JPS61269684A - Shape deforming device - Google Patents

Shape deforming device

Info

Publication number
JPS61269684A
JPS61269684A JP10981685A JP10981685A JPS61269684A JP S61269684 A JPS61269684 A JP S61269684A JP 10981685 A JP10981685 A JP 10981685A JP 10981685 A JP10981685 A JP 10981685A JP S61269684 A JPS61269684 A JP S61269684A
Authority
JP
Japan
Prior art keywords
temperature
memory alloy
shape memory
shape
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10981685A
Other languages
Japanese (ja)
Inventor
Masaru Iwai
岩井 優
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10981685A priority Critical patent/JPS61269684A/en
Publication of JPS61269684A publication Critical patent/JPS61269684A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element

Abstract

PURPOSE:To increase the utilizing range of a shape memory alloy (SMA) by detecting the temperature of the SMA, and forcibly deforming the SMA in response to the temperature. CONSTITUTION:When a temperature sensor 3 generates a signal of temperature 'low', the switch of a temperature controller 5 is closed, a current flows from a power source 4 through an SMA1 and the controller 5 to heat the SMA1. When the SMA1 is heated to exceed its deforming temperature, the SMA1 is bent to the right side and deformed. When the sensor 3 generates a signal of temperature 'high', the switch of the controller 5 is opened to cool the SMA1, and the SMA1 is returned to the original state. At the time, the SMA1 may be forcibly cooled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は形状記憶合金を利用した形状変形を行う装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a device that performs shape deformation using a shape memory alloy.

〔従来の技術〕[Conventional technology]

最近、形状記憶合金(Shape Memory A1
1o7以下8MAと云う)は温度センサーとそのセンサ
ーによって自からアクチェーターとして動作する二つの
機能を合せ持つ合金であり、その利用範囲も拡がってい
る。例えば859.11.9朝日新聞(朝刊)「くらし
の科学」に種々の応用が紹介され、また、KKアグネ「
金属J 19B4年5月号VotS4. No、5p2
〜8にはエアコンの風向調節機構への実用化について記
載されている。
Recently, shape memory alloy (Shape Memory A1
(referred to as 1o7 or less 8MA) is an alloy that has two functions: a temperature sensor and an actuator that acts on its own using the sensor, and its range of use is expanding. For example, various applications were introduced in the Asahi Shimbun (morning edition) ``Science of Life'' on November 9, 859, and KK Agne ``Science of Life'' was introduced.
Metal J May 19B4 issue VotS4. No, 5p2
8 to 8 describe the practical application to the wind direction adjustment mechanism of an air conditioner.

一般の金属では弾性限界を越えて変形すると、塑性変形
となり、永久に形状は元ともどらない。
When ordinary metals are deformed beyond their elastic limit, they become plastically deformed and never return to their original shape.

しかし、 SMAは塑性ひずみを加えても形状が回復す
る。こねけ、変形の可逆的なマルテンサイト変態によっ
て行わh、高温で記憶した形状をマルテンサイト変態を
起す温度以下の低温にして変形する。これを逆に高温に
して行くとマルテンサイト和から元の母相への逆変態が
おこり、高温時記憶した元の形状に変形する。
However, SMA recovers its shape even if plastic strain is applied. Kneading and deformation are performed by reversible martensitic transformation, and the shape memorized at a high temperature is deformed at a low temperature below the temperature at which martensitic transformation occurs. Conversely, when the temperature is increased, a reverse transformation occurs from the martensite sum to the original matrix, and the material deforms to the original shape that was memorized at the high temperature.

この合金はTi −Ni系と(u系があり、Ou系にけ
C!u −Zn合金、 Ou −At合金、 l:!u
 −Zn −At合金等が用いられている。変形を生じ
る温度は、合金の稲類や加工、熱処理等によって異なり
、所定の温度で変形を生じるようにし、種々の応用がな
されている。
These alloys include Ti-Ni system and (u system, Ou system, C!u-Zn alloy, Ou-At alloy, l:!u
-Zn-At alloy etc. are used. The temperature at which deformation occurs varies depending on the type of alloy, processing, heat treatment, etc., and various applications have been made to cause deformation at a predetermined temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のSMAの応用は周りの温度(こ応じて形状変形さ
せるものであわ、SMA自身を強制的に変形させる例は
余りなかった。
Conventional SMA applications have been limited to deforming the shape in response to the surrounding temperature, and there have been few examples of forcibly deforming the SMA itself.

また、SMAの変形動作は応答速度が遅く、例えばロボ
ットなどにSMAを使用する場合などでは応答速度を早
くしたい場合もあった。
Further, the response speed of the deformation operation of the SMA is slow, and there are cases where it is desired to increase the response speed, for example, when using the SMA in a robot or the like.

