JPH01264795A - Shape memory actuator - Google Patents

Shape memory actuator

Info

Publication number
JPH01264795A
JPH01264795A JP63091091A JP9109188A JPH01264795A JP H01264795 A JPH01264795 A JP H01264795A JP 63091091 A JP63091091 A JP 63091091A JP 9109188 A JP9109188 A JP 9109188A JP H01264795 A JPH01264795 A JP H01264795A
Authority
JP
Japan
Prior art keywords
actuator
temperature
energization
current
shape memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63091091A
Other languages
Japanese (ja)
Other versions
JP2702960B2 (en
Inventor
Sakae Takehata
榮 竹端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP63091091A priority Critical patent/JP2702960B2/en
Priority to US07/193,294 priority patent/US4884557A/en
Publication of JPH01264795A publication Critical patent/JPH01264795A/en
Application granted granted Critical
Publication of JP2702960B2 publication Critical patent/JP2702960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0058Flexible endoscopes using shape-memory elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements
    • A61B1/128Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements provided with means for regulating temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • A61F2210/0023Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at different temperatures whilst inside or touching the human body, heated or cooled by external energy source or cold supply
    • A61F2210/0033Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at different temperatures whilst inside or touching the human body, heated or cooled by external energy source or cold supply electrically, e.g. heated by resistor

Abstract

PURPOSE:To prevent a shape memory alloy from losing the stored shape or deteriorating the shape recovery characteristic by providing a means to prevent the overheating of the shape memory alloy. CONSTITUTION:When a load is increased and the temperature T of an actuator 1 exceeds the upper limit T1 of the normal operating range, an excitation cutoff section 10 is deformed, the excitation cutoff section 1c is connected to a terminal 2. Both ends of the actuator 1 is short-circuited, the excitation is interrupted, the overheating of the actuator 1 made of a shape memory alloy is prevented. When the temperature T of this actuator 1 is returned to T1 or below, the excitation cutoff section 1c is separated from the terminal 2, the excitation is restarted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は形状記憶合金(shape 1elor7 
errectalloy :以下SMAと称する)の温
度変化による変形動作を利用して負荷を駆動する形状記
憶アクチュエータに関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to shape memory alloys (shape 1elor7).
The present invention relates to a shape memory actuator that drives a load by utilizing the deformation action of an errectalloy (hereinafter referred to as SMA) caused by temperature changes.

〔従来の技術〕[Conventional technology]

従来の一般的な過加熱防止回路が特開昭62−1608
04号公報に記載されている。この概要を第13図に示
す。温度センサとしてのサーミスタ15が発熱体として
のトランジスタ13に密着して取付けられている。サー
ミスタ15の検出信号が温度判定回路16に供給され、
検出温度がトランジスタ13の正常な動作範囲にあるか
どうか判定される。温度がこの動作範囲外にある場合は
、異常検出信号が通電制御回路11に供給され、通電回
路12による通電を遮断させる等の制御が行なわれる。
The conventional general overheating prevention circuit was published in Japanese Patent Application Laid-Open No. 1608-1983.
It is described in Publication No. 04. An overview of this is shown in FIG. A thermistor 15 as a temperature sensor is attached in close contact with a transistor 13 as a heating element. The detection signal of the thermistor 15 is supplied to the temperature determination circuit 16,
It is determined whether the detected temperature is within the normal operating range of transistor 13. If the temperature is outside this operating range, an abnormality detection signal is supplied to the energization control circuit 11, and control such as cutting off the energization by the energization circuit 12 is performed.

また、発熱体に流れる電流を検出する電流検出回路と、
発熱体に印加される電圧を検出する電圧検出回路と、検
出された電流と電圧とから電力を求め、これらから温度
を求め、温度判定回路により動作を制御し発熱体への駆
動信号を遮断する従来例も考案されている。
In addition, a current detection circuit that detects the current flowing through the heating element,
A voltage detection circuit detects the voltage applied to the heating element, the electric power is determined from the detected current and voltage, the temperature is determined from these, the operation is controlled by the temperature judgment circuit, and the drive signal to the heating element is cut off. Conventional examples have also been devised.

また、本願出願人による特願昭61− 276089号はSMAの抵抗値を検出してこれを湾曲
量に換算し、湾曲量の制御を行なっている。
Further, Japanese Patent Application No. 61-276089 filed by the applicant of the present application detects the resistance value of the SMA and converts it into the amount of curvature to control the amount of curvature.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述の特願昭61− 276089号ではSMAの過加熱については同等考慮
されていなかった。一般に、SMAは過加熱されると記
憶した形状回復動作が劣化するおそれがあり、過加熱が
さらにすすむと記憶した形状が失われるとともに、アク
チュエータを構成する他の部品に損傷を与えることがあ
る。
However, the above-mentioned Japanese Patent Application No. 61-276089 did not give equivalent consideration to overheating of SMA. In general, when an SMA is overheated, its memorized shape recovery operation may deteriorate, and further overheating may cause the memorized shape to be lost and damage to other components of the actuator.

