JPS61270207A - Production of monosilane - Google Patents
Production of monosilaneInfo
- Publication number
- JPS61270207A JPS61270207A JP10989185A JP10989185A JPS61270207A JP S61270207 A JPS61270207 A JP S61270207A JP 10989185 A JP10989185 A JP 10989185A JP 10989185 A JP10989185 A JP 10989185A JP S61270207 A JPS61270207 A JP S61270207A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- monosilane
- reaction
- group
- alkoxysilane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Silicon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はアルコキシシランを原料としてモノシランを製
造する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing monosilane using an alkoxysilane as a raw material.
モノシランは半導体用高純度シリコン原料として使用さ
れるほか、アモルファス−シリコン感光体、太陽電池、
ニューセラミックス材料等の原料として広範に使用され
て−る。Monosilane is used as a raw material for high-purity silicon for semiconductors, as well as for amorphous silicon photoreceptors, solar cells,
It is widely used as a raw material for new ceramic materials.
従来よシモノシ2ンの製造法に関しては数多くの提案が
なされている。特公昭、t/−2004tOには、モノ
シランを製造するための最も有力な方法の1つとして、
ナトリウムエトキシドを触 □媒として、トリエト
キシシランを不均化する方法が記載されている。Conventionally, many proposals have been made regarding the production method of Shimonoshi 2. Tokkosho, t/-2004tO, as one of the most promising methods for producing monosilane,
A method for disproportionating triethoxysilane using sodium ethoxide as a catalyst is described.
(]iXt O)s 8 i H、8i H4+7El
i(OEt)。(]iXt O)s 8 i H, 8i H4+7El
i(OEt).
この方法は触媒効率が極めて高い等の優れた特徴をもつ
ものであるが、触媒反応な敵相媒体中で実施するため、
触媒と副生物質(ナト2エトキシシラン等)との分離が
必ずしも容易でない等の問題点がある。同、この反応は
前記式から明らかなように、副生物質が多量に生成する
が、この副生物質は種々ケイ素化合の原料として有用で
あシ、触媒を除去することが必要である。This method has excellent features such as extremely high catalytic efficiency, but since it is carried out in a catalytic enemy phase medium,
There are problems such as separation of the catalyst and by-products (nat-2-ethoxysilane, etc.) is not always easy. Similarly, as is clear from the above formula, this reaction produces a large amount of by-products, but these by-products are useful as raw materials for various silicon compounds, and it is necessary to remove the catalyst.
本発明の目的は原料のアルコキシシランカラモノシラン
を効率よく製造し得、かつ反応生成物から触媒を容易に
分離できるモノシランの製造方法を提供するにある。An object of the present invention is to provide a method for producing monosilane that can efficiently produce alkoxysilane caramonosilane as a raw material and easily separate the catalyst from the reaction product.
本発明者等は、前記欠点に飯み、触媒効率が高く、かつ
反応生成物との分離操作の容易な触媒について研究した
結果、ある種の固体触媒が、この目的に合致するもので
ある事を見出し本発明に到達した。As a result of research into catalysts that overcome the above-mentioned drawbacks, have high catalytic efficiency, and are easy to separate from reaction products, the present inventors have found that a certain type of solid catalyst is suitable for this purpose. This discovery led to the present invention.
すなわち、本発明は、一般式(1)で示されるアルコキ
シシランを触媒の存在下に
Hn81(OR)、−0・・・・・・・・・・・・(I
)(式中、Rは炭素数/〜にのアルキル基、nは/、λ
あるいは3を表わす。)
不均化してモノシランを製造する方法において、触媒と
してIBM、■族、炭素及びケイ素を除く■族、および
鉄から選ばれる金属のハロゲン化物を使用する事を特徴
とするモノシランの製造法に存する。That is, the present invention provides Hn81 (OR), -0... (I
) (wherein, R is an alkyl group with carbon number/~, n is /, λ
Or it represents 3. ) A method for producing monosilane by disproportionation, characterized in that the catalyst is a halide of a metal selected from IBM, Group (2), Group (2) excluding carbon and silicon, and iron. .