この発明は上記のような問題点を解消するためになされ
たもので、SMAを強制的に変形させるようにする形状
変形製rItを提供し、また、SMAの変形応答を早く
する形状変形装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and provides a shape-deforming device that forcibly deforms an SMA, and also provides a shape-deforming device that speeds up the deformation response of the SMA. The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る形状変形製@げ、5MA1に加熱まT−
け冷却する手段と、SMAの温度を検出する手段と、こ
の温度検出手段からの信号でEiMAを加熱・冷却する
手を制御する温度制御手段を備えたものである。
The shape-deformable product according to this invention is heated to 5MA1.
The device is equipped with a means for cooling the EiMA, a means for detecting the temperature of the SMA, and a temperature control means for controlling heating and cooling of the EiMA based on a signal from the temperature detecting means.

また、第2の発明は外部からの指令で上記の加熱・冷却
手段を加えたものである。
Moreover, the second invention adds the above-mentioned heating/cooling means in response to an external command.

また、第3の発明は第1の発明のSMAの温度検出手段
の代りにEIMAの変形状態を検出する変形検出手段を
設けたものである。
Further, the third invention is provided with deformation detection means for detecting the deformation state of the EIMA in place of the temperature detection means of the SMA of the first invention.

さらに、第4の発明はSMAの温度検出手段と、SMA
の変形検出手段の両者を設けたものである。
Furthermore, the fourth invention includes a temperature detection means for the SMA, and a temperature detection means for the SMA.
The deformation detecting means is provided with both deformation detecting means.

〔作用〕[Effect]

この発明における形状変形装置itけ、SMAの温度を
検出すると、その温度に応じてSMAの加熱・冷却手段
を通じてSMAの温度を上昇または低下させてSMAの
変形動作を制御する。
When the shape deformation device according to the present invention detects the temperature of the SMA, it controls the deformation operation of the SMA by increasing or decreasing the temperature of the SMA through the SMA heating/cooling means according to the detected temperature.

第2の発明けSMAの変形温度近傍に温度を保ち、外部
から形状変形指令を与えるとSMAが早く変形する。
If the temperature is maintained near the deformation temperature of the second invented SMA and a shape deformation command is given from the outside, the SMA deforms quickly.

第3の発明は形状変形検出手段からの変形信号に応じて
SMAの加熱・冷却手段を通じてSMAの温度を上昇ま
たは低下させてSMAの変形動作を制御する。
The third invention controls the deformation operation of the SMA by increasing or decreasing the temperature of the SMA through the SMA heating/cooling means in response to a deformation signal from the shape deformation detection means.

第4の発明けSMA I7)温度と変形状態の両者を検
出して、両者の信号に応じてSMAの変形動作を制御す
る。
Fourth invention SMA I7) Detect both the temperature and the deformation state, and control the deformation operation of the SMA according to both signals.

〔発明の実権例〕[Examples of actual rights to inventions]

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図(a) 、 (b)において、filは棒状のS
MA、(2)は支持部、(3)け温度センサ、(4)け
電源、(5)は温度を制御する温度制御器(以下制御器
という)である。
In Figures 1(a) and (b), fil is a rod-shaped S
MA, (2) is a support part, (3) is a temperature sensor, (4) is a power source, and (5) is a temperature controller (hereinafter referred to as a controller) for controlling the temperature.

