JPS6126956B2 - - Google Patents

Info

Publication number
JPS6126956B2
JPS6126956B2 JP20854781A JP20854781A JPS6126956B2 JP S6126956 B2 JPS6126956 B2 JP S6126956B2 JP 20854781 A JP20854781 A JP 20854781A JP 20854781 A JP20854781 A JP 20854781A JP S6126956 B2 JPS6126956 B2 JP S6126956B2
Authority
JP
Japan
Prior art keywords
reaction tube
gas
heater
hydrocarbon
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20854781A
Other languages
Japanese (ja)
Other versions
JPS58108291A (en
Inventor
Ikuo Matsumoto
Kenji Tabata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20854781A priority Critical patent/JPS58108291A/en
Publication of JPS58108291A publication Critical patent/JPS58108291A/en
Publication of JPS6126956B2 publication Critical patent/JPS6126956B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 本発明は天然ガス、プロパンガス等の炭化水素
ガス、あるいは液状炭化水素を加熱することによ
つて得られた炭化水素ガスを改質し、水素、炭酸
ガスを主体とした無機ガスに変換する比較的小型
で簡単な改質装置に関するものである。
Detailed Description of the Invention The present invention involves reforming hydrocarbon gas such as natural gas, propane gas, or hydrocarbon gas obtained by heating liquid hydrocarbons to mainly contain hydrogen and carbon dioxide gas. The present invention relates to a relatively small and simple reformer that converts inorganic gas into inorganic gas.

従来この種の反応は主として工業的に行なわれ
ており、装置の状態も大型プラントの一環として
改質装置が組み込まれている。従つて触媒層を加
熱する場合には直接ヒータ等で加熱することはあ
まりなく、原料の水(スチーム)や、炭化水素ガ
スを加熱し、触媒層に導くのが普通である。また
多少小型の装置で直接ヒータを使用するものでは
第1図に例示するものがある。この従来の構造は
反応管1の内面部にヒータ2を置き、このヒータ
2に外周が接するような形でスチームリフオーミ
ング触媒体3を設置させ、このリフオーミング触
媒体3の外面より熱を加える様にさせてある。従
つてヒータ2からの熱はスチームリフオーミング
触媒体3に伝えられると同時に、大部分の熱が反
応管1を伝わつて外部に逃れてしまう。外部に逃
れた熱はある程度原料ガスを予熱させることによ
り回収できるが、その回収率は低く、相当に無駄
が多い構造であつた。
Conventionally, this type of reaction has been mainly carried out industrially, with a reformer installed as part of a large-scale plant. Therefore, when heating the catalyst layer, it is not often the case that the catalyst layer is directly heated with a heater or the like, but the raw material water (steam) or hydrocarbon gas is usually heated and guided to the catalyst layer. In addition, there is an example of a somewhat small-sized device that uses a heater directly, as shown in FIG. In this conventional structure, a heater 2 is placed on the inner surface of a reaction tube 1, a steam reforming catalyst body 3 is installed in such a way that the outer periphery is in contact with this heater 2, and heat is applied from the outside surface of this reforming catalyst body 3. I have been made to do so. Therefore, while the heat from the heater 2 is transmitted to the steam reforming catalyst body 3, most of the heat is transmitted through the reaction tube 1 and escapes to the outside. Although the heat escaping to the outside can be recovered by preheating the raw material gas to some extent, the recovery rate is low and the structure is quite wasteful.

本発明はこの様な従来の欠点を除去するもので
その目的はリフオーミング反応装置を比較的小型
で簡単な改質装置とし、リフオーミング触媒加熱
のためのエネルギーを出来るだけ小さくさせるこ
とにある。
The present invention aims to eliminate these conventional drawbacks, and its purpose is to make the reforming reactor a relatively small and simple reformer, and to minimize the energy required to heat the reforming catalyst.

この目的を達成するために本発明は反応管の中
央部にヒータ部を内蔵し、完全にシールしたセラ
ミツクヒータ棒を置き、その周囲に触媒体を置
き、触媒体の中心から加熱させるようにしたもの
で、さらに反応管の外部に逃げる熱は、リフオー
ミング触媒に入る前の炭化水素ガスあるいはスチ
ームを加熱させるために用いる構造とする。
In order to achieve this objective, the present invention incorporates a heater section in the center of the reaction tube, places a completely sealed ceramic heater rod, and places a catalyst body around it, so that heating starts from the center of the catalyst body. Furthermore, the structure is such that the heat escaping to the outside of the reaction tube is used to heat the hydrocarbon gas or steam before entering the reforming catalyst.