以下に、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明において使用される原料であるところのアルコキ
シシランは、例えば特開昭j4t−/63!λり、特開
昭1!−761りに記載の方法等によシ容易に調製され
る。The alkoxysilane, which is a raw material used in the present invention, is disclosed in, for example, Japanese Patent Application Publication No. 2003-120003. λri, Tokukai Sho 1! -761, and the like.
本発明方法における不均化反応は、周期律表IB族、■
族、炭素及びケイ素を除く■族および鉄のハロゲン化物
を触媒として実施される。The disproportionation reaction in the method of the present invention is performed in group IB of the periodic table,
The method is carried out using halides of the group I, excluding carbon and silicon, and iron as catalysts.
これら金属のハロゲン化物の具体例としては、Ou、ム
t、B、 Aj、Ga、 Bc、 Y、 La、 Os
、T1、Zr。Specific examples of these metal halides include Ou, Mut, B, Aj, Ga, Bc, Y, La, Os
, T1, Zr.
Ge%fin、 Pb、 Feのハロゲン化物、例えば
フッ化物、塩化物が挙げられる。またム1については有
機アルミニウムクロライドも使用できる。Examples include halides of Ge%fin, Pb, and Fe, such as fluorides and chlorides. Furthermore, as for Mu 1, organoaluminum chloride can also be used.
これらの中でも、ルイス酸性強度の高い金属ハロゲン化
物が良い特性を示すので好ましい。本発明で使用する上
記の触媒は原料のアルコキシシラン及び反応生成物に実
質的に不溶であシ、触媒と反応生成物(剛性物質)との
分離は極めて容易である。Among these, metal halides with high Lewis acidic strength are preferred because they exhibit good properties. The above catalyst used in the present invention is substantially insoluble in the raw material alkoxysilane and the reaction product, and separation of the catalyst and the reaction product (rigid material) is extremely easy.
触媒の使用量は、アルコキシシランに対して0.07重
量%以上でその本来の目的を達成する事が出来るが、通
常0.7〜!0重量−の範囲の条件が採用される。The intended purpose can be achieved when the amount of catalyst used is 0.07% by weight or more based on the alkoxysilane, but it is usually 0.7~! Conditions in the range 0 weight - are adopted.
反応の型式としては、回分式でも連続式でも実施し得る
。特に装置の材質に何等の制約もな〈実施出来るので、
触媒形状に好適な反応型式を自由に選択する事ができる
。The reaction may be carried out either batchwise or continuously. In particular, there are no restrictions on the material of the equipment.
The reaction type suitable for the catalyst shape can be freely selected.
反応は常圧、常温下で実施しても充分目的を達成するこ
とが可能であるが一般的には、常圧、加温下で行う方が
よシ好ましい。本発明による方法は、あまシ温度に左右
されないが特に好ましい装置は、to0〜?θ℃であ、
る。Although the reaction can be carried out under normal pressure and room temperature, the purpose can be sufficiently achieved, but it is generally more preferable to carry out the reaction under normal pressure and heating. Although the method according to the present invention is not dependent on temperature, a particularly preferred device is to0~? At θ℃,
Ru.
反応圧力も減圧下から加圧下まで任意の圧力で実施しう
るが、生成物モノシランが空気と接触すると瞬時に着火
する事よシ、常圧条件が操作性に優れている。The reaction pressure can be carried out at any pressure from reduced pressure to increased pressure, but normal pressure conditions are superior in operability since the product monosilane will instantly ignite when it comes into contact with air.
本発明における原料のアルコキシシランは、単一組成で
も混合物でも何等さしつかえない。The raw material alkoxysilane in the present invention may be of a single composition or a mixture.