この発明は上述した事情に対処すべくなされたもので、
その目的はSMAを用いる形状記憶アクチュエータにお
いて、SMAの温度が正常な動作範囲より高くなった場
合、SMAの加熱を中断し、SMAの過加熱による性能
劣化、あるいは破損を防止することである。
This invention was made to deal with the above-mentioned circumstances,
The purpose of this is to interrupt heating of the SMA in a shape memory actuator using SMA when the temperature of the SMA becomes higher than the normal operating range, thereby preventing performance deterioration or damage due to overheating of the SMA.

〔課題を解決するための手段〕[Means to solve the problem]

この発明による形状記憶アクチュエータはSMAの温度
を検出する手段と、検出温度が正常な動作範囲内かどう
か判定する手段と、検出温度が正常な動作範囲より高く
なった場合SMAの加熱を中断する手段を具備する。
The shape memory actuator according to the present invention includes means for detecting the temperature of the SMA, means for determining whether the detected temperature is within the normal operating range, and means for interrupting heating of the SMA when the detected temperature becomes higher than the normal operating range. Equipped with.

〔作用〕[Effect]

この発明によれば、SMAが過加熱状態になると、加熱
が中断されるので、SMAの記憶形状を喪失したり、形
状回復特性を劣化するのを防止できる。
According to this invention, when the SMA becomes overheated, heating is interrupted, so that it is possible to prevent the SMA from losing its memorized shape or from deteriorating its shape recovery characteristics.

〔実施例〕〔Example〕

以下図面を参照してこの発明による形状記憶アクチュエ
ータの一実施例を説明する。第1図は第1実施例のブロ
ック図である。同図(a)。
An embodiment of the shape memory actuator according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of the first embodiment. Same figure (a).

(b)、(c)は温度TがT<To、To≦T≦71、
TI<Tの場合の図である。温度To。
In (b) and (c), the temperature T is T<To, To≦T≦71,
It is a figure in the case of TI<T. Temperature To.

T1はアクチュエータを構成するSMAが正常に動作す
る温度範囲の下限、上限温度である。第2図(a)、(
b)、(c)は第1図(a)。
T1 is the lower and upper limits of the temperature range in which the SMA constituting the actuator normally operates. Figure 2 (a), (
b) and (c) are Fig. 1(a).

(b)、(c)の等価回路図である。Ro、R1゜R2
はアクチュエータ1の抵抗値、「は通電線3の抵抗値で
ある。
It is an equivalent circuit diagram of (b) and (c). Ro, R1゜R2
is the resistance value of the actuator 1, and ``is the resistance value of the current-carrying wire 3.

SMAからなるアクチュエータ1は、通電加熱により記
憶形状に変形し図示せぬ負荷を駆動する変位部1as端
子2に対するアクチュエータ1全体の相対位置関係を固
定する固定部1b、アクチュエータ1の過加熱防止のた
めに通電を遮断する通電遮断部1cからなる。ここで、
固定部1bは図示せぬハウジング等に固定されている。
The actuator 1 made of SMA has a displacement part 1as which is deformed into a memorized shape by electrical heating and drives a load (not shown), a fixed part 1b which fixes the relative positional relationship of the entire actuator 1 to a terminal 2, and a fixed part 1b to prevent overheating of the actuator 1. It consists of an energization cutoff section 1c that cuts off energization. here,
The fixed portion 1b is fixed to a housing (not shown) or the like.

変位部1aと通電遮断部ICは異なる温度処理が施され
ていて、それぞれの形状回復温度は異なっている。
The displacement part 1a and the current cutoff part IC are subjected to different temperature treatments, and their shape recovery temperatures are different.

第3図は温度とSMAの変位の関係を示す図であり、変
位部1aは実線で示す特性、通電遮断部ICは破線で示
す特性を有する。温度範囲To〜T1が正常動作範囲で
あり、T1より高い温度範囲が過加熱範囲である。変位
部1aは温度Toを越えると変形を開始し、温度T1に
なると記憶した形状に回復する。通電遮断部1cは温度
TIを越えると変形を開始する。
FIG. 3 is a diagram showing the relationship between temperature and displacement of the SMA, in which the displacement portion 1a has the characteristics shown by the solid line, and the current cutoff portion IC has the characteristics shown by the broken line. The temperature range To to T1 is the normal operating range, and the temperature range higher than T1 is the overheating range. The displaced portion 1a starts to deform when the temperature exceeds To, and recovers to the memorized shape when the temperature reaches T1. The current cutoff portion 1c starts deforming when the temperature exceeds TI.

アクチュエータ1の両端は通電線3を介して通電回路4
に接続されるとともに、抵抗値検出用の電線3aを介し
て抵抗値検出部5に接続される。
Both ends of the actuator 1 are connected to a current-carrying circuit 4 via a current-carrying wire 3.
It is also connected to the resistance value detection section 5 via the electric wire 3a for resistance value detection.

