成長が
可能となる。
1v) The solubility of n-VI group compounds in Se and S is small.The solubility of Zn5e in Se is approximately 0 at 1000°C.
.. Although it is only 0:2wol%, Se -50mo
About 0.1 mo at 1000°C by changing to l%Te
increase to l%. In this way, by using a mixed solution of Te and other group Ⅰ elements as a solvent, the solubility increases and crystal growth becomes possible.

■) 溶液に対するTeの含有量が多くなると、成長し
たn−VI族化合物は光学的に欠陥の多い結晶となる〔
例としてTe溶液、Se溶液のみで成長したZn5e結
晶のカソードルミネッセンスCC,L、)を第12図、
第13図に夫々示す〕が、Teを他の■族元素に対し、
上記i)項で述べた最低含有率以上(ZnSeの場合、
Te/Ss+Teが38モル%以上)、65モル%以下
とすることにより、良質な結晶成長が可能となる0例と
して第14図に5e55モル%でエピタキシャル成長さ
せた場合のZaSe表面のカソードミネッセンスを示す
■) When the content of Te in the solution increases, the grown n-VI group compound becomes a crystal with many optical defects [
As an example, Fig. 12 shows the cathodoluminescence (CC,L,) of Zn5e crystal grown only in Te solution and Se solution.
respectively shown in Figure 13], but for Te with respect to other group Ⅰ elements,
At least the minimum content mentioned in item i) above (in the case of ZnSe,
By setting Te/Ss+Te to 38 mol% or more and 65 mol% or less, high-quality crystal growth is possible.As an example, Figure 14 shows the cathode luminescence of the ZaSe surface when epitaxially grown at 5e55 mol%. shows.

vi )  ヒートシンクは通常熱伝導率の高い高純度
カーボンを用いるがBN、SiC等でも良い。
vi) High-purity carbon with high thermal conductivity is usually used for the heat sink, but BN, SiC, etc. may also be used.

このヒートシンク上に直接基板を接触させることにより
石英或いは空気層を介在することな(結晶析出部からの
熱が流れる。これにより、成長速度を上昇させ成長温度
を下げることが可能となり、欠陥の少ない結晶が得られ
る。
By directly contacting the substrate on this heat sink, heat from the crystal precipitation area flows without intervening quartz or an air layer.This makes it possible to increase the growth rate and lower the growth temperature, resulting in fewer defects. Crystals are obtained.