第1図(a)は常温状態で、SMA filは左側へ曲
っている。温度センサから温度「低」の信号を発すると
温度制御器(5)のスイッチが閉じて、電源(4)から
19MA(11,制御器(6)t−通して電流が流れ、
liMA +I+を加熱する。(加熱はニクロム線や温
風ファン等で間接的に加熱してもよい。’)  SMA
(11が加熱され、その変形温度を超えると第1図(b
)のようにSMA (11が右側に曲って変形する。す
ると用度センサ(3)からの検出信号が温度「高」の信
号を発すると、制御器(61のスイッチが開いてSMA
 (1+が冷却さ相、第1図(a)の状態に戻る。この
とき、SMA +11の冷却は自然冷却であるが、冷風
を吹きつけたり、クーラーで冷却するなど強制冷却をし
てもよい。以上のことから、第1図(a) 、 (b)
の状態を繰返すことができ、例えばロボットの足や工作
機械の往復運動などに利用できる。また、往復運動を継
続するのみでなく電源(4)の入り切りを外部刀為ら行
い必要時のみこの回路を生かすようにして、1回動作、
2回動作等行わせるようにしてもよい。また、制御器(
6)はON −OFF制御の例を示したが、比例制御や
MDの制御等を行う制御手段を用いてもよい。
In FIG. 1(a), the SMA fil is bent to the left at room temperature. When a temperature "low" signal is issued from the temperature sensor, the switch of the temperature controller (5) closes, and a current of 19 MA (11, t) flows from the power supply (4) through the controller (6).
Heat liMA +I+. (Heating may be done indirectly using a nichrome wire, hot air fan, etc.') SMA
(11 is heated and exceeds its deformation temperature as shown in Figure 1 (b
), the SMA (11) bends to the right and deforms.Then, when the detection signal from the temperature sensor (3) emits a high temperature signal, the switch of the controller (61 opens and the SMA
(1+ is in the cooling phase and returns to the state shown in FIG. 1(a). At this time, the cooling of SMA +11 is natural cooling, but forced cooling such as blowing cold air or cooling with a cooler may also be used. From the above, Figure 1 (a) and (b)
This state can be repeated, and can be used, for example, in the reciprocating motion of robot legs or machine tools. In addition to continuing the reciprocating motion, the power supply (4) is turned on and off externally, and this circuit is utilized only when necessary, so that it operates once,
The operation may be performed twice. In addition, the controller (
6) shows an example of ON-OFF control, but a control means that performs proportional control, MD control, etc. may also be used.

また、温度センサーは輻射温度計のように間接的に温度
を検出するものでもよい。
Further, the temperature sensor may be one that indirectly detects the temperature, such as a radiation thermometer.

第2図(a)p (b) aこの発明の他の実権例を示
すもので、(6)はコイル状に巻いたsmで変形照度以
上で縮むように記憶させている。(7)は負荷、(8)
は流ねる電流値から温度に変換する電流・温度変換器(
以下変換器という)である。第2図(a)の状態で変換
器からの信号がSMA (6!の変形温度以上の信号で
あると制御器(51はONとなって電流が流れ、SMA
(6)を加熱してSMA +61の変形温度以上になる
と、第2図(1))のようにSMA (61か縮んで負
荷(7)を待艷上げる。変換器+81がSMA fil
の変形温度以上である信号を送出すると、制御器(51
がOFFとなり、 SMA +61は@?図(a)の状
態になる。このようにして負荷(7)の上下運動を繰返
すことができる。第1図の場合と同様に電源(4)の入
り切りを外部から行ない、必要時のみこの回路を働かせ
るよう(こしてもよい。
Figure 2 (a) p (b) a shows another practical example of this invention, in which (6) is a coiled sm which is stored so as to contract when the illuminance exceeds the deformation intensity. (7) is the load, (8)
is a current/temperature converter (
(hereinafter referred to as a converter). If the signal from the converter is higher than the deformation temperature of SMA (6!) in the state shown in Fig. 2 (a), the controller (51 is turned on and current flows, and the SMA
When (6) is heated and the temperature exceeds the deformation temperature of SMA +61, the SMA (61) contracts as shown in Figure 2 (1), increasing the load (7).
When a signal is sent out that is higher than the deformation temperature of the controller (51
becomes OFF, and SMA +61 becomes @? The state shown in Figure (a) will be reached. In this way, the vertical movement of the load (7) can be repeated. As in the case of FIG. 1, the power supply (4) may be turned on and off from the outside, and this circuit may be operated only when necessary.

!3図、″第4図はffIJ2の発明の一実施例を示す
図で、第4図は第3図の具体例の要部の図である。
! 3 and 4 are diagrams showing one embodiment of the invention of ffIJ2, and FIG. 4 is a diagram of the main part of the specific example of FIG. 3.

図において、tIO+は第1の温度制御手段で、温度セ
ンサー(31からの信号を受けSMA [11がその変
形湿度より若干上ま7S:け下の温度に保持するような
りミツター(6)と、リミッタ−で制御される制御器(
61を備えている。αDは第2の温度制御手段で、温度
のupまたけdownの外部指令によって制御器(6)
に加熱・冷却の具体的指示を与える加冷熱指示回路を備
えている。(ホ)、(財)は上限設定器および下限設定
器で、例えばSMA +11の変形温度t−50℃とす
ると、十ねそれ55℃および45℃に設定さhている。
In the figure, tIO+ is the first temperature control means, which receives a signal from the temperature sensor (31) and maintains the temperature at a temperature slightly above or below the deformation humidity of SMA (6). Controller controlled by limiter (
It is equipped with 61. αD is a second temperature control means, which controls the controller (6) by external commands for increasing and decreasing the temperature.
Equipped with a heating/cooling instruction circuit that gives specific instructions for heating and cooling. (E) and (F) are an upper limit setter and a lower limit setter, and if the deformation temperature of SMA +11 is t-50°C, they are set to 55°C and 45°C, respectively.

(支)。(branch).

@け比較器で、上限・下限設定器…、(2)の設定温度
55℃以上、または45℃以下になると信号(TA)。
The @ke comparator outputs a signal (TA) when the upper/lower limit setter... (2) set temperature becomes 55°C or higher or 45°C or lower.

(TB)を送出し、(財)、(至)のワンショットマル
チを駆動して(To)、 (TD)の信号を制御器(5
1に送出し55℃以上では電流を制限して55℃に保持
するように、また45℃以下では電流を増加して45℃
に保持するように制御器で制御する。今、SMA (1
1が常温(例えば20℃)中にあるとすると、比較器−
,ワンショットマルチ(7)が働いて信号(TD)を発
生し制御器(61けSMA (11か45℃に々るよう
保持する。ここで、外部指令で温度(up)の信−号が
入ると、ゲート(至)は信号(To)がOF”?である
ので、信号(Tm)を送出する。制御器(5)け信号(
TI)により電流を増加しBMA +11を変形温度以
上に加熱し変形させる。
(TB), drives the one-shot multis (To) and (To), and sends the (To) and (TD) signals to the controller (5).
1, the current is limited to keep it at 55°C when it is over 55°C, and the current is increased to keep it at 55°C when it is below 45°C.
The controller is used to maintain the temperature. Now, SMA (1
1 is at room temperature (e.g. 20°C), the comparator -
, the one-shot multi (7) operates to generate a signal (TD), and the controller (61-digit SMA) maintains the temperature at 11 or 45°C. When entering, the gate (To) sends out the signal (Tm) because the signal (To) is OF"?.The controller (5) sends out the signal (To).
TI), the current is increased to heat BMA +11 above the deformation temperature and deform it.

BMA (IIの温度が上限設定器(1)の設定値55
℃以上になると、比較器(財)、ワンショットマルチ(
ハ)が動作し、信号(TO)を発生し、ゲート(至)を
OFF l、て信号(Tl!:)を停止すると共に、制
御器(6)は信号(TCりによりBMA [11を55
℃に保持するよう制御する。このようにして、IIII
MA +11を変形させると共にSMA fi+をその
変形温度(50℃)の近くの55℃に保持させる。
BMA (II temperature is upper limit setter (1) set value 55
When the temperature exceeds ℃, comparator (goods), one-shot multi (
c) operates, generates a signal (TO), turns off the gate (TO), and stops the signal (Tl!:), and the controller (6) turns on the BMA [11 to 55] by the signal (TC).
Controlled to maintain temperature at ℃. In this way, III
MA +11 is deformed and SMA fi+ is held at 55°C near its deformation temperature (50°C).

次に外部指令で温度(down)の信号が入ると、ゲー
ト(支)を通して信号(TF)を送出し、制御器(6)
けSMA [11に流れる電流を制限またけOFF L
 SMA (11の温度を低下させ、BMA [11が
その変形温度50℃以下になると、変形して元の形に戻
り、さらに45′C以下になると、上限側と反対に比較
器(至)、ワンショットマ化チ(2)が動作してSMA
 (11の温度を45℃に保持する。この動作を第5図
のタイムチャートに示す。外部指令(up)信号が入る
と加熱電流ば)が流れ、温度が(101)のように上昇
し、変形温度50℃に達すると、SMA (IIけ(2
01)で変形しく202)に達する。温度が55℃に達
すると加熱電流は(ロ)にコントロールされ、(102
)の所で一定になる。次に(aown)信号が入ると加
熱電流は(/つのように減少し、温度は(I3)のよう
に変形温度以下となり、BMA +11 #:t(20
3)で変形する。温度が45℃に達すると(1D4)の
ように一定に保つよう電流がに)の如くコントロールさ
れる。このように、外部からの(up) (aown)
の変形信号によってSMA il+の変形制御が行わh
ると共に、変形温度50℃付近の55℃またd45’c
で保持されているので、変形動作時間を短かぐすること
ができる。即ち、変形指令を受けてから変形までの時間
を短縮することができるので、ロボットの動作、工作機
械の制御、その他8MAの動作を利用するものに対し応
答速度を早くするという特徴を持たせることができる。
Next, when a temperature (down) signal is input by an external command, a signal (TF) is sent through the gate (support) and the controller (6)
keSMA [Limit the current flowing to 11 and OFF L
When the temperature of SMA (11) is lowered, and BMA [11 becomes its deformation temperature below 50°C, it deforms and returns to its original shape, and when it becomes below 45'C, the comparator (to), opposite to the upper limit side, One-shot machining chip (2) works and SMA
(The temperature of No. 11 is maintained at 45°C. This operation is shown in the time chart of Fig. 5. When the external command (up) signal is input, the heating current ) flows, and the temperature rises as shown in (101). When the deformation temperature reaches 50℃, SMA (II
01) and reaches 202). When the temperature reaches 55℃, the heating current is controlled to (b) and becomes (102
) becomes constant. Next, when the (aown) signal is input, the heating current decreases as (/), the temperature becomes below the deformation temperature as (I3), and BMA +11 #:t(20
3) Transform. When the temperature reaches 45°C, the current is controlled as in ) to keep it constant as in (1D4). In this way, from the outside (up) (aown)
The deformation signal of SMA il+ is controlled by the deformation signal of h.
At the same time, the deformation temperature is 55℃ or d45'c near 50℃.
Since it is held in place, the deformation operation time can be shortened. In other words, it is possible to shorten the time from receiving a deformation command to deformation, so it has the characteristic of increasing the response speed for robot movement, machine tool control, and other things that utilize 8MA movement. Can be done.

。 第4図のワンショットマルチを省いてアナロク値信号(
TA) (TB)を直接制御器(61に入力し比例制御
等のアナログ制御できめ細かい制御をするようにしても
よい。また、全体をディジタル化してディジタル制御し
たり、マイコンにより制御しても°  よい。
. The one-shot multi in Figure 4 is omitted and the analog value signal (
TA) (TB) may be input directly to the controller (61) for detailed control using analog control such as proportional control.Also, the entire system may be digitized and controlled digitally, or controlled by a microcomputer. good.

上記の例では、SMAに直接電流を流して加熱したが1
間接的に加熱してもよい。また、変形温度が常温以下の
場合け、加熱でなく冷却することによって、′上記実抱
例と同様に実現することができる。また、加熱手段と冷
却手段との両者を用いることにより変形応答を史に早く
することができる。
In the above example, a current is passed directly to the SMA to heat it, but 1
Indirect heating may also be used. Furthermore, if the deformation temperature is below normal temperature, the same effect as in the above-mentioned example can be achieved by cooling instead of heating. Further, by using both the heating means and the cooling means, the deformation response can be made faster than ever before.

第6閃は第3の発明に関する一実施例で、上記の温度セ
ンサの替りにSMAの変形を検出することにより実現し
たもので、例えばSMA (11に歪ゲージ(ホ)を取
りつけてその変形歪を検出して制御器(5)で電流制御
を行うようにしたもので、その動作は第1因と同様であ
る。歪ゲージの外、光による変形の検出、BMAまたけ
BMAで動かされる物体にマグふットを取りつけBMA
の変形によって、このマグネットの潰近による磁気セン
サ等によって検出してもよい。この場合、温度センサを
用いるよりもBMAの動作そのものを検出するので、温
度の外的変化などに左右されないという長所がある。
The sixth example is an embodiment related to the third invention, which was realized by detecting the deformation of the SMA instead of the above-mentioned temperature sensor. is detected and the current is controlled by the controller (5), and its operation is the same as the first factor.In addition to strain gauges, detection of deformation due to light, and objects moved by the BMA that straddle the BMA. Attach the mag foot to the BMA
The deformation of the magnet may be detected by a magnetic sensor or the like based on the crushing of the magnet. In this case, since the operation of the BMA itself is detected rather than using a temperature sensor, there is an advantage that it is not affected by external changes in temperature.

第フ図HgFI4の発明の一実施例を示す図で、BMA
の温度検出と変形状態の検出と両者を合わせて制御器(
6)で制御するもので、例えば温度センサ(31と歪ゲ
ージ(ホ)とを二重系にして信頼性を向上させることが
でき、特にロボットや工作機械の制御などで信頼性・安
全性の向上に寄与することができる。
Fig. F is a diagram showing an embodiment of the invention of HgFI4,
The controller (
6), for example, the temperature sensor (31) and the strain gauge (e) can be used as a dual system to improve reliability, especially in controlling robots and machine tools. can contribute to improvement.

また、第3図、第4図の変形例として、温度センサによ
り温度の上限および下限のりミツターとしての制御を、
歪ゲージ(7)で外部指令に基づくゲート(1)、@の
インヒビット信号に利用することにより、変形制御の応
答を滑らかにすることができる。
In addition, as a modification of FIGS. 3 and 4, the temperature sensor controls the upper and lower limits of the temperature.
By using the strain gauge (7) as an inhibit signal for the gate (1) and @ based on an external command, the response of the deformation control can be made smooth.

これは、SMAが変形すると、すぐゲート(ホ)ま7S
:け(財)にインヒビット信号が加わり余分に加熱・冷
却することがなく、従ってオーバーシュートの防止が容
易で系の安定に寄与する。
This means that when the SMA deforms, the gate (ho) and 7S
: An inhibit signal is added to the system, so there is no extra heating or cooling, and therefore overshoot can be easily prevented and contributes to system stability.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によhば、SMAの温度を検出
してこの温度に応じてSMAを強制的に変形させるよう
にしたので、SMAの利用範囲を拡大することができる
。また、第2の発明では外部からの変形指令信号を加え
て指令に対するSMAの変形応答を早くすることができ
る。第3の発明では、EiMAの変形状態を検出してこ
の信号に応じてBMAを強制変形さ”せBMAの利用範
囲を拡大することができ、第4の発明でけSMAの温度
と形状変化を検出することにより、信頼性向上や応答系
の安定に寄与する効果がある。
As described above, according to the present invention, the temperature of the SMA is detected and the SMA is forcibly deformed in accordance with this temperature, so that the range of use of the SMA can be expanded. Further, in the second aspect of the invention, by adding a deformation command signal from the outside, it is possible to speed up the deformation response of the SMA to the command. In the third invention, the deformation state of the EiMA is detected and the BMA is forcibly deformed in accordance with this signal, thereby expanding the range of use of the BMA. Detection has the effect of contributing to improved reliability and stability of the response system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による形状変形装置の回路
図、第2図、第3図、第6図、第7図はこの発明の他の
実施例による形状変形装置の回路図、第4図は第3図の
要部の具体例を示す回路図、第5図は第3図、4IP!
14図の実施例の動作のタイムチャートを示す。 なお、図中、同一符号は同一、又は相当部分?示す。
FIG. 1 is a circuit diagram of a shape deforming device according to one embodiment of the present invention, and FIGS. 2, 3, 6, and 7 are circuit diagrams of a shape deforming device according to other embodiments of the present invention. Figure 4 is a circuit diagram showing a specific example of the main part of Figure 3, and Figure 5 is a circuit diagram of Figure 3, 4IP!
14 shows a time chart of the operation of the embodiment shown in FIG. In addition, are the same symbols in the figures the same or equivalent parts? show.

Claims (11)

【特許請求の範囲】[Claims] (1)所定の温度で変形する形状記憶合金、この形状記
憶合金の加熱および冷却の少なくとも一方を行う加冷熱
手段、上記形状記憶合金の温度を検出する手段、この温
度検出手段の検出信号に応じて上記加冷熱手段を制御し
上記形状記憶合金の温度を調節する温度制御手段を備え
た形状変形装置。
(1) A shape memory alloy that deforms at a predetermined temperature, a heating means for heating and/or cooling the shape memory alloy, a means for detecting the temperature of the shape memory alloy, and a means for detecting the temperature of the shape memory alloy in response to a detection signal from the temperature detection means. A shape deforming device comprising temperature control means for controlling the heating means to adjust the temperature of the shape memory alloy.
(2)加冷熱手段は形状記憶合金に電流を流して加熱す
るようにした手段であることを特徴とする特許請求の範
囲第1項記載の形状変形装置。
(2) The shape-deforming device according to claim 1, wherein the heating means is a means for heating the shape-memory alloy by passing an electric current through it.
(3)加冷熱手段は形状記憶合金に温風および冷風の少
なくとも一方を送風する手段であることを特徴とする特
許請求の範囲第1項記載の形状変形装置。
(3) The shape deforming device according to claim 1, wherein the heating means is means for blowing at least one of hot air and cold air onto the shape memory alloy.
(4)温度制御手段は温度検出手段からの信号が形状記
憶合金の変形温度より低い信号であると加冷熱手段を通
して上記形状記憶合金の温度を上昇させ、上記温度検出
器からの信号が上記形状記憶合金の変形温度より高い信
号であると上記加冷熱手段を通して上記形状記憶合金の
温度を低下させ、上記形状記憶合金の形状変化を繰り返
すようにしたものであることを特徴とした特許請求の範
囲第1項ないし第3項に記載の形状変形装置。
(4) When the signal from the temperature detection means is lower than the deformation temperature of the shape memory alloy, the temperature control means increases the temperature of the shape memory alloy through the heating means, and the signal from the temperature detector increases the temperature of the shape memory alloy when the signal from the temperature detection means is lower than the deformation temperature of the shape memory alloy. Claims characterized in that if the signal is higher than the deformation temperature of the memory alloy, the temperature of the shape memory alloy is lowered through the heating means, and the shape of the shape memory alloy is repeatedly changed. The shape deforming device according to any one of items 1 to 3.
(5)所定の温度で変形する形状記憶合金、この形状記
憶合金の加熱および冷却の少なくともいずれか一方を行
う加冷熱手段、上記形状記憶合金の温度を検出する手段
、この温度検出手段の信号に応じて上記加冷熱手段を制
御する第1の温度制御手段、上記加冷熱手段を外部指令
によって制御する第2の温度制御手段を備えた形状変形
装置。
(5) A shape memory alloy that deforms at a predetermined temperature, a heating means for heating and/or cooling the shape memory alloy, a means for detecting the temperature of the shape memory alloy, and a signal from the temperature detection means. A shape deforming device comprising: a first temperature control means for controlling the heating/cooling means in accordance with the heating/cooling means; and a second temperature controlling means for controlling the heating/cooling means according to an external command.
(6)第2の温度制御手段は外部指令によって上記加冷
熱手段を通して上記形状記憶合金の温度がその変形温度
より低いとその温度を上昇させ、その変形温度より高い
とその温度を低下させて上記形状記憶合金を変形する制
御手段であると共に、第1の温度制御手段は温度検出手
段からの信号が上記形状記憶合金の変形温度より低い信
号になると、この変形温度より低く、かつこの変形温度
近傍の温度に上記形状記憶合金の温度を保持するよう上
記加冷熱手段を制御し、温度検出手段からの信号が上記
形状記憶合金の変形温度より高い信号になると、この変
形温度より高く、かつこの変形温度近傍の温度に上記形
状記憶合金の温度を保持するよう上記加冷熱手段を制御
する手段であることを特徴とする特許請求の範囲第5項
記載の形状変形装置。
(6) The second temperature control means increases the temperature of the shape memory alloy through the cooling heating means when the temperature is lower than the deformation temperature according to an external command, and lowers the temperature when the temperature is higher than the deformation temperature. The first temperature control means is a control means for deforming the shape memory alloy, and when the signal from the temperature detection means becomes a signal lower than the deformation temperature of the shape memory alloy, the first temperature control means is controlled to be lower than the deformation temperature and close to the deformation temperature. The heating means is controlled to maintain the temperature of the shape memory alloy at a temperature of , and when the signal from the temperature detection means becomes a signal higher than the deformation temperature of the shape memory alloy, 6. The shape deforming device according to claim 5, further comprising means for controlling said heating means to maintain the temperature of said shape memory alloy at a temperature close to that temperature.
(7)所定の温度で変形する形状記憶合金、この形状記
憶合金の加熱および冷却の少なくともいずれか一方を行
う加冷熱手段、上記形状記憶合金の変形状態を検出する
変形検出手段、この変形検出手段の検出信号に応じて上
記加冷熱手段を制御する温度制御手段を備えた形状変形
装置。
(7) A shape memory alloy that deforms at a predetermined temperature, a heating/heating means for heating and/or cooling the shape memory alloy, a deformation detection means for detecting the deformation state of the shape memory alloy, and the deformation detection means A shape deforming device comprising temperature control means for controlling the heating and cooling means in accordance with a detection signal.
(8)変形検出手段は光センサーで検出する手段とした
ことを特徴とする特許請求の範囲第8項記載の形状変形
装置。
(8) The shape deforming device according to claim 8, wherein the deformation detecting means is a means for detecting by an optical sensor.
(9)変形検出手段は形状記憶合金および形状記憶合金
の変形で作動する部材の少なくとも一方に取付けられた
歪ゲージを用いたことを特徴とする特許請求の範囲第7
項記載の形状変形装置。
(9) Claim 7, characterized in that the deformation detection means uses a strain gauge attached to at least one of a shape memory alloy and a member operated by deformation of the shape memory alloy.
Shape deformation device as described in section.
(10)温度制御手段は、変形検出手段からの信号が形
状記憶合金の形状がその変形温度より低い場合の形状状
態を示す信号であると加冷熱手段を通して上記形状記憶
合金の温度を上昇させ、上記変形検出手段からの信号が
形状記憶合金の形状がその変形温度より高い場合の形状
状態を示す信号であると、上記加冷熱手段を通して上記
形状記憶合金の温度を低下させ、上記形状記憶合金の形
状変化を繰り返す手段としたものであることを特徴とし
た特許請求の範囲第7項ないし第9項に記載の形状変形
装置。
(10) The temperature control means increases the temperature of the shape memory alloy through the heating means when the signal from the deformation detection means is a signal indicating a shape state when the shape of the shape memory alloy is lower than its deformation temperature; If the signal from the deformation detection means is a signal indicating the shape state when the shape of the shape memory alloy is higher than its deformation temperature, the temperature of the shape memory alloy is lowered through the heating means, and the shape memory alloy is 10. A shape-deforming device according to claim 7, characterized in that the shape-deforming device is a means for repeating shape changes.
(11)所定の温度で変形する形状記憶合金、この形状
記憶合金の加熱および冷却の少なくともいずれか一方を
行う加冷熱手段、上記形状記憶合金の温度を検出する温
度検出手段、上記形状記憶合金の変形状態を検出する変
形検出手段、上記温度検出手段と上記変形検出手段との
検出信号に応じて上記加冷熱手段を制御する温度制御手
段を備えた形状変形装置。
(11) a shape memory alloy that deforms at a predetermined temperature; a heating/heating means for heating and/or cooling the shape memory alloy; a temperature detection means for detecting the temperature of the shape memory alloy; A shape deforming device comprising: a deformation detecting means for detecting a deformed state; and a temperature controlling means for controlling the heating and cooling means according to detection signals from the temperature detecting means and the deformation detecting means.
JP10981685A 1985-05-21 1985-05-21 Shape deforming device Pending JPS61269684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10981685A JPS61269684A (en) 1985-05-21 1985-05-21 Shape deforming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10981685A JPS61269684A (en) 1985-05-21 1985-05-21 Shape deforming device

Publications (1)

Publication Number Publication Date
JPS61269684A true JPS61269684A (en) 1986-11-29

Family

ID=14519934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10981685A Pending JPS61269684A (en) 1985-05-21 1985-05-21 Shape deforming device

Country Status (1)

Country Link
JP (1) JPS61269684A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264795A (en) * 1988-04-13 1989-10-23 Olympus Optical Co Ltd Shape memory actuator
JPH01174578U (en) * 1988-05-30 1989-12-12
JP2019105171A (en) * 2017-12-08 2019-06-27 国立大学法人北海道大学 Method for driving shape memory alloy actuator, shape memory alloy actuator and equipment using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176476A (en) * 1983-03-14 1984-10-05 レイケム・コーポレイション Shape memory effect actuator
JPS59176475A (en) * 1983-03-24 1984-10-05 Sharp Corp Driving device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176476A (en) * 1983-03-14 1984-10-05 レイケム・コーポレイション Shape memory effect actuator
JPS59176475A (en) * 1983-03-24 1984-10-05 Sharp Corp Driving device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264795A (en) * 1988-04-13 1989-10-23 Olympus Optical Co Ltd Shape memory actuator
JPH01174578U (en) * 1988-05-30 1989-12-12
JP2019105171A (en) * 2017-12-08 2019-06-27 国立大学法人北海道大学 Method for driving shape memory alloy actuator, shape memory alloy actuator and equipment using the same

Similar Documents

Publication Publication Date Title
Bellouard et al. Local annealing of complex mechanical devices: a new approach for developing monolithic micro-devices
Moallem et al. Tracking control of an antagonistic shape memory alloy actuator pair
US7188473B1 (en) Shape memory alloy actuator system using segmented binary control
Teh et al. An architecture for fast and accurate control of shape memory alloy actuators
US6633095B1 (en) Motion device using shape memory material and method therefor
Grant et al. Design of shape memory alloy actuator with high strain and variable structure control
JP2672110B2 (en) Shape memory actuator
Lange et al. Shape memory alloys as linear drives in robot hand actuation
US4531988A (en) Thermally actuated devices
WO2008050354A2 (en) A nanopositioner and method to nano position an object thereof
JPS61269684A (en) Shape deforming device
Kumagai et al. Neurofuzzy-model-based feedback controller for shape memory alloy actuators
Luong et al. Modeling and position control of a high performance twisted-coiled polymer actuator
Elahinia Effect of system dynamics on shape memory alloy behavior and control
Elahinia et al. A temperature-based controller for a shape memory alloy actuator
JPH0461596B2 (en)
AbuZaiter et al. Miniature parallel manipulator using TiNiCu shape-memory-alloy microactuators
Hodgson Using shape memory for proportional control
JPS59162375A (en) Heat sensitive actuator
JPH08165984A (en) Actuator moving device
JPS5862445A (en) Louver device
JPS60166766A (en) Heat-sensitive actuator
JPS60219478A (en) Small-sized lightweight actuator
JPS61199477A (en) Shape deforming circuit and shape deforming member
JPS61197770A (en) Shape deformation member