アクチュエータ1の先端(変位部1aの先端)と通電回
路4との間の通電線3の途中には端子2が接続される。
A terminal 2 is connected to the middle of the current-carrying wire 3 between the tip of the actuator 1 (the top of the displacement portion 1 a) and the current-carrying circuit 4 .

端子2もハウジング等に固定されている。The terminal 2 is also fixed to the housing or the like.

抵抗値検出部5の検出信号が通電制御部6に入力され、
通電制御部6の出力が通電回路4を制御する。通電回路
4は通電線3を介してアクチュエータ1をジュール熱に
より加熱する。
The detection signal of the resistance value detection section 5 is input to the energization control section 6,
The output of the energization control section 6 controls the energization circuit 4. The energizing circuit 4 heats the actuator 1 via the energizing wire 3 using Joule heat.

第1実施例の動作を説明する。The operation of the first embodiment will be explained.

アクチュエータ1が通電回路4により通電されると、ジ
ュール熱により加熱される。温度が10以上になると、
第1図(b)に示すように、変位部1aが変形動作を開
始し、負荷を駆動する。温度がTo−Tlの正常動作範
囲にある時は、変位部1aは通電回路4による通電量に
応じた変位を得ることができる。そのため、アクチュエ
ータ1の駆動量は通電量により制御できる。
When the actuator 1 is energized by the energizing circuit 4, it is heated by Joule heat. When the temperature reaches 10 or more,
As shown in FIG. 1(b), the displacement portion 1a starts deforming and drives the load. When the temperature is within the normal operating range of To-Tl, the displacement portion 1a can obtain a displacement corresponding to the amount of current supplied by the current supply circuit 4. Therefore, the amount of drive of the actuator 1 can be controlled by the amount of energization.

ここで、通電線3はアクチュエータ1と同様に通電加熱
されるので、温度により抵抗値が変化する。しかし、電
線3aは通電されないので、抵抗値が変化しない。この
実施例では、抵抗値検出部5は電線3aを介してアクチ
ュエータ1の抵抗値を検出するので、温度による通電線
3の抵抗変化と無関係にアクチュエータ1の抵抗値を正
確に検出することができる。SMAは温度により抵抗値
が変化するので、抵抗値検出部5は検出した抵抗値から
変位部1aの変位量を求め、所望の変位量が得られるよ
うに通電制御部6を介して通電量を制御する。通電回路
4はアクチュエータ1へ一定周期でパルス的に通電し、
通電パルスのデユーティ比を変化することにより通電量
を制御する。
Here, since the current-carrying wire 3 is heated by electricity in the same way as the actuator 1, the resistance value changes depending on the temperature. However, since the electric wire 3a is not energized, its resistance value does not change. In this embodiment, the resistance value detection unit 5 detects the resistance value of the actuator 1 via the electric wire 3a, so that the resistance value of the actuator 1 can be accurately detected regardless of the resistance change of the current-carrying wire 3 due to temperature. . Since the resistance value of the SMA changes depending on the temperature, the resistance value detection section 5 calculates the amount of displacement of the displacement section 1a from the detected resistance value, and controls the amount of energization via the energization control section 6 so that the desired amount of displacement is obtained. Control. The energizing circuit 4 energizes the actuator 1 in a pulsed manner at a constant cycle,
The amount of energization is controlled by changing the duty ratio of the energization pulse.

ところが、負荷が大きい場合等には、所望の変位量を得
ようとすると、通電量が通常よりも多くなる。すると、
アクチュエータ1の温度Tが正常動作範囲の上限T1を
越えて過加熱範囲(T1くT)になってしまう。さらに
、通電を続けると、アクチュエータ1の形状記憶が劣化
、または喪失するとともに、周囲の部品にも影響を与え
る。
However, when the load is large and the desired amount of displacement is attempted, the amount of energization becomes larger than usual. Then,
The temperature T of the actuator 1 exceeds the upper limit T1 of the normal operating range and enters the overheating range (T1 - T). Furthermore, if the current is continued, the shape memory of the actuator 1 will deteriorate or be lost, and surrounding components will also be affected.

しかしながら、この実施例では温度がT1を越えると、
通電遮断部ICが第1図(C)に示すように変形し、通
電遮断部ICと端子2が接触する。
However, in this example, when the temperature exceeds T1,
The current-carrying interrupter IC is deformed as shown in FIG. 1(C), and the current-carrying interrupter IC and the terminal 2 come into contact.

このため、第2図(C)に示すように、アクチュエータ
1の両端が短絡され、通電が中断される。
Therefore, as shown in FIG. 2(C), both ends of the actuator 1 are short-circuited, and the current supply is interrupted.

よって、アクチュエータ1の温度が下がり過加熱が防止
される。温度がT1以下にもどると、通電遮断部ICが
端子2から離れ、通電が再開される。
Therefore, the temperature of the actuator 1 is lowered and overheating is prevented. When the temperature returns to below T1, the energization interrupter IC separates from the terminal 2, and energization is resumed.