上述の如く、本発明によればII−VI族化合物による
可視光発光素子、或いはII−VI族化合物にょる光電
変換素子等の製造に広く適用することができる等の利点
がある。
As described above, the present invention has the advantage that it can be widely applied to the production of visible light emitting devices using Group II-VI compounds, photoelectric conversion devices using Group II-VI compounds, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法によるソース(源)が溶媒より軽い場合
の液相結晶成長法を示す概略図、第2図はソースが溶媒
より重い場合の第1図と同様の液相結晶成長法を示す概
略図、第3図はソースが溶媒より軽い場合の液相エピタ
キシャル結晶成長法を示す概略図、第4図はソースが溶
媒より重い場合の第3図と同様な液相エピタキシャル結
晶成長法を示す概略図、第5図及び第7図は本発明によ
るエピタキシャル結晶成長法を示す概略図、第6図は第
5図の装置内で維持される温度と装置の長手方向の距離
との関係を示す概略図、第8図は第7図の装置内で生ず
る温度変化と装置の長手方向の距離との関係を示す概略
図、第9図は本発明の方法によって得られるエピタキシ
ャル結晶成長層と基板との状態を示す概略図、第10図
は7.nSe*CdSeの比重と、Se/Teの比重の
関係をSeとTeの割合に対して示した図、第11図は
ZnSとCdSの比重とS / T eの比重の関係を
SとTeの割合に対して示した図、第12図はTe溶液
のみで成長させたZn5e結晶の300°にでのカソー
ドミネフセンスを示す図、第13図はSe溶液のみで成
長させたZn5e結晶(Li を添加)の300°にで
のカソードミネッセンスを示す図、第14図は5e−5
5モル%のTe溶液を用いて成長させたZn5e結晶の
300°にでのカソードミネッセンスを示す図である。 1・・・・ヒートシンク、2・・・・基板、3・・・・
基板止め石英管、4・・・・Zn5e例えば結晶粒子、
5、・・・5e−Te溶液、6・・・・石英アンプル、
7・・・・真空封着部、8・・・・溶着部、9・・・・
エピタキシャル成長層、10・・・・基板、11・・・
・Z n S e M晶粒子(ソース)、12・・・・
Te溶媒、13・・・・ダレインの大きなZaSe、1
4・・・・ヒートシンク、15・・・・Se溶媒、16
・・−・ストッパー、17・・・エピタキシャル成長結
晶層、18・・・・基板。 11図    才2図 (Q)      (b)        (Q)  
    (b)(a)      (b)      
   (a)      (b)第5図    16図 オフ図    18図 m:lJ3[(σ) 19図 第10図     第11図 手続補正書(自発) 昭和61年 6月20日 1、事件の表示   特願昭60−87404号2、発
明の名称     II−Vl族化合物結晶成長方法4
、代  理  人     〒105東京都港区新橋5
の196、補正の内容 (11明細書第2頁6行目の「・・・・・・結晶成長方
法間する。」を「・・・・・・結晶成長方法に関する。 Jと訂正する。 (2)  明細書第2頁10行目の「アンプ中に」をr
アンプル中に1と訂正する。 (3)  明細書第2頁13行目の「溶媒の比重関係」
を「溶媒との比重関係」と訂正する。 (4)  明細書第4頁3行目の「最初」を削除する。 (5)  明細書筒6頁13行目の「液相成長法」を「
成長法jと訂正する。 (6)  明細書第6頁16行目の「・・・・に置いた
。」をr・・・・に置く◆jと訂正する舎 (7) 明細書第7頁16行目のrZnSe溶液」を’
Zn−3e溶液」と訂正する。 (8)  明細書筒8頁16行目の「封緘部を大にして
」を「封緘部を下にして1と訂正する。 (9)  明細書第8頁19行目の「基板中へ」を「溶
液中へ1と訂正する。 α・ 明細書第9頁13行目及び144行目「導伝型不
純物」を夫々「導電型不純物」と訂正する。 αD 明細書第9頁16行目の r ZnS+  use Jを’ ZnS+−xsex
 Jと訂正する。 (2) 明細書第10頁18行目のrSeだけの時」を
’Ss、だけの時1と訂正する。 Q’J  明細書第11頁2行目及び3行目の「Cu1
」を夫々’Ca1jと訂正する。
Figure 1 is a schematic diagram showing a conventional liquid phase crystal growth method when the source is lighter than the solvent, and Figure 2 is a schematic diagram showing the same liquid phase crystal growth method as in Figure 1 when the source is heavier than the solvent. Figure 3 is a schematic diagram showing a liquid phase epitaxial crystal growth method when the source is lighter than the solvent, and Figure 4 is a schematic diagram showing a liquid phase epitaxial crystal growth method similar to Figure 3 when the source is heavier than the solvent. 5 and 7 are schematic diagrams showing the epitaxial crystal growth method according to the present invention, and FIG. 6 shows the relationship between the temperature maintained in the apparatus of FIG. 5 and the distance in the longitudinal direction of the apparatus. FIG. 8 is a schematic diagram showing the relationship between the temperature change occurring in the device shown in FIG. 7 and the distance in the longitudinal direction of the device. FIG. 9 is a schematic diagram showing the epitaxial crystal growth layer and substrate obtained by the method of the present invention. FIG. 10 is a schematic diagram showing the state of 7. Figure 11 shows the relationship between the specific gravity of nSe*CdSe and the specific gravity of Se/Te for the ratio of Se and Te. Figure 11 shows the relationship between the specific gravity of ZnS and CdS and the specific gravity of S/Te. Figure 12 is a diagram showing the cathode mineralization at 300° for a Zn5e crystal grown only in a Te solution, and Figure 13 is a diagram showing the cathode mineralization at 300° for a Zn5e crystal grown only in a Se solution. Figure 14 shows the cathode luminescence at 300° of 5e-5
FIG. 3 is a diagram showing the cathode luminescence at 300° of a Zn5e crystal grown using a 5 mol % Te solution. 1... Heat sink, 2... Board, 3...
Substrate fixed quartz tube, 4...Zn5e e.g. crystal particles,
5,... 5e-Te solution, 6... Quartz ampoule,
7... Vacuum sealing part, 8... Welding part, 9...
Epitaxial growth layer, 10...substrate, 11...
・Z n S e M crystal particles (source), 12...
Te solvent, 13... ZaSe with large dalein, 1
4...Heat sink, 15...Se solvent, 16
... Stopper, 17... Epitaxially grown crystal layer, 18... Substrate. Figure 11 Figure 2 (Q) (b) (Q)
(b) (a) (b)
(a) (b) Figure 5 Figure 16 off view Figure 18 m:lJ3 [(σ) Figure 19 Figure 10 Figure 11 Procedural amendment (voluntary) June 20, 1986 1, Indication of case Patent application No. 60-87404 2, Title of invention: II-Vl group compound crystal growth method 4
, Agent Address: 5 Shinbashi, Minato-ku, Tokyo 105
No. 196, contents of the amendment (11 Specification, page 2, line 6, "...Relating to crystal growth methods." is corrected to "...Relating to crystal growth methods." J. 2) Change “during the amplifier” on page 2, line 10 of the specification to r
Correct 1 in the ampoule. (3) “Solvent specific gravity relationship” on page 2, line 13 of the specification
is corrected to "specific gravity relationship with the solvent." (4) Delete "first" in the third line of page 4 of the specification. (5) Change “liquid phase growth method” on page 6, line 13 of the specification cylinder to “
Correct it to growth method j. (6) Correct “Placed in...” on page 6, line 16 of the specification as ◆j (7) rZnSe solution on page 7, line 16 of the specification "of'
Zn-3e solution” is corrected. (8) "Enlarge the sealing part" on page 8, line 16 of the specification cylinder is corrected to "1 with the sealing part facing down." (9) "Into the board" on page 8, line 19 of the specification. is corrected to ``1 into the solution.'' α・ Correct ``conductive type impurity'' to ``conductive type impurity'' in lines 13 and 144 of page 9 of the specification, respectively. αD Specification page 9, line 16 r ZnS+ use J' ZnS+-xsex
Correct it with J. (2) On page 10, line 18 of the specification, "When only rSe is present" is corrected to "1 when only 'Ss" is present. Q'J "Cu1" on page 11, lines 2 and 3 of the specification
'' are respectively corrected as 'Ca1j.

Claims (3)

【特許請求の範囲】[Claims] (1)Te以外のVI族元素が存在するII−VI族化合物半
導体結晶を、該結晶の源としての多結晶粒子を存在させ
た溶液から温度制御を行うことにより成長させる方法に
おいて、構成元素であるVI族元素及びTeを、前記II−
VI族化合物より比重が大きくなる比率で混合し、溶媒と
して使用することを特徴とする結晶成長法。
(1) In a method of growing a II-VI group compound semiconductor crystal in which a group VI element other than Te is present from a solution containing polycrystalline particles as a source of the crystal by controlling the temperature, A certain group VI element and Te are added to the above II-
A crystal growth method characterized by mixing Group VI compounds in a ratio that has a higher specific gravity and using the mixture as a solvent.
(2)成長が、基板結晶上へのエピタキシャル成長であ
ることを特徴とする特許請求の範囲(1)に記載の方法
(2) The method according to claim (1), wherein the growth is epitaxial growth on a substrate crystal.
(3)温度制御を、基板の溶液と接触している側とは反
対の側の面に直接接触させたヒートシンクを利用して行
い、然も該ヒートシンク、基板、溶液、多結晶粒子を石
英管内に封入して結晶成長させることを特徴とする特許
請求の範囲(2)に記載の方法。
(3) Temperature control is performed using a heat sink that is in direct contact with the side of the substrate opposite to the side that is in contact with the solution, and the heat sink, substrate, solution, and polycrystalline particles are placed inside a quartz tube. The method according to claim (2), characterized in that crystal growth is performed by enclosing the crystal in a crystal.
JP8740485A 1985-04-25 1985-04-25 Method for growing group ii-vi compound semiconductor crystal Pending JPS61270299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8740485A JPS61270299A (en) 1985-04-25 1985-04-25 Method for growing group ii-vi compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8740485A JPS61270299A (en) 1985-04-25 1985-04-25 Method for growing group ii-vi compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS61270299A true JPS61270299A (en) 1986-11-29

Family

ID=13913932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8740485A Pending JPS61270299A (en) 1985-04-25 1985-04-25 Method for growing group ii-vi compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS61270299A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283290A (en) * 1988-09-20 1990-03-23 Furukawa Electric Co Ltd:The Process for growing compound semiconductor single crystal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573798A (en) * 1980-06-11 1982-01-09 Junichi Nishizawa Crystal crowing method of compound semiconductor or groups 2-6

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573798A (en) * 1980-06-11 1982-01-09 Junichi Nishizawa Crystal crowing method of compound semiconductor or groups 2-6

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283290A (en) * 1988-09-20 1990-03-23 Furukawa Electric Co Ltd:The Process for growing compound semiconductor single crystal

Similar Documents

Publication Publication Date Title
WO2003078703A1 (en) CdTe SINGLE CRYSTAL AND CdTe POLYCRYSTAL, AND METHOD FOR PREPARATION THEREOF
Parker Single crystals and epitaxial films of ZnSe by chemical transport
JPS6345198A (en) Production of crystal of multiple system
Cardetta et al. Growth and habit of GaSe crystals obtained from vapour by various methods
JPS60251191A (en) Process for growing single crystal of compound having high dissociation pressure
Anis The growth of single crystals of GaSe
JPS61270299A (en) Method for growing group ii-vi compound semiconductor crystal
JPS61178495A (en) Method for growing single crystal
US3494730A (en) Process for producing cadmium telluride crystal
US3290181A (en) Method of producing pure semiconductor material by chemical transport reaction using h2s/h2 system
JP2000256091A (en) LIQUID PHASE GROWTH METHOD FOR SINGLE CRYSTAL SiC
US3933990A (en) Synthesization method of ternary chalcogenides
Triboulet The growth of bulk ZnSe crystals
Post et al. Crystal growth of AgGaS2 by the Bridgman-Stockbarger and travelling heater methods
US4439266A (en) Vapor transport process for growing selected compound semiconductors of high purity
JPS6050759B2 (en) ZnSe epitaxial growth method and growth apparatus
US4299649A (en) Vapor transport process for growing selected compound semiconductors of high purity
EP0187843B1 (en) Growth of single crystal cadmium-indium-telluride
JPS63185898A (en) Highly resistant cdte crystal and preparation thereof
JPS589799B2 (en) Zinc sulfide crystal growth method
US20130068156A1 (en) Method for growing ii-vi semiconductor crystals and ii-vi semiconductor layers
JP2002241199A (en) METHOD FOR PRODUCING ZnTe-BASED COMPOUND SEMICONDUCTOR SINGLE CRYSTAL AND ZnTe-BASED COMPOUND SEMICONDUCTOR SINGLE CRYSTAL
JPH02289484A (en) Growing device for single crystal
JP2003146791A (en) Method of manufacturing compound semiconductor single crystal
JP3239744B2 (en) Method for growing ZnSe single crystal