一方不均化反応生成物の7つであるテトラメトキシシラ
ンや、他の物質、例えばヘキサン、ヘプタン等の脂肪族
飽和炭化水素や、シクロヘキサン等の脂環式飽和炭化水
素を溶媒として共に用いる◆も出来る。On the other hand, tetramethoxysilane, which is one of the disproportionation reaction products, and other substances, such as aliphatic saturated hydrocarbons such as hexane and heptane, and alicyclic saturated hydrocarbons such as cyclohexane, can also be used together as a solvent. I can do it.
反応は通常、窒素やアルゴンの不活性ガス雰囲気下で実
施される二%に窒素の使用はモノシランを凝縮捕集する
場合に好適である、次に本発明方法を実施例によ)更に
具体的に説明するが、本発明はその要旨をこえない限り
、以下の実施例に限定されるものでなり0〔実施例〕
実施例/
ガスクロ直結のガス排出管を備えた、JOdス
ナl’ m 7 /Fスコに撹拌子及び予め加温下窒累
気流で乾燥した触媒、OuF、 (FluoRC)OH
1!+M社製)0、コlを仕込み、再びフラスコ内を窒
素ガスで充分置換した後、トリメトキシシランO1O4
tmolθを添加し、撹拌下、室温で2時間反応させた
。The reaction is usually carried out under an inert gas atmosphere of nitrogen or argon.The use of 2% nitrogen is preferred when condensing and collecting monosilane; However, unless it exceeds the gist of the invention, the present invention is limited to the following examples.0 [Example] Example/JOd snare l'm7 equipped with a gas discharge pipe directly connected to gas chromatography /F Scooter, stir bar and catalyst pre-dried with a heated nitrogen stream, OuF, (FluoRC)OH
1! After charging the flask with nitrogen gas and purging the inside of the flask with nitrogen gas again, trimethoxysilane O1O4
tmol θ was added, and the mixture was reacted at room temperature for 2 hours with stirring.
た。Ta.
向、反応後、反応生成物を一過し、触媒を分離した。触
媒は原料及び反応生成物に不溶であり分陰は容易である
。After the reaction, the reaction product was passed through and the catalyst was separated. The catalyst is insoluble in the raw materials and reaction products and can be easily separated.
実施例−〜7
実施例/において実施した方法で触媒の種類をかえて実
施した反応結果を表−7に示す。同、用いたそれぞれの
触媒は原料及び反応生成物に実質的に不靜でめプ、反応
生成物をF遇することによシ容易に触媒を分離すること
ができた。Example 7 Table 7 shows the reaction results obtained by changing the type of catalyst in the same manner as in Example. Each of the catalysts used was substantially free of raw materials and reaction products, and the catalysts could be easily separated by exposing the reaction products to F.
TM8H: )リメトキシシラン
QMEI 二テトラメトキシシラン
Sin、 :モノシラン
実施例1
撹拌翼、i1素ガス導入管、冷却管付ガス排出管及び液
仕込み管を備えた、100d内容積の耐圧ガラスオート
クレーブに、触媒として予め、加温下窒素気流で乾燥し
た。TM8H: ) Rimethoxysilane QMEI ditetramethoxysilane Sin, : Monosilane Example 1 In a pressure-resistant glass autoclave with an internal volume of 100 d, equipped with a stirring blade, an i1 elementary gas introduction pipe, a gas discharge pipe with a cooling pipe, and a liquid charging pipe, The catalyst was previously dried under heating with a nitrogen stream.
FLUOROOHEM製 Ti1F、 0.j Iを仕
込み、充分定常でオートクレーブ系内を置換した。しか
るテ
後トリメトキシシメンO0−mole室温下、液仕込み
管よシ添加し撹拌を開始した。Made by FLUOROOHEM Ti1F, 0. j I was charged and the autoclave system was replaced at a sufficiently steady state. After that, 0-mole of trimethoxycymene was added through the liquid charging tube at room temperature, and stirring was started.