この構成により、従来の触媒体外周部より加熱
させる方式に比べると約2/3程度のエネルギー消
費量で良く、また装置自身のコンパクト化も図る
ことができる。
With this configuration, the energy consumption is approximately 2/3 compared to the conventional method of heating from the outer periphery of the catalyst body, and the device itself can be made more compact.

以下本発明の一実施例について図面とともに説
明する。
An embodiment of the present invention will be described below with reference to the drawings.

第2図において反応管1は円筒形のアルミナあ
るいはムライトなどからできており、反応管1の
中心部にはヒータ2が埋め込まれ、アルミナある
いはムライトなどからできたセラミツク棒4が設
けられている。反応管1の内側とセラミツク棒4
の間には触媒を担持させたアルミナ、シリカ、チ
タニア、クロミアおよびドロマイト等の材料を用
い、複数の細孔5を穿つた無機耐熱材料からなる
スチームリフオーミング触媒体3を内蔵させてい
る。さらに反応管1には生成した改質ガスを外部
に取り出すための反応ガス取出し管6が接続され
ている。反応管1の外周には反応管1全体を包み
込む様に外周管7が覆つており、その一部は反応
ガス取出し管6の外側を包み、二重管の外管8を
形成し、その先端にて反応ガス取出し管6と分岐
して炭化水素と水蒸気の供給源(図示せず)と改
質器を繋ぐ導入管9に接続されている。これらの
外周管7全体の外側には断熱材10が巻きつけら
れ、熱の有効利用を図つている。なおセラミツク
棒4の壁内に内蔵しているヒータ2はリード線1
1と接続してセラミツク棒4の壁内を通り抜け、
その末端で外部に取り出し、電源12に接続され
ている。
In FIG. 2, a reaction tube 1 has a cylindrical shape and is made of alumina or mullite. A heater 2 is embedded in the center of the reaction tube 1, and a ceramic rod 4 made of alumina or mullite is provided. Inside of reaction tube 1 and ceramic rod 4
In between, a steam reforming catalyst body 3 made of an inorganic heat-resistant material with a plurality of pores 5 is built in, using a catalyst-supported material such as alumina, silica, titania, chromia, and dolomite. Furthermore, a reaction gas take-off pipe 6 is connected to the reaction tube 1 for taking out the generated reformed gas to the outside. An outer circumferential tube 7 covers the outer periphery of the reaction tube 1 so as to wrap around the entire reaction tube 1, and a part of the outer circumferential tube 7 wraps around the outside of the reaction gas extraction tube 6 to form a double outer tube 8. It branches off from a reaction gas take-off pipe 6 and is connected to an introduction pipe 9 that connects a hydrocarbon and steam supply source (not shown) to the reformer. A heat insulating material 10 is wrapped around the outside of these outer circumferential tubes 7 in order to effectively utilize heat. The heater 2 built into the wall of the ceramic rod 4 is connected to the lead wire 1.
1 and pass through the wall of the ceramic rod 4,
Its end is taken out to the outside and connected to a power source 12.

第3図において、ヒータ2は円柱形セラミツク
からなる棒の表面に短冊形にプリントされ、その
上から同質のセラミツク薄板でカバーされてい
る。ヒータ2の末端はそのままリード線11と
し、ヒータ2と同材質であるが電流断面積を大き
くしてあるため電気抵抗が少なく、この部分にお
いての発熱はほとんどない。
In FIG. 3, the heater 2 is printed in the form of a rectangle on the surface of a cylindrical ceramic rod, and is covered with a thin ceramic plate of the same quality. The end of the heater 2 is directly connected to the lead wire 11, which is made of the same material as the heater 2, but has a larger current cross-sectional area, so the electrical resistance is small and there is almost no heat generation in this part.

次に上記の構成を持つガス改質装置の作用につ
いて述べる。
Next, the operation of the gas reformer having the above configuration will be described.