第2実施例を説明する。第2実施例はアクチュエータの
特性が第1実施例と異なるのみであり、ブロック図は第
1実施例のそれと同一である。
A second embodiment will be explained. The second embodiment differs from the first embodiment only in the characteristics of the actuator, and the block diagram is the same as that of the first embodiment.

第4図は第2実施例のアクチュエータの特性を示す図で
あり、実線で示す変位部1aの特性は第1実施例と同一
であるが、通電遮断部1cは破線で示すように大きなヒ
ステリシス特性を有するように熱処理されていることが
特徴である。通電遮断部1cの形状回復動作を開始する
温度は第1実施例と同様にT1であるが、変位が元に戻
る温度はT1より低い温度TI’である。
FIG. 4 is a diagram showing the characteristics of the actuator of the second embodiment. The characteristics of the displacement section 1a shown by the solid line are the same as those of the first embodiment, but the current cutoff section 1c has a large hysteresis characteristic as shown by the broken line. It is characterized by being heat-treated to have the following properties. The temperature at which the current-carrying cutoff portion 1c starts its shape recovery operation is T1 as in the first embodiment, but the temperature at which the displacement returns to its original state is a temperature TI' lower than T1.

第2実施例によれば、第1実施例と同様に温度がT1を
越えると、通電遮断部1cが変形し、端子2と接触し通
電が中断される。その後、温度が十分低下し、正常動作
範囲内のTl’以下になるまで通電の中断が続けられる
。第1実施例では、温度がT1以上になると通電が中断
されるが、温度がT1以下に低下すると直に通電が再開
されるので、温度がTl付近で増減を繰返すことがある
According to the second embodiment, as in the first embodiment, when the temperature exceeds T1, the energization cutoff portion 1c deforms and contacts the terminal 2, thereby interrupting energization. Thereafter, the interruption of energization is continued until the temperature is sufficiently lowered and becomes below Tl', which is within the normal operating range. In the first embodiment, the energization is interrupted when the temperature exceeds T1, but the energization is restarted immediately when the temperature falls below T1, so the temperature may repeatedly increase and decrease near T1.

しかしながら、第2実施例では通電遮断部1cのヒステ
リシスが大きいので、−度通電が中断されると、通電中
断の温度よりも低い温度まで下がらない限り通電が再開
されないので、アクチュエータの温度を十分に下げるこ
とができる。
However, in the second embodiment, the hysteresis of the energization interrupting part 1c is large, so that when the energization is interrupted by -degrees, the energization will not be restarted unless the temperature drops to a temperature lower than the temperature at which the energization was interrupted. Can be lowered.

第5図は第3実施例のブロック図である。同図(a)、
(b)、(c)はそれぞれ温度TがTくTo、To≦T
≦TI、TI<Tの場合の図である。第1実施例では変
位部1aと通電遮断部ICとは別々の温度処理が施され
ていたが、第3実施例では同一の温度処理が施された同
一特性のSMAから構成されている。ここでは、温度が
T1以上になった時に通電遮断部ICが端子2と接触す
るように、通電遮断部ICと端子2との間隔pが決めら
れている。
FIG. 5 is a block diagram of the third embodiment. Figure (a),
In (b) and (c), the temperature T is T<To, To≦T, respectively.
It is a figure in the case of ≦TI and TI<T. In the first embodiment, the displacement part 1a and the current cutoff part IC were subjected to different temperature treatments, but in the third embodiment, they are constructed of SMAs having the same characteristics and subjected to the same temperature treatment. Here, the distance p between the energization cutoff part IC and the terminal 2 is determined so that the energization cutoff part IC comes into contact with the terminal 2 when the temperature becomes T1 or higher.

第3実施例によれば、アクチュエータ1の製造が容易と
なる利点がある。
According to the third embodiment, there is an advantage that the actuator 1 can be manufactured easily.

第6図は第4実施例のブロック図である。アクチュエー
タ1自体の動作は第1〜第3実施例と同一であるが、ア
クチュエータ1と端子2との直列回路が通電線3を介し
て通電回路4に接続されるとともに、電線3aを介して
抵抗値検出部5に接続される。
FIG. 6 is a block diagram of the fourth embodiment. The operation of the actuator 1 itself is the same as in the first to third embodiments, but the series circuit of the actuator 1 and the terminal 2 is connected to the current-carrying circuit 4 via the current-carrying wire 3, and the resistor is connected to the current-carrying circuit 4 via the current-carrying wire 3a. It is connected to the value detection section 5.