反応は室温下、触媒とトリメトキシシランが接触した時
点よシ起シモノシランが生成し、その後70℃に加温し
、モノシランが生成しなくなるまで一9/時間冥施した
、生成モノシランは経時的にガスクロマトグラフィーで
定量した。The reaction was carried out at room temperature, and when the catalyst and trimethoxysilane came into contact, cymonosilane was produced.Then, the temperature was heated to 70°C and the reaction was carried out for 19 hours until no monosilane was produced.The produced monosilane changed over time. It was quantified by gas chromatography.
その結果、トリメトキシシランの転換率≦4tmole
%、モノシラン生成0.03λmoleであった。As a result, the conversion rate of trimethoxysilane ≦4 tmole
%, and monosilane production was 0.03λmole.
向、触媒は反応生成物に不溶で69、F遇することによ
って反応生成物からPB媒を容易に分陰することができ
た。On the other hand, the catalyst was insoluble in the reaction product, and the PB medium could be easily separated from the reaction product by treating it with 69F.
実施例?
実施例rにおいて実施した方法で触媒としてFed、
(FLUOROO)iKM 製)θ、2 lを用い、一
時間反応した。その結果、トリメトキシシランの転換率
/7./ mob合チ、 モノシラン生成o、oダ3m
o’leチであった。また触媒の分離は実施例1と同様
に容易であった。Example? Fed as a catalyst in the method carried out in Example r;
(FLUOROO manufactured by iKM) θ, 2 liters was used to react for one hour. As a result, the conversion rate of trimethoxysilane/7. / mob Aichi, monosilane generation o, o da 3m
It was o'lechi. Further, separation of the catalyst was easy as in Example 1.
実施例IQ
実施例/において実施した方法で触媒としてhtot3
(和光N%製)、j、9 Nを用い、3.り時間反応を
実施した。その結果トリメトキシシランの転換率4/m
ole%、モノシラン生成0.030jmo1eであっ
た。同、触媒は反応生成物に不溶であシ、触媒の分離は
容易であった。Example IQ htot3 as a catalyst in the method carried out in Example/
(manufactured by Wako N%), j, using 9N, 3. A time reaction was performed. As a result, the conversion rate of trimethoxysilane was 4/m
ole%, and monosilane production was 0.030 jmol. Similarly, the catalyst was insoluble in the reaction product, and it was easy to separate the catalyst.
本発明方法によれは、上記し喪ようにアルコヤシシラン
からモノシランを容易に得ることができる。しかも本発
明で使用する触媒は反応生成物に実質的に不溶であシ、
反応生成物からの分陰は極めて容易である。反応生成物
(−生物質)は種々のケイ素製品の原料、例えば元ファ
イバー、工0封止剤、工0用器具フォトマスク等の用途
に用いられる高純度ケイ素の原料として有用であシ、触
媒の分離が容易なことは工業的に意義が大きい。According to the method of the present invention, monosilane can be easily obtained from alcosilane as described above. Moreover, the catalyst used in the present invention is substantially insoluble in the reaction products;
Shading from reaction products is extremely easy. The reaction product (biological material) is useful as a raw material for various silicon products, such as raw material for high-purity silicon used in raw fibers, sealants, photomasks, etc., and as a catalyst. The ease of separation is of great industrial significance.
Claims (1)
在下に H_nSi(OR)_4_−_n・・・( I )(式中
、Rは炭素数1〜6のアルキル基、nは1、2あるいは
3を表わす。) 不均化してモノシランを製造する方法において、触媒と
して I _B族、III族、炭素及びケイ素を除くIV族、お
よび鉄から選ばれる金属のハロゲン化物を使用する事を
特徴とするモノシランの製造法。[Claims] H_nSi(OR)_4_-_n...(I) (wherein R is an alkyl group having 1 to 6 carbon atoms, (n represents 1, 2 or 3.) In the method of producing monosilane by disproportionation, a halide of a metal selected from Group I_B, Group III, Group IV excluding carbon and silicon, and iron is used as a catalyst. A method for producing monosilane characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60109891A JPH0725534B2 (en) | 1985-05-22 | 1985-05-22 | Manufacturing method of monosilane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60109891A JPH0725534B2 (en) | 1985-05-22 | 1985-05-22 | Manufacturing method of monosilane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61270207A true JPS61270207A (en) | 1986-11-29 |
JPH0725534B2 JPH0725534B2 (en) | 1995-03-22 |
Family
ID=14521776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60109891A Expired - Fee Related JPH0725534B2 (en) | 1985-05-22 | 1985-05-22 | Manufacturing method of monosilane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0725534B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002069078A (en) * | 2000-08-29 | 2002-03-08 | Jgc Corp | Method for producing silane from trialkoxysilane and method for producing trialkoxysilane from tetraalkoxysilane |
WO2010050579A1 (en) * | 2008-10-31 | 2010-05-06 | 昭和電工株式会社 | Method for producing monosilane and tetraalkoxysilane |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014054843A1 (en) | 2012-10-02 | 2014-04-10 | Oci Company Ltd. | Method for preparing monosilane by using trialkoxysilane |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4941321A (en) * | 1972-05-30 | 1974-04-18 |
-
1985
- 1985-05-22 JP JP60109891A patent/JPH0725534B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4941321A (en) * | 1972-05-30 | 1974-04-18 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002069078A (en) * | 2000-08-29 | 2002-03-08 | Jgc Corp | Method for producing silane from trialkoxysilane and method for producing trialkoxysilane from tetraalkoxysilane |
WO2010050579A1 (en) * | 2008-10-31 | 2010-05-06 | 昭和電工株式会社 | Method for producing monosilane and tetraalkoxysilane |
JP5563471B2 (en) * | 2008-10-31 | 2014-07-30 | 昭和電工株式会社 | Method for producing monosilane and tetraalkoxysilane |
US8829221B2 (en) | 2008-10-31 | 2014-09-09 | Showa Denko K.K. | Method for producing monosilane and tetraalkoxysilane |
Also Published As
Publication number | Publication date |
---|---|
JPH0725534B2 (en) | 1995-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4276424A (en) | Methods for the production of organic polysilanes | |
US2488487A (en) | Production of alkyl silicon halides | |
US4122155A (en) | Preparation of silicon nitride powder | |
EP2754648B1 (en) | Method for producing magnesium alcoholate | |
JP4519955B2 (en) | Tetradecachlorocyclohexasilane dianion-containing compound | |
Fischer et al. | The addition reaction between trichlorogermane and an olefin | |
JPS61270207A (en) | Production of monosilane | |
JPH0239445B2 (en) | ||
JPS60221301A (en) | Novel manufacture of germanium hydride | |
JPH0259590A (en) | Production of organic cholorosilane | |
US2551571A (en) | Method of producing silanes | |
WO2010055704A1 (en) | Process for production of aluminum dialkyl monohalide | |
JP5647620B2 (en) | Method for producing monosilane and tetraalkoxysilane | |
US3109014A (en) | Method for preparing monomethyldichlorosilane | |
JPH03218917A (en) | Production of boron trichloride | |
KR100408991B1 (en) | The improved method for the preparation of DL-α-tocopherol acetate | |
JPS61261209A (en) | Production of monosilane | |
JP3382688B2 (en) | Synthetic method of alkenylsilane | |
JPS61270206A (en) | Production of monosilane | |
JPS6357592A (en) | Production of tert-butyldimethylchlorosilane | |
JPS5829248B2 (en) | Production method of trichlorosilane | |
JPH0725535B2 (en) | Method for producing monosilane | |
JPS60221321A (en) | Preparation of germanes | |
SU1029579A1 (en) | Titanium triphenyl siloxitrichloride as component of ethylene polymerization catalyst and method of producing same | |
JPS6148419A (en) | Preparation of silane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |