JPS63185898A - Highly resistant cdte crystal and preparation thereof - Google Patents

Highly resistant cdte crystal and preparation thereof

Info

Publication number
JPS63185898A
JPS63185898A JP16253187A JP16253187A JPS63185898A JP S63185898 A JPS63185898 A JP S63185898A JP 16253187 A JP16253187 A JP 16253187A JP 16253187 A JP16253187 A JP 16253187A JP S63185898 A JPS63185898 A JP S63185898A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
cdte
impurity
highly resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16253187A
Other languages
Japanese (ja)
Inventor
Kazuto Hirata
和人 平田
Kimihiko Imura
井村 公彦
Osamu Oda
修 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to EP87113852A priority Critical patent/EP0261647A3/en
Publication of JPS63185898A publication Critical patent/JPS63185898A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simply obtain a highly resistant CdTe crystal without using a special apparatus, by adding an impurity In of specific amount or below to the crystal when Cd and Te are charged into an ampul for crystal growth, heated and cooled to grow the CdTe single crystal. CONSTITUTION:Cd and Te are charged into an ampul for crystal growth so that an atomic ratio of Cd/Te is 0.998-1.002 and an impurity In is added to the crystal so that the impurity concentration is <=1ppm. Then the ampul is discharged to vacuum and sealed and a CdTe single crystal is grown by vertical Bridgeman method, etc. Highly resistant CdTe single crystal having Cd/Te atomic ratio of <1 and containing <=0.7ppm In is obtained thereby. The function of a device such as a radiation detector, Pockels cell, etc., can be improved by using the resultant highly resistant CdTe single crystal.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高抵抗CdTe単結晶及びその作成方法KI
!Aするものであり、%には従来より簡便に高抵抗Cd
Te単結晶を作成する技術に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high resistance CdTe single crystal and a method for producing the same.
! A, and % is more convenient than conventional high resistance Cd.
This invention relates to a technique for creating a Te single crystal.

本発明により、高抵抗CdT・単結晶を用いたデバイス
、例えば放射線検出器、ポッケルスセル(電気光学変調
器)の機能向上が実現しうる。
According to the present invention, it is possible to improve the functionality of devices using high-resistance CdT single crystals, such as radiation detectors and Pockels cells (electro-optic modulators).

放射線検出器としては、10991以上の高抵抗CdT
e単結晶が近時必要とされている。また、ポッケルスセ
ルでは、10@Ωα以上の高抵抗CdTe単結晶が必要
とされ【いる。
As a radiation detector, high resistance CdT of 10991 or more is used.
e-single crystals are required these days. Furthermore, a Pockels cell requires a high resistance CdTe single crystal of 10@Ωα or more.

高抵抗CdTe単結晶の作成方法としては、Cd蒸気圧
制御による修正型垂直ブリッジマン法、T HM (1
’ravelling )(eater Method
 )法等が提案されている。例えば、THM法でC1を
ドープしたものが実用化されている。
Methods for producing high-resistance CdTe single crystals include the modified vertical Bridgman method using Cd vapor pressure control, THM (1
'ravelling ) (eater Method
) laws, etc. have been proposed. For example, materials doped with C1 using the THM method have been put into practical use.

これらの方法は揮発しゃすいCdの蒸発を抑制し、結晶
中のCd空孔の発生を防止せんとするものである。TH
M法を例にとると、真空アンプル内に予じめ合成したC
dT・多結晶及びTeと、蒸気圧制御用Cdとが封入さ
れる。このアンプルを所定の温度分布を持つ炉内に設置
し、アンプルを降下、あるいは炉を上昇させることによ
り一度T@F!!i体に溶解させたCdT・を単結晶と
して再析出せしめるものである。しかしながら、この方
法は結晶成長速度が遅く、特殊なアンプルを必要とし、
加熱炉の温度管理が複雑となり、総じて操作が難しい。
These methods are aimed at suppressing the evaporation of volatile Cd and preventing the generation of Cd vacancies in the crystal. T.H.
Taking the M method as an example, C synthesized in advance in a vacuum ampoule is
dT polycrystal, Te, and Cd for vapor pressure control are sealed. This ampoule is placed in a furnace with a predetermined temperature distribution, and by lowering the ampoule or raising the furnace, T@F! ! CdT dissolved in the i-form is redeposited as a single crystal. However, this method has a slow crystal growth rate and requires special ampoules.
Temperature control of the heating furnace is complicated and operation is generally difficult.

歩留りも悪い。修正型ブリッジマン法とて状況は同様で
ある。
Yield is also poor. The situation is similar with the modified Bridgman method.

発明の目的 本発明は、従来から一般的に使用されている単結晶育成
設備を用いて、簡便に高抵抗CdTe単縛晶を作成する
方法の確立を目的とする。
OBJECTS OF THE INVENTION The purpose of the present invention is to establish a method for easily producing high-resistance CdTe single bound crystals using conventional single crystal growth equipment.

発明の・慨要 本#、明者等は上記目的に向は研究を重ねた結果、■ 
ドープ剤として工”nを用い、添加する不純物Inの濃
度を1pPm(tf)以下とすることにより結晶中In
は(L 7 ppm以下となり不純物濃度は低くなり、
デバイス作成上の影響も小さくなること、及び (り  CdTe単結晶はTe過剰であることが必要で
あり、そのためには、Cd及びTeJfi料の組成比(
w、子比)Cd/Teの比がCL998〜t002とす
ること によって従来得られなかった高品質の高抵抗CdTe単
結晶の作成が可能であるとの知見を得た。一般に、不純
物を添加する場合、1ppmcxi)を超えて多量に添
加すると、単結晶の性質への悪影響が生じ、デバイスの
作製上支障をきたす恐れがあるが、1 ppm (重f
)以下のIn添加では、生成するCdTe単結晶内のI
n濃度は約17ppm (重量)以下であり、不純物濃
度は充分に低く、デバイス作製上影響は無視することが
出来る。
Summary of the invention As a result of repeated research aimed at the above purpose, the authors have
By using dopant as a dopant and controlling the concentration of added impurity In to 1 pPm (tf) or less, In
(L 7 ppm or less, the impurity concentration is low,
It is necessary that the influence on device fabrication is small and that the CdTe single crystal has an excess of Te.
It was found that by setting the Cd/Te ratio to CL998 to t002, it was possible to create a high-quality, high-resistance CdTe single crystal that could not be obtained conventionally. In general, when adding impurities in a large amount exceeding 1 ppm cxi), it may have an adverse effect on the properties of the single crystal and cause problems in device fabrication.
) In the following In addition, I in the CdTe single crystal to be produced is
The n concentration is about 17 ppm (by weight) or less, and the impurity concentration is sufficiently low so that the influence on device fabrication can be ignored.

こうして、Te過剰要件と不純物Inの微i添加要件が
組合わさって、通常的なアングル及び加熱炉を使用して
、新規な高抵抗CdTe単結晶を簡便に作成し5ること
が判明したものである。
In this way, it was found that by combining the requirement for excess Te and the requirement for the addition of a small amount of In as an impurity, a new high-resistance CdTe single crystal can be easily produced using a conventional angle and heating furnace5. be.

斯くして、本発明は、 1)Cd/’]’eJiC子比がTe過剰であり且っ[
L7ppm(重f)以下のInを含有する高抵抗CdT
@単結晶、及び 2)CdTe単結晶を結晶成長用アンプル内で該アンプ
ルを加熱及び冷却して成長せしめることにより高抵抗C
dTs結晶を作成する方法において、不純物Inを1p
pm(重1ppm(重量)以下の濃度において添加する
ことを特徴とする高抵抗CdTe結晶の作成方法 を提供する。
Thus, the present invention provides the following features: 1) Cd/']'eJiC ratio is excessive Te, and [
High resistance CdT containing In less than L7ppm (weight f)
@single crystal, and 2) high resistance C by growing CdTe single crystal in a crystal growth ampoule by heating and cooling the ampoule.
In the method of creating a dTs crystal, the impurity In is added to 1p.
Provided is a method for producing a high-resistance CdTe crystal, characterized in that CdTe is added at a concentration of 1 ppm (by weight) or less.

一般の(:d’l’e単結晶は、高温部、遷移部及び低
温部という所定の温度分布を有する電気炉において原料
を収納するアンプルと炉との相対的垂直移替を与えるこ
とにより高温部で原料を融解しそして生じた融液な次第
に凝固せしめて単結晶化される。垂直ブリッジマン法に
おいてはアンプルが降下され、他方垂直グラデイエント
フリージング法におい℃は炉が冷却される。Cd及び’
rei料は目標とする組成に応じて秤量され、アンプル
内に装入されそして真空封止される。
A general (: d'l'e single crystal) can be produced at a high temperature by providing a relative vertical transition between the ampoule containing the raw material and the furnace in an electric furnace that has a predetermined temperature distribution of a high temperature zone, a transition zone, and a low temperature zone. In the vertical Bridgman process, the ampoule is lowered, while in the vertical gradient freezing process, the furnace is cooled to 0°C.Cd and '
The rei material is weighed according to the target composition, loaded into ampoules and vacuum sealed.

従来技術で述べたように、本発明の対象とする高抵抗(
:dTe単結晶は上記のような一般的結晶成育装置では
作成困難なため特別な炉及びアンプル構成が採用されて
いた。本発明は、そうした特別な装置を用いることなく
、上記垂直ブリッジマン法、垂直グラディエンド7リー
ジング法に代表されるような、 CdTe単結晶成長用
アンプルの加熱及び冷却による簡易な結晶育成装置を使
用して高抵抗CdTe単結晶を作成するものである。
As described in the prior art, high resistance (
:DTe single crystals are difficult to produce using the above-mentioned general crystal growth equipment, so special furnace and ampoule configurations have been adopted. The present invention uses a simple crystal growth apparatus by heating and cooling an ampoule for CdTe single crystal growth, such as the vertical Bridgman method and vertical gradient 7 reasing method, without using such special equipment. A high-resistance CdTe single crystal is produced using the following steps.

不発明に従えば、アングル内へのcd及びT。According to the invention, CD and T into the angle.

原料の秤量に際して作成CdT・単結晶がT・過剰とな
るようCd及びT・原料の量が調整される。
When weighing the raw materials, the amounts of Cd and T raw materials are adjusted so that the produced CdT single crystal has an excess of T.

Cdの蒸気圧は(:d’l’eの融点である1092℃
においてTeの蒸気圧に比較して1桁太ぎ<、1気圧位
である。このため、結晶成長中、アンプル内の上方空間
にCdが揮散する。従って、アンプルに装入されるCd
及びTe原料の組成比(原子比)をα998〜t002
の範囲内にしておけばCd蒸発の結果としてT・過剰の
単結晶が作成される。Cd蒸発菫は、アンプルの寸法形
態及び温度条件や真空条件等に依存して決る。最終的に
作成される(::dTe単結晶においてTe過剰状態が
得られれば本発明目的に充分である。
The vapor pressure of Cd is (1092℃ which is the melting point of d'l'e)
Compared to the vapor pressure of Te, it is one order of magnitude thicker than the vapor pressure of Te. Therefore, during crystal growth, Cd volatilizes in the upper space within the ampoule. Therefore, the Cd charged in the ampoule
And the composition ratio (atomic ratio) of Te raw material is α998~t002
If it is kept within the range, a single crystal with an excess of T will be created as a result of Cd evaporation. The amount of Cd evaporated depends on the size and form of the ampoule, temperature conditions, vacuum conditions, etc. It is sufficient for the purpose of the present invention if a Te-excess state is obtained in the finally produced (::dTe single crystal).

原料Cd及びTeに対して不純物としてInがlppm
1c−ffi)以下添加される。InはCdTe単結晶
を作成するに際してCd空孔を補償するドーパントとし
て知られている。しかし、Inを多量に添加すると、C
dTe単結晶の移動度の減少その他悪影響が発生しやす
い。本発明においては、In不純物は1 ppm (重
り以下、好ましくは12〜0.6 ppm (重量)と
いう極微量において添加される。この添加濃度では、不
純物InのCdTe単結晶内のジ度は約0.7 ppm
以下となり、上記のような影響を無視することが出来る
に充分小さい。
In is 1ppm as an impurity with respect to raw materials Cd and Te.
1c-ffi) or less. In is known as a dopant that compensates for Cd vacancies when creating a CdTe single crystal. However, when a large amount of In is added, C
Decreased mobility of the dTe single crystal and other adverse effects are likely to occur. In the present invention, the In impurity is added in an extremely small amount of 1 ppm (weight) or less, preferably 12 to 0.6 ppm (weight). At this addition concentration, the degree of impurity In in the CdTe single crystal is approximately 0.7 ppm
It is small enough that the above-mentioned influence can be ignored.

更に、結晶中Inを[L1ppm以下にすると、不純物
濃度はデバイス作成上の影響を、より完全に無視するに
充分低いことを保証する。
Further, by reducing the In content in the crystal to [L1 ppm or less, it is ensured that the impurity concentration is low enough to more completely ignore the influence on device fabrication.

こうして、Te過剰と極微量In添加という要件が組合
わさって、後に実施例に示すように、5X10’〜10
9、好ましくは10’〜10”Ω譚の高い抵抗のCdT
e単結晶が得られる。また、この高抵抗領域は単結晶の
土中下位1はぼ全域で維持されているので、基板等そこ
から切出される部材の収率も高い。
In this way, the requirements of excessive Te and addition of a very small amount of In combine to produce a 5X10' to 10
9. High resistance CdT, preferably between 10' and 10'' Ω.
e A single crystal is obtained. In addition, since this high resistance region is maintained throughout almost the entire area of the single crystal soil, the yield of parts such as substrates cut from there is also high.

以上はCdTsについてのみ言及したが、本発明はCd
Teのような半導体を構成する構成元素のうちの一元素
の蒸気圧が高い場合で、単結晶中に欠陥(空孔)を生じ
やすい場合に適用し5るものであり、CdTe、)(g
CdTe、 znTe、HgT6゜(:d3e等のIt
−Vl族化合物半導体、或いはこの釉の■−V族化合物
半導体に対しても応用可能であることは明らかである。
Although only CdTs has been mentioned above, the present invention
It is applied when one of the constituent elements constituting a semiconductor such as Te has a high vapor pressure and defects (vacancies) are likely to occur in the single crystal.
CdTe, znTe, HgT6゜(:d3e etc.)
It is clear that this glaze can also be applied to -Vl group compound semiconductors or -V group compound semiconductors of this glaze.

内径2インチの石英製結晶成長用アンプルにcdとT・
とを装入し、Inを表Iに示す濃度で添加し、真空排気
した後封止した。
A CD and T-
and In was added at the concentration shown in Table I, and after evacuation, the container was sealed.

このアンプルを1ppm(重量50℃に設定された上段
炉と800℃に設定した下段炉とから成る電気炉を用い
て垂直ブリッジマン法によって結晶成長せしめた。垂直
ブリッジマン法のアンプル降下速度は1 m / Hr
そして温度勾配は3℃/cIrLとした。
Crystals of this ampoule were grown at 1 ppm (weight) by the vertical Bridgman method using an electric furnace consisting of an upper furnace set at 50°C and a lower furnace set at 800°C. m/hr
The temperature gradient was 3°C/cIrL.

作成されたCdTe単結晶は前述したようにcdの揮散
によりTeA剰となっている。作成された2インチ(:
:dTe単結晶についてInm度分析と比抵抗測定を行
った。結果を表工に示す。本発明により作成されたロッ
ト番号Cの(::d’l’e単結晶はそのほぼ全域で5
X10’〜101Ωαの高い比抵抗を示しセして工n濃
度は約0.7 ppm (重量)以下であり、ロット番
号A、Bに比べ高抵抗の単結晶が得られた。ロット番号
りのものはより優れた性質を示す。
The produced CdTe single crystal has a surplus of TeA due to volatilization of CD, as described above. 2 inches created (:
: Inm degree analysis and specific resistance measurement were performed on the dTe single crystal. Show the results to the table worker. The (::d'l'e) single crystal of lot number C produced according to the present invention has a
A single crystal exhibiting a high specific resistance of X10' to 101 Ωα and a concentration of about 0.7 ppm (weight) or less, and having a higher resistance than lot numbers A and B, was obtained. Those with higher lot numbers exhibit better properties.

グツデイエントフリージング法を用いて作成した(:d
Te単結晶も同様の結果を示した。また、3インチ径の
CdTe単結晶でも同轡の結果が得られた。
Created using the natural freezing method (:d
Te single crystal also showed similar results. Further, the same results were obtained with a CdTe single crystal having a diameter of 3 inches.

表  I 冗 ief    A      12     1〜8 
   10” 〜10’例 B       3     α7〜40    10
’本   C1α1〜(L7  5X1o’ 〜1o”
発 発明の効果 従来に較べ簡便な方法で高抵抗CdTe単結晶を作成す
ることが可能となった。不純物InのCdT@単結晶内
の濃度は約0.7 ppm以下、好ましくはαIppm
(重り以下であり、不純物無添加の結晶内残留不純物濃
度と同程度:C抑えて高抵抗化の実現に成功したので、
本単結晶を用いた、例えば放射線検出器、ポッケルスセ
ル等のデバイスの機能向上に大きく寄与するものである
Table I Redundancy A 12 1-8
10"~10'Example B 3 α7~40 10
'Book C1α1 ~ (L7 5X1o'~1o"
Effects of the invention It has become possible to produce a high resistance CdTe single crystal using a simpler method than in the past. The concentration of impurity In in CdT@ single crystal is about 0.7 ppm or less, preferably αIppm
(It is less than the weight and is about the same as the residual impurity concentration in the crystal without adding impurities: Because we succeeded in achieving high resistance by suppressing C,
This will greatly contribute to improving the functionality of devices using this single crystal, such as radiation detectors and Pockels cells.

Claims (1)

【特許請求の範囲】 1)Cd/Te原子比がTe過剰であり且つ0.7pp
m(重量)以下のInを含有する高抵抗CdTe単結晶
。 2)CdTe単結晶を結晶成長用アンプル内で該アンプ
ルを加熱及び冷却して成長せしめることにより高抵抗C
dTe結晶を作成するに当り、不純物Inを1ppm(
重量)以下の濃度において添加することを特徴とする高
抵抗CdTe結晶の作成方法。 3)Cd及びTe原料の量をCd/Teの原子比が0.
998〜1.002である特許請求の範囲第2項記載の
方法。
[Claims] 1) Cd/Te atomic ratio is excessive Te and 0.7 pp
High resistance CdTe single crystal containing In of m (weight) or less. 2) High resistance C is grown by growing a CdTe single crystal in a crystal growth ampoule by heating and cooling the ampoule.
When creating a dTe crystal, the impurity In was added to 1 ppm (
A method for producing a high-resistance CdTe crystal, characterized in that it is added at a concentration below (weight). 3) The amounts of Cd and Te raw materials are adjusted so that the Cd/Te atomic ratio is 0.
998-1.002. The method according to claim 2.
JP16253187A 1986-09-26 1987-07-01 Highly resistant cdte crystal and preparation thereof Pending JPS63185898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP87113852A EP0261647A3 (en) 1986-09-26 1987-09-22 High resistivity cdte crystal and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-226366 1986-09-26
JP22636686 1986-09-26

Publications (1)

Publication Number Publication Date
JPS63185898A true JPS63185898A (en) 1988-08-01

Family

ID=16844016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16253187A Pending JPS63185898A (en) 1986-09-26 1987-07-01 Highly resistant cdte crystal and preparation thereof

Country Status (1)

Country Link
JP (1) JPS63185898A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150138A (en) * 2010-03-23 2010-07-08 Nippon Mining & Metals Co Ltd CdTe COMPOUND SEMICONDUCTOR SINGLE CRYSTAL FOR ELECTRIC OPTICAL ELEMENT
JP2013207004A (en) * 2012-03-27 2013-10-07 Gigaphoton Inc Laser device
JP2013207003A (en) * 2012-03-27 2013-10-07 Gigaphoton Inc Laser device
WO2020235124A1 (en) 2019-05-17 2020-11-26 Jx金属株式会社 Semiconductor wafer, radiation detection element, radiation detector, and production method for compound semiconductor monocrystalline substrate
WO2020235123A1 (en) 2019-05-17 2020-11-26 Jx金属株式会社 Semiconductor wafer, radiation detection element, radiation detector, and production method for compound semiconductor monocrystalline substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150138A (en) * 2010-03-23 2010-07-08 Nippon Mining & Metals Co Ltd CdTe COMPOUND SEMICONDUCTOR SINGLE CRYSTAL FOR ELECTRIC OPTICAL ELEMENT
JP2013207004A (en) * 2012-03-27 2013-10-07 Gigaphoton Inc Laser device
JP2013207003A (en) * 2012-03-27 2013-10-07 Gigaphoton Inc Laser device
WO2020235124A1 (en) 2019-05-17 2020-11-26 Jx金属株式会社 Semiconductor wafer, radiation detection element, radiation detector, and production method for compound semiconductor monocrystalline substrate
WO2020235123A1 (en) 2019-05-17 2020-11-26 Jx金属株式会社 Semiconductor wafer, radiation detection element, radiation detector, and production method for compound semiconductor monocrystalline substrate
US11967659B2 (en) 2019-05-17 2024-04-23 Jx Metals Corporation Semiconductor wafer, radiation detection element, radiation detector, and production method for compound semiconductor monocrystalline substrate

Similar Documents

Publication Publication Date Title
KR19990062687A (en) Method for preparing calcium fluoride crystals and processing method for raw materials
WO2003078703A1 (en) CdTe SINGLE CRYSTAL AND CdTe POLYCRYSTAL, AND METHOD FOR PREPARATION THEREOF
US4652332A (en) Method of synthesizing and growing copper-indium-diselenide (CuInSe2) crystals
JPS63185898A (en) Highly resistant cdte crystal and preparation thereof
JP2021502944A (en) Semi-insulating silicon carbide single crystal doped with a small amount of vanadium, substrate, manufacturing method
Su et al. Growth of ZnTe by physical vapor transport and traveling heater method
US3607752A (en) Process for the culture of large monocrystals of lithium niobate
GB2136706A (en) Liquid encapsulated crystal growth
EP1013801A1 (en) Process and apparatus for synthesizing and growing crystals
JPH0234597A (en) Growing method for gaas single crystal by horizontal bridgman method
US3933990A (en) Synthesization method of ternary chalcogenides
Zha et al. Crystal growth of undoped semi-insulating CdTe
US9437692B2 (en) Production and distribution of dilute species in semiconducting materials
JPH07206597A (en) Method for producing znse bulk single crystal
JPH0557240B2 (en)
Ciszek Synthesis and crystal growth of copper indium diselenide from the melt
JPS61151094A (en) Production of single crystal of compound semiconductor
JPH035399A (en) Cadmium telluride crystal and production thereof
US3615205A (en) Method for the synthesis and growth of high purity iii{14 v semiconductor compositions in bulk
EP0261647A2 (en) High resistivity CdTe crystal and process for producing the same
CA2292853A1 (en) Process and apparatus for synthesizing and growing crystals
JPH01215799A (en) Semi-insulating gaas compound semiconductor single crystal and production thereof
JP2736343B2 (en) Method for producing semi-insulating InP single crystal
JPH08188499A (en) Production of gallium-arsenic single crystal
JP2000313699A (en) PRODUCTION OF SEMIINSULATING InP SINGLE CRYSTAL