このガス改質装置を作動するには、先ずセラミ
ツク棒4内のヒータ2に通電することにより、ス
チームリフオーミング触媒体3を所定の温度に迄
加熱する。スチームリフオーミング触媒体3が設
定温度に達した後、炭化水素ガスと水蒸気が導入
管9内を流れ出す。これらの原料ガスは二重管の
外管8内に入り、反応ガス取り出し管6から受け
る熱を吸収しながら反応管1の外周部に入る。こ
の場合においても原料ガスは反応管1内の生成ガ
スの有している熱、およびヒータ2から発生し、
反応管1壁の外周部にまで移行する熱を受けて十
分に予熱される。予熱された原料ガスは反応管1
内側に入り、スチームリフオーミング触媒体3を
通過し、生成したガスはガス化反応管1末端に接
続している反応ガス取り出し管6より外部に取り
出される。反応ガス取出し管6は途中まで二重管
になつていて、その部分において熱交換し、外部
より供給される原料ガスを加熱し、自らは冷却さ
れる。
To operate this gas reforming device, first, the heater 2 in the ceramic rod 4 is energized to heat the steam reforming catalyst body 3 to a predetermined temperature. After the steam reforming catalyst body 3 reaches the set temperature, hydrocarbon gas and steam flow out through the introduction pipe 9. These raw material gases enter the double-walled outer tube 8 and enter the outer periphery of the reaction tube 1 while absorbing the heat received from the reaction gas take-off tube 6. In this case as well, the raw material gas is generated from the heat of the generated gas in the reaction tube 1 and the heater 2,
The reaction tube 1 is sufficiently preheated by the heat transferred to the outer periphery of the wall. The preheated raw material gas is transferred to reaction tube 1.
The generated gas enters the inside, passes through the steam reforming catalyst body 3, and is taken out to the outside through a reaction gas take-off pipe 6 connected to the end of the gasification reaction tube 1. The reaction gas take-off pipe 6 is a double pipe halfway, and heat exchanges there, heating the raw material gas supplied from the outside, and cooling itself.

また発明によるガス改質装置のヒータ2は円柱
形セラミツクの内面に入つており、材質がアルミ
ナ等セラミツクからなつているため、炭化水素が
熱分解し、カーボンが析出する度合は鉄、銅、ニ
ツケル等通常の金属面のふれる場合に比較して相
当少ない。さらにヒータ2はセラミツク内部に完
全に埋没させてあるため、炭化水素リフオーミン
グ時の苛酷な雰囲気に触れることがないので、ヒ
ータ寿命も長く保つことができる。
Furthermore, since the heater 2 of the gas reformer according to the invention is housed inside a cylindrical ceramic and is made of ceramic such as alumina, the degree to which hydrocarbons are thermally decomposed and carbon is precipitated is higher than that of iron, copper, or nickel. It is considerably less than when a normal metal surface touches. Furthermore, since the heater 2 is completely buried inside the ceramic, it does not come into contact with the harsh atmosphere during hydrocarbon reforming, so that the heater life can be maintained for a long time.

本発明によるガス改質装置の有する効果は次の
通りである。
The effects of the gas reformer according to the present invention are as follows.

(1) ヒータが触媒層中心部にあるため、当初の目
的である炭化水素をスチームリフオーミングさ
せるために、ほとんどのエネルギーを使用する
ことができ、さらに外部に逃げる熱を原料ガス
予熱に使用することができるので熱ロスが少な
い。
(1) Since the heater is located in the center of the catalyst layer, most of the energy can be used for steam re-forming of hydrocarbons, which is the original purpose, and the heat escaping to the outside is used to preheat the raw material gas. This reduces heat loss.

(2) ヒータはセラミツク内部に埋没させているた
め、ヒータ部に折出するタールやカーボン量が
少なく装置のメインテナンスが容易である。ま
たカーボンによる浸炭や発生する水素による水
素脆化の心配もない。
(2) Since the heater is buried inside the ceramic, the amount of tar and carbon deposited in the heater part is small, making maintenance of the device easy. Furthermore, there is no need to worry about carburization due to carbon or hydrogen embrittlement due to generated hydrogen.

(3) 反応管を相当小さくでき、リフオーミング反
応装置としてコンパクトな形とすることができ
る。
(3) The reaction tube can be made considerably smaller, allowing a compact reforming reaction device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の炭化水素改質装置の側面断面
図、第2図は本発明の一実施例である炭化水素改
質装置の側面断面図、第3図は同装置の反応管要
部断面図である。 1……反応管、2……ヒータ、3……スチーム
リフオーミング触媒体、4……セラミツク棒、7
……外周管。
Fig. 1 is a side sectional view of a conventional hydrocarbon reformer, Fig. 2 is a side sectional view of a hydrocarbon reformer which is an embodiment of the present invention, and Fig. 3 is a sectional view of the main part of the reaction tube of the same equipment. It is a diagram. 1... Reaction tube, 2... Heater, 3... Steam reforming catalyst body, 4... Ceramic rod, 7
...Peripheral tube.

Claims (1)

【特許請求の範囲】 1 炭化水素ガスおよび水蒸気をリフオーミング
触媒体上で改質し、水素あるいはより低分子の炭
化水素に変換させる反応管と、前記リフオーミン
グ触媒体を加熱するヒータを埋設しかつ前記反応
管のほぼ中央に位置する無機耐熱質セラミツク棒
と、前記反応管の外周部に位置し前記反応管の外
面と間隙を有して耐熱性金属あるいは無機耐熱性
セラミツクからなる外周管とを備えてなる炭化水
素改質装置。 2 炭化水素ガス及び水蒸気を反応管外周と外周
管の間で予熱させた後反応管内部に通し、リフオ
ーミング触媒体上でスチームリフオーミングさせ
てなる特許請求の範囲第1項記載の炭化水素改質
装置。
[Scope of Claims] 1. A reaction tube for reforming hydrocarbon gas and water vapor on a reforming catalyst and converting it into hydrogen or a lower molecular weight hydrocarbon, and a heater for heating the reforming catalyst, and the An inorganic heat-resistant ceramic rod located approximately in the center of the reaction tube, and an outer peripheral tube made of a heat-resistant metal or inorganic heat-resistant ceramic located at the outer periphery of the reaction tube and having a gap with the outer surface of the reaction tube. Hydrocarbon reformer. 2. The hydrocarbon reforming method according to claim 1, wherein hydrocarbon gas and steam are preheated between the outer periphery of the reaction tube and the outer circumferential tube, and then passed into the reaction tube and subjected to steam reforming on a reforming catalyst body. quality equipment.
JP20854781A 1981-12-22 1981-12-22 Hydrocarbon reforming equipment Granted JPS58108291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20854781A JPS58108291A (en) 1981-12-22 1981-12-22 Hydrocarbon reforming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20854781A JPS58108291A (en) 1981-12-22 1981-12-22 Hydrocarbon reforming equipment

Publications (2)

Publication Number Publication Date
JPS58108291A JPS58108291A (en) 1983-06-28
JPS6126956B2 true JPS6126956B2 (en) 1986-06-23

Family

ID=16557985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20854781A Granted JPS58108291A (en) 1981-12-22 1981-12-22 Hydrocarbon reforming equipment

Country Status (1)

Country Link
JP (1) JPS58108291A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262614U (en) * 1988-10-29 1990-05-10

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19639150C2 (en) 1996-09-24 1998-07-02 Daimler Benz Ag Central heating device for a gas generation system
JP2005132643A (en) * 2003-10-28 2005-05-26 Denso Corp Hydrogen storage feed system
JP4873036B2 (en) * 2009-03-31 2012-02-08 ダイキン工業株式会社 Rotary compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262614U (en) * 1988-10-29 1990-05-10

Also Published As

Publication number Publication date
JPS58108291A (en) 1983-06-28

Similar Documents

Publication Publication Date Title
RU2008102378A (en) COMPACT REFORMING REACTOR
JP2004171989A (en) Hydrogen generator for fuel cell
US4836898A (en) Methane conversion reactor
JPS6126956B2 (en)
US5213770A (en) Methane conversion reactor
JP2000026101A (en) Apparatus for reforming fuel
KR101846969B1 (en) Fuel reforming divice
JP2000281310A (en) Reforming device
JP4147521B2 (en) Self-oxidation internal heating type reforming method and apparatus
JPS5832692A (en) Gas reformer
JP3108269B2 (en) Fuel cell reforming system
JPH0688761B2 (en) Hydrocarbon reformer
JP2601707B2 (en) Catalytic reactor
JPS5815588A (en) Gas reformer
JPH07223801A (en) Fuel-reforming device
JPS6230602A (en) Steam modifying furnace
KR100632967B1 (en) A Heat exchanging device of preferential oxidation part for fuel cell system
JPS60212488A (en) Carbon monoxide converter for town gas producing apparatus
JPH03122001A (en) Endothermic reaction unit
JPS6045795B2 (en) Heat treatment furnace with built-in endothermic gas generator
JPH10182521A (en) Synthesis of methanol and methanol-synthesizing apparatus
JPH0437863Y2 (en)
JP2004262691A (en) Reformer for fuel
JPH0124533B2 (en)
JP2733308B2 (en) Apparatus and method for producing reformed gas containing hydrogen as a main component