第4実施例によれば、抵抗値検出部5はアクチュエータ
1の抵抗値と通電線3の抵抗値との和を検出する。通電
制御部6は第2図(C)に示すようにこの合成抵抗値R
が通電線3の抵抗値rと等しくなった時、温度が過加熱
範囲に入ったと判断し、通電を中断する。通電制御部6
は通電の中断を一定時間継続させる。この中断時間を任
意の時間に設定することにより、第2実施例と同様に大
きなヒステリシスのSMAを使った場合と同一な効果を
得られる。このように、第4実施例によれば、二重の過
加熱防止策が施されているので、より安全性が確保され
る。
According to the fourth embodiment, the resistance value detection section 5 detects the sum of the resistance value of the actuator 1 and the resistance value of the current-carrying wire 3. The energization control unit 6 controls this combined resistance value R as shown in FIG. 2(C).
When becomes equal to the resistance value r of the energizing wire 3, it is determined that the temperature has entered the overheating range, and the energization is interrupted. Energization control section 6
causes the interruption of energization to continue for a certain period of time. By setting this interruption time to an arbitrary time, it is possible to obtain the same effect as when using an SMA with a large hysteresis as in the second embodiment. In this way, according to the fourth embodiment, double overheating prevention measures are taken, so safety is further ensured.

第7図は第5実施例のブロック図である。アクチュエー
タ1の構成は第1実施例と同様である。
FIG. 7 is a block diagram of the fifth embodiment. The configuration of the actuator 1 is similar to that of the first embodiment.

アクチュエータ1の両端は通電線3を介して通電回路4
に接続される。端子2は通電線3中に介挿されているの
ではなく、アクチュエータ1とは別に通電線3に接続さ
れるとともに、電線3aを介して抵抗値検出部5に接続
される。
Both ends of the actuator 1 are connected to a current-carrying circuit 4 via a current-carrying wire 3.
connected to. The terminal 2 is not inserted into the current-carrying wire 3, but is connected to the current-carrying wire 3 separately from the actuator 1, and is also connected to the resistance value detection section 5 via the wire 3a.

第5実施例によれば、抵抗値検出部5は通電遮断部1c
と端子2が接触したことを検出すると温度が過加熱範囲
に入ったと判断し、通電制御部6は通電回路4による通
電を中断する。
According to the fifth embodiment, the resistance value detection section 5 is the current cutoff section 1c.
When it is detected that the terminal 2 is in contact with the terminal 2, it is determined that the temperature has entered the overheating range, and the energization control section 6 interrupts the energization by the energization circuit 4.

第8図は第6実施例のブロック図である。アクチュエー
タ1は上述の実施例とは逆に、正常温度範囲では破線で
示すように通電遮断部ICが端子2と接触している。温
度が過加熱範囲になると、実線で示すように通電遮断部
ICは端子2から離れる。
FIG. 8 is a block diagram of the sixth embodiment. Contrary to the above embodiment, in the actuator 1, the current cutoff part IC is in contact with the terminal 2 as shown by the broken line in the normal temperature range. When the temperature reaches the overheating range, the current cutoff unit IC separates from the terminal 2 as shown by the solid line.

抵抗値検出部5はこの通電遮断部ICと端子2との非接
触を検出すると温度が過加熱範囲に入ったと判断し、通
電制御部6は通電回路4による通電を中断する。
When the resistance value detection section 5 detects the non-contact between the energization cutoff section IC and the terminal 2, it determines that the temperature has entered the overheating range, and the energization control section 6 interrupts the energization by the energization circuit 4.

第9図(a)、(b)、(c)は第7実施例のブロック
図である。第7実施例は第1実施例において、変位部1
aと通電遮断部ICとを別々のSMAにより構成し、そ
のため固定部1bを不要としたものである。また、この
実施例は抵抗値検出部5、通電制御部6も不要である。
FIGS. 9(a), (b), and (c) are block diagrams of the seventh embodiment. In the seventh embodiment, in the first embodiment, the displacement part 1
A and the current cutoff part IC are constructed from separate SMAs, thereby eliminating the need for the fixed part 1b. Further, in this embodiment, the resistance value detection section 5 and the energization control section 6 are also unnecessary.

この実施例によれば、温度が過加熱範囲になると、第9
図(c)に示すように、通電遮断部1cが変形し、端子
2と接触する。これにより、アクチュエータ1の両端が
短絡され、アクチュエータ1の通電が遮断される。
According to this embodiment, when the temperature reaches the overheating range, the ninth
As shown in Figure (c), the current cutoff portion 1c is deformed and comes into contact with the terminal 2. As a result, both ends of the actuator 1 are short-circuited, and power supply to the actuator 1 is cut off.

この実施例によれば、変位部と通電遮断部に相当する1
つのSMAの両端部を異なる温度で熱処理することなく
、2つのSMAをそれぞれ異なる温度で熱処理すればよ
く、製造が容易である利点がある。また、通電回路4を
制御する必要もないので、構成が簡単である。
According to this embodiment, 1 corresponds to the displacement part and the current cutoff part.
This method has the advantage of being easy to manufacture, since it is sufficient to heat-treat the two SMAs at different temperatures without heat-treating both ends of one SMA at different temperatures. Furthermore, since there is no need to control the energizing circuit 4, the configuration is simple.

第10図は第8実施例のブロック図である。第8実施例
は第7実施例のSMAの形状を螺線状にしたものである
。変位部1aの変位方向は図示左右方向であり、通電遮
断部ICの変位方向は図示上下方向であり、通電遮断部
1cの後端には端子2と接触する可動端子8が接続され
る。
FIG. 10 is a block diagram of the eighth embodiment. In the eighth embodiment, the SMA of the seventh embodiment has a spiral shape. The displacement direction of the displacement part 1a is the horizontal direction in the drawing, the displacement direction of the energization interrupting part IC is the vertical direction in the drawing, and a movable terminal 8 that contacts the terminal 2 is connected to the rear end of the energization interrupting part 1c.

この実施例によれば、温度が過加熱範囲になると、通電
遮断部1cが縮み可動端子8が端子2と接触する。これ
により、アクチュエータ1の両端が短絡され、アクチュ
エータ1の通電が遮断される。
According to this embodiment, when the temperature reaches the overheating range, the current cutoff portion 1c contracts and the movable terminal 8 comes into contact with the terminal 2. As a result, both ends of the actuator 1 are short-circuited, and power supply to the actuator 1 is cut off.

上述した第1〜第8実施例では、SMAの変形動作を利
用し変位量から温度を検出しているので、確実、かつ正
確に過加熱を防止できる。さらに、通電遮断部1cの形
状回復温度を任意に設定可能であるので、通電を中断す
る温度を任意に設定可能である。
In the first to eighth embodiments described above, since the temperature is detected from the amount of displacement using the deformation operation of the SMA, overheating can be reliably and accurately prevented. Furthermore, since the shape recovery temperature of the energization cutoff portion 1c can be arbitrarily set, the temperature at which energization is interrupted can be arbitrarily set.

第11図は第9実施例のブロック図である。アクチュエ
ータ1の一部にサーミスタ等の温度センサ9を取付け、
アクチュエータ1の温度を検出する。検出した温度は温
度判定回路10に入力され、正常動作範囲かどうか判定
される。正常動作範囲でない場合は、通電制御部6を介
して通電回路4の通電動作を中断する。
FIG. 11 is a block diagram of the ninth embodiment. A temperature sensor 9 such as a thermistor is attached to a part of the actuator 1,
Detect the temperature of actuator 1. The detected temperature is input to the temperature determination circuit 10, and it is determined whether it is within the normal operating range. If it is not within the normal operating range, the energization operation of the energization circuit 4 is interrupted via the energization control section 6.

なお、上述の説明では変位部は単一であるとしたが、複
数の変位部があり複数の負荷を駆動する構成でもよい。
In addition, although in the above description there is a single displacement section, a configuration may also be adopted in which there are a plurality of displacement sections and drives a plurality of loads.

また、この発明のアクチュエータは小型化が可能である
ので、内視鏡の先端湾曲部に適応可能である。内視鏡に
応用した場合の一例を第12図に示す。第12図は第1
実施例を応用した場合である。同様に、第2〜第9実施
例を内視鏡に応用することも可能である。
Furthermore, since the actuator of the present invention can be made smaller, it can be applied to the curved tip of an endoscope. An example of application to an endoscope is shown in FIG. 12. Figure 12 is the first
This is a case where the embodiment is applied. Similarly, it is also possible to apply the second to ninth embodiments to an endoscope.

内視鏡23は操作部18、先端に湾曲部17を有する挿
入部20、図示しないライトガイドファイバを有するユ
ニバーサルコード19を一体的に連結してなる。湾曲部
17内にSMAからなるアクチュエータ1、端子2がそ
れぞれ一対づつ設けられる。アクチュエータ1、端子2
はそれぞれ直列に接続され、これらの直列回路の両端は
通電線3を介して通電回路4に接続される。通電回路4
、抵抗値検出部5、通電制御部6は光源装置21内に設
けられる。図示していないが、光源装置21はライトガ
イドファイバへ照明光を供給する光源を有する。各アク
チュエータ1の両端は電線3aを介して抵抗値検出部5
に接続される。各アクチュエータ1の抵抗の検出値は通
電制御部6に入力され、通電回路4によるアクチュエー
タ1の通電を制御し、湾曲部17の湾曲量を調整する。
The endoscope 23 is formed by integrally connecting an operating section 18, an insertion section 20 having a curved section 17 at its tip, and a universal cord 19 having a light guide fiber (not shown). A pair of actuators 1 and a pair of terminals 2 each made of SMA are provided in the curved portion 17 . Actuator 1, terminal 2
are connected in series, and both ends of these series circuits are connected to a current-carrying circuit 4 via a current-carrying line 3. Energizing circuit 4
, the resistance value detection section 5, and the energization control section 6 are provided within the light source device 21. Although not shown, the light source device 21 includes a light source that supplies illumination light to the light guide fiber. Both ends of each actuator 1 are connected to a resistance value detection unit 5 via an electric wire 3a.
connected to. The detected value of the resistance of each actuator 1 is input to the energization control unit 6, which controls the energization of the actuator 1 by the energization circuit 4, and adjusts the amount of bending of the bending portion 17.

ここで、この例においても、通電量が多くなり、形状記
憶アクチュエータ1の温度が過加熱範囲になり、いずれ
か一方の通電遮断部ICが変形し端子2と接触したこと
が抵抗値検出部5により検出されると、いずれのアクチ
ュエータ1への通電が中断される。
Here, also in this example, the resistance value detection unit 5 indicates that the amount of energization increases, the temperature of the shape memory actuator 1 reaches the overheating range, and one of the energization cutoff ICs deforms and comes into contact with the terminal 2. When detected, power supply to any actuator 1 is interrupted.

なお、アクチュエータは1対ではなく、上下左右方向へ
の湾曲のために4つ設けてもよい。また、湾曲部は1個
に限定されずに、複数個の湾曲部を直列に接続してもよ
い。こうすると、湾曲量を大きくすることができる。
Note that instead of one pair of actuators, four actuators may be provided for bending in the vertical and horizontal directions. Further, the number of curved parts is not limited to one, and a plurality of curved parts may be connected in series. In this way, the amount of curvature can be increased.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば、SMAの変形動
作が温度に依存することを利用して変位量から温度を検
出し、過加熱された場合に通電を中断することにより、
SMAの過加熱を確実に防止できる形状記憶アクチュエ
ータが提供される。
As explained above, according to the present invention, the temperature is detected from the amount of displacement by utilizing the fact that the deformation operation of the SMA depends on temperature, and the current supply is interrupted when overheating occurs.
A shape memory actuator that can reliably prevent overheating of SMA is provided.

あるいは、温度センサ等を設けてSMAの温度を判定し
て通電を中断することによっても、過加熱を確実に防止
できる。
Alternatively, overheating can be reliably prevented by providing a temperature sensor or the like to determine the temperature of the SMA and interrupting the energization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)、(c)はこの発明による形状記
憶アクチュエータの第1実施例のブロック図、第2図(
a)、(b)、(c)は第1図(a)、(b)、(e)
の等価回路図、第3図は第1実施例のSMAの特性を示
す図、第4図は第2実施例のSMAの特性を示す図、第
5図(a)。 (b)、(C)は第3実施例のブロック図、第6図は第
4実施例のブロック図、第7図は第5実施例のブロック
図、第8図は第6実施例のブロック図、第9図(a)、
(b)、(c)は第7実施例のブロック図、第10図は
第8実施例のブロック図、第11図は第9実施例のブロ
ック図、第12図は第1実施例が適応された内視鏡のブ
ロック図、第13図は従来の過加熱防止回路のブロック
図である。 1・・・アクチュエータ、1a・・・変位部、1b・・
・固定部、IC・・・通電遮断部、2・・・端子、3・
・・通電線、3a・・・電線、4・・・通電回路、5・
・・抵抗値検出部、6・・・通電制御部、8・・・可動
端子、9・・・温度センサ、10・・・温度判定回路、
17・・・湾曲部、18・・・操作部、1つ・・・ユニ
バーサルコード、21・・・光源装置。 出願人代理人 弁理士 坪井  淳 第4図 1丁51 図 (a) (b) ζS2図 第5図 (a) (C)  第9図 第10図 第11図 第12図 ト ロ 第13図
FIGS. 1(a), (b), and (c) are block diagrams of a first embodiment of a shape memory actuator according to the present invention, and FIG.
a), (b), (c) are Fig. 1 (a), (b), (e)
FIG. 3 is a diagram showing the characteristics of the SMA of the first embodiment, FIG. 4 is a diagram showing the characteristics of the SMA of the second embodiment, and FIG. 5(a). (b) and (C) are block diagrams of the third embodiment, FIG. 6 is a block diagram of the fourth embodiment, FIG. 7 is a block diagram of the fifth embodiment, and FIG. 8 is a block diagram of the sixth embodiment. Figure 9(a),
(b) and (c) are block diagrams of the seventh embodiment, Figure 10 is a block diagram of the eighth embodiment, Figure 11 is a block diagram of the ninth embodiment, and Figure 12 is adapted to the first embodiment. FIG. 13 is a block diagram of a conventional overheating prevention circuit. 1... Actuator, 1a... Displacement part, 1b...
・Fixed part, IC... Current cutoff part, 2... Terminal, 3.
... Current-carrying wire, 3a ... Electric wire, 4 ... Current-carrying circuit, 5.
... resistance value detection section, 6 ... energization control section, 8 ... movable terminal, 9 ... temperature sensor, 10 ... temperature determination circuit,
17...Bending portion, 18...Operation unit, one...Universal cord, 21...Light source device. Applicant's representative Patent attorney Atsushi Tsuboi Figure 4 1-51 Figure (a) (b) ζS2 figure 5 (a) (C) Figure 9 Figure 10 Figure 11 Figure 12 Toro Figure 13

Claims (1)

【特許請求の範囲】[Claims] 温度変化により変形する形状記憶合金を用いる形状記憶
アクチュエータにおいて、前記形状記憶合金の過加熱を
防止する手段を設けたことを特徴とする形状記憶アクチ
ュエータ。
A shape memory actuator using a shape memory alloy that deforms due to temperature changes, characterized in that the shape memory actuator is provided with means for preventing overheating of the shape memory alloy.
JP63091091A 1987-05-15 1988-04-13 Shape memory actuator Expired - Fee Related JP2702960B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63091091A JP2702960B2 (en) 1988-04-13 1988-04-13 Shape memory actuator
US07/193,294 US4884557A (en) 1987-05-15 1988-05-11 Endoscope for automatically adjusting an angle with a shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63091091A JP2702960B2 (en) 1988-04-13 1988-04-13 Shape memory actuator

Publications (2)

Publication Number Publication Date
JPH01264795A true JPH01264795A (en) 1989-10-23
JP2702960B2 JP2702960B2 (en) 1998-01-26

Family

ID=14016851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63091091A Expired - Fee Related JP2702960B2 (en) 1987-05-15 1988-04-13 Shape memory actuator

Country Status (1)

Country Link
JP (1) JP2702960B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229155A (en) * 2006-02-28 2007-09-13 Olympus Medical Systems Corp Endoscope
JP2008022939A (en) * 2006-07-19 2008-02-07 Olympus Corp Endoscope
JP2008280879A (en) * 2007-05-09 2008-11-20 Konica Minolta Opto Inc Drive unit and movable module
JP2009013909A (en) * 2007-07-06 2009-01-22 Olympus Corp Position control method for shape memory alloy actuator
WO2020147894A1 (en) * 2019-01-16 2020-07-23 Vizaar Industrial Imaging Ag Actuator for an endoscopic probe, endoscopic probe, and method for controlling an actuator of an endoscopic probe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146477A (en) * 1984-08-10 1986-03-06 Matsushita Electric Ind Co Ltd Actuator
JPS61269684A (en) * 1985-05-21 1986-11-29 Mitsubishi Electric Corp Shape deforming device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146477A (en) * 1984-08-10 1986-03-06 Matsushita Electric Ind Co Ltd Actuator
JPS61269684A (en) * 1985-05-21 1986-11-29 Mitsubishi Electric Corp Shape deforming device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229155A (en) * 2006-02-28 2007-09-13 Olympus Medical Systems Corp Endoscope
JP2008022939A (en) * 2006-07-19 2008-02-07 Olympus Corp Endoscope
JP2008280879A (en) * 2007-05-09 2008-11-20 Konica Minolta Opto Inc Drive unit and movable module
US8189093B2 (en) 2007-05-09 2012-05-29 Konica Minolta Opto, Inc. Drive unit and drive module
US8576291B2 (en) 2007-05-09 2013-11-05 Konica Minolta Opto, Inc. Drive unit, movable module, and autofocus control method
JP2009013909A (en) * 2007-07-06 2009-01-22 Olympus Corp Position control method for shape memory alloy actuator
WO2020147894A1 (en) * 2019-01-16 2020-07-23 Vizaar Industrial Imaging Ag Actuator for an endoscopic probe, endoscopic probe, and method for controlling an actuator of an endoscopic probe
CN113301840A (en) * 2019-01-16 2021-08-24 威萨工业成像股份公司 Actuator for an endoscopic probe, endoscopic probe and method for controlling an actuator for an endoscopic probe

Also Published As

Publication number Publication date
JP2702960B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
JP5075372B2 (en) Battery pack
JPS60115120A (en) Bistable shape memory effect thermoelectric converter
EP2500957B1 (en) Method for testing a peltier element as well as a small electrical appliance with a peltier element and a safety device
JPH01264795A (en) Shape memory actuator
JP4237654B2 (en) Safety device and overcurrent cutoff system using the same
JP4254703B2 (en) Inductive load drive
KR100855789B1 (en) Temperature controller and the method using Timing Signal
JP3920836B2 (en) Water temperature control device for aquarium
KR101501944B1 (en) Module of circuit-breaker sensing abnormal temperature of the battery
JP2006526973A (en) Circuit arrangement with series resistance assembly for electric motor and series resistance assembly for driving electric motor and use of series resistance assembly
JP7268559B2 (en) Power supply controller
JP3545134B2 (en) Electric heating equipment security device
JP2593913B2 (en) Non-contact relay device
JP3906682B2 (en) Overheat protection semiconductor switch
JPH0511862A (en) Temperature detecting device
JP4379258B2 (en) Ignition device for internal combustion engine
JPH0926149A (en) Control circuit for electrical heater device
GB2420236A (en) Protection mechanism for an electrically driven SMA wire
JP2008277351A (en) Ptc heater controller
JPS643313B2 (en)
JP2000011830A (en) Contact welding protecting device for heater control circuit
JPS58214289A (en) Sheet heater unit for vehicle
KR200156726Y1 (en) Automatic temperature control apparatus
KR200273321Y1 (en) Controller of electric heating mat
JP2005151767A (en) Drive circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees