JPS61269380A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61269380A
JPS61269380A JP11116285A JP11116285A JPS61269380A JP S61269380 A JPS61269380 A JP S61269380A JP 11116285 A JP11116285 A JP 11116285A JP 11116285 A JP11116285 A JP 11116285A JP S61269380 A JPS61269380 A JP S61269380A
Authority
JP
Japan
Prior art keywords
transistor
substrate
capacitor
conductivity type
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11116285A
Other languages
Japanese (ja)
Other versions
JPH0569315B2 (en
Inventor
Tadashi Kamata
忠 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP11116285A priority Critical patent/JPS61269380A/en
Publication of JPS61269380A publication Critical patent/JPS61269380A/en
Publication of JPH0569315B2 publication Critical patent/JPH0569315B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors with potential-jump barrier or surface barrier
    • H01L29/93Variable capacitance diodes, e.g. varactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To constitute a variable capacitance element, by arraying on one conductive type semiconductor substrate a plurality of opposite conductive type regions, a transistor, wiring layers and output terminals, and by varying the gate voltage of the transistor. CONSTITUTION:On a conductive type semiconductor substrate 5, capacitors 10, 30 as capacitance elements and a transistor 20 are formed, and an oxide film 6A of silicon dioxide is formed except sections connected to respective circuit elements. On the oxide film 6A, wiring layers 7A, 7B of aluminum (Al) are evaporated. Moreover, an insulating film 8 of silicon nitride is formed thereon by sputtering. The aluminum wiring layers 7A, 7B constitute a negative pole for the capacitor 10. The capacitance elements are constituted by P<+> type regions 51-53, and polysilicon wiring layers 9A, 9C constitute positive poles for the capacitors 10, 30. The transistor 20 is constituted by N<+> regions 21, 23.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、可変できる容量素子を有する半導体装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device having a variable capacitance element.

[従来の技術] 従来、可変容量素子は、ラジオのアンテナ回路、高周波
増幅回路に不可欠なものである。ところが、半導体装置
に配設されたトランジスタは、ゲートの電位が変化する
と、PN接合面の容量が変化する電圧特性を持つ。そし
て、この電圧特性をトランジスタから排除する努力が行
なわれている。ところが、本来、回路には、該電気回路
自身が回路電圧特性を有するため、ゲート電位による電
圧特性が排除できても、回路にJ:る電圧特性が発生し
、これが回路全体に於ける特性上の問題点となる。
[Prior Art] Conventionally, variable capacitance elements have been indispensable in radio antenna circuits and high frequency amplification circuits. However, a transistor provided in a semiconductor device has voltage characteristics such that when the gate potential changes, the capacitance of the PN junction surface changes. Efforts are being made to eliminate this voltage characteristic from transistors. However, since the electric circuit itself originally has circuit voltage characteristics, even if the voltage characteristics due to the gate potential can be eliminated, a voltage characteristic of J: will occur in the circuit, and this will affect the characteristics of the entire circuit. This becomes a problem.

[発明の解決しようとする問題点] そこで、本発明は、ゲート電位に応じて容量が可変でき
る半導体装置を提供する事を目的とする。
[Problems to be Solved by the Invention] Therefore, an object of the present invention is to provide a semiconductor device whose capacitance can be varied depending on the gate potential.

c問題点を解決するための手段] 本発明は、導電型半導体基板と、前記基板に設けられた
トランジスタと、前記基板に成形され、前記基板とのP
N接合面を容量素子として用いる少なくとも2個の逆導
電型領域と、前記トランジスタに設けられたソース端子
、ドレイン端子を、前記逆導電型領域のそれぞれに設け
られた端子に個別に、且つ電気的に接続する配線層と、
前記トランジスタのゲート、ソース、前記基板のそれぞ
れと接続される出力端子と、を有し、 該トランジスタのゲート電位に応じて、前記ソース、前
記基板間の容量を変位させることを特徴とする半導体装
置である。
c Means for Solving Problems] The present invention provides a conductive semiconductor substrate, a transistor provided on the substrate, a transistor formed on the substrate, and a
At least two regions of opposite conductivity type using an N junction surface as a capacitor, and a source terminal and a drain terminal provided in the transistor are individually and electrically connected to terminals provided in each of the regions of opposite conductivity type. a wiring layer connected to the
A semiconductor device comprising: an output terminal connected to each of the gate, source, and substrate of the transistor; and the capacitance between the source and the substrate is changed depending on the gate potential of the transistor. It is.

導電型半導体基板はP型又はN型の単結晶基板であり、
該基板はアイソレーションされている事が好ましい。逆
導電型領域は前記導電型半導体基板に対応して形成され
たN型又はP型の導電型領域である。従って、例えば、
導電型半導体基板がN型の基板の時は、逆導電型領域は
P型の領域である。トランジスタは、PNP型又はNP
N型のトランジスタであり、該トランジスタは該導電型
半導体の態様に応じて形成される。配線層は、それぞれ
の逆導電型領域が、トランジスタのソース、ドレインに
より並列に且つ、電気的に接続する配線層である。該配
線層は、アルミニウム、銅等の、導体を真空蒸着、スパ
ッタリング等によって形成される。
The conductive semiconductor substrate is a P-type or N-type single crystal substrate,
Preferably, the substrate is isolated. The opposite conductivity type region is an N type or P type conductivity type region formed corresponding to the conductivity type semiconductor substrate. Therefore, for example,
When the conductivity type semiconductor substrate is an N type substrate, the opposite conductivity type region is a P type region. The transistor is PNP type or NP
The transistor is an N-type transistor, and the transistor is formed depending on the conductivity type semiconductor. The wiring layer is a wiring layer in which regions of opposite conductivity type are electrically connected in parallel to the source and drain of the transistor. The wiring layer is formed of a conductor such as aluminum or copper by vacuum evaporation, sputtering, or the like.

【作用] 導電型半導体基板は、その表面部分には埋設層として、
トランジスタ、複数の逆導電型領域、を有する。配線層
は、トランジスタに設けられたソース端子、ドレイン端
子を、逆導電型領域のそれぞれに設けられた端子に個別
に、且つ電気的に接続する。出力端子は、前記トランジ
スタのゲート、ソース、前記基板に接続される。
[Function] The conductive semiconductor substrate has a buried layer on its surface.
It has a transistor and a plurality of regions of opposite conductivity type. The wiring layer individually and electrically connects the source terminal and drain terminal provided in the transistor to the terminal provided in each of the opposite conductivity type regions. An output terminal is connected to the gate, source, and substrate of the transistor.

前記基板、前記ソースのそれぞれの端子間は、導電型半
導体基板と逆導電型領域のPN接合面により所定のコン
デンサ容量を有する。例えば、前記ゲート端子の電位が
可変され上昇し、該電位が該トランジスタの「しきい値
」に達すると、トランジスタは反転する。従って、トラ
ンジスタのドレイン側に接続された逆導電型領域により
できるPN接合面の容量が、前記コンデンサ容量に加算
される。そのため、前記それぞれの端子間の容量は、ト
ランジスタが反転する事により増加する。
A predetermined capacitor capacity is provided between each terminal of the substrate and the source due to a PN junction surface between the conductive type semiconductor substrate and the opposite conductive type region. For example, when the potential at the gate terminal is varied and raised, and the potential reaches the "threshold" of the transistor, the transistor is inverted. Therefore, the capacitance of the PN junction surface formed by the opposite conductivity type region connected to the drain side of the transistor is added to the capacitor capacitance. Therefore, the capacitance between the respective terminals increases as the transistors are inverted.

つまり本発明の半導体装置は、ゲート端子の電位に追従
する可変容量素子として働く。
In other words, the semiconductor device of the present invention functions as a variable capacitance element that follows the potential of the gate terminal.

[実施例] 以下、本発明を具体的な一実施例に基いて膜間する。第
1図は、本発明の実施例に係る半導体装置の構成を示し
た断面図である。
[Example] The present invention will be explained below based on a specific example. FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to an embodiment of the present invention.

導電型半導体基板5としてN型シリコン基板を用いた。An N-type silicon substrate was used as the conductive semiconductor substrate 5.

この基板5には公知の集積回路製造の技術を用いて、容
量素子としての、コンデンサー10130、 トランジ
スタ20、が形成されている。
A capacitor 10130 and a transistor 20 as capacitive elements are formed on this substrate 5 using a known integrated circuit manufacturing technique.

基板5上には、前記それぞれの回路素子への接続部を除
いて、二酸化珪素から成る酸化膜6Aが形成されており
、その酸化膜6A上には、必要なアルミニウム(以下A
1と略す)から成る配線層7A、7Bが蒸着によって形
成されている。さらにその上に窒化珪素から成る絶縁膜
8がスパッタリングによって形成されている。
An oxide film 6A made of silicon dioxide is formed on the substrate 5, except for the connection parts to the respective circuit elements, and on the oxide film 6A, necessary aluminum (hereinafter referred to as A
1) are formed by vapor deposition. Furthermore, an insulating film 8 made of silicon nitride is formed thereon by sputtering.

詳細に各部を説明すると、A1配線層7A17Bは、コ
ンデンサ10の負極を構成する。容量素子は、P十型領
域51乃至53で構成し、ポリシリコン配置11119
A、9Gはそれぞれコンデンサ10.30の正極を構成
し、ポリシリコン配線層9Bはトランジスタ20のゲー
ト端子であり、トランジスタ20はN十型領域21.2
3で構成され、領域21.23はそれぞれソース、ドレ
インである。コンデンサ10、トランジスタ20はウェ
ル61にコンデンサ30はウェル63に配設される。
To explain each part in detail, the A1 wiring layer 7A17B constitutes the negative electrode of the capacitor 10. The capacitive element is composed of P-shaped regions 51 to 53, and has a polysilicon arrangement 11119.
A and 9G constitute the positive electrode of the capacitor 10.30, respectively, the polysilicon wiring layer 9B is the gate terminal of the transistor 20, and the transistor 20 is connected to the N+ type region 21.2.
3, and regions 21 and 23 are the source and drain, respectively. The capacitor 10 and the transistor 20 are arranged in a well 61, and the capacitor 30 is arranged in a well 63.

又、A1配線層7Cはトランジスタ20とコンデンサ3
0の負極とを接続する。そして、基板5上には、5if
t等の酸化膜71乃至74、PSGナトNlt化111
6B乃至6D、 S i s N 4等ノハッシベイシ
ョンI!! 8 、が配設されている。以上の様子を平
面的に捉えた様子を第2図の平面図にし、同実施例装置
の等価回路図を第3図に示す。なお第2図、第3図での
引出し線に付した番号は第1図で付した番号と対応させ
である。本実施例装置には、端子2A、2Bを設ける。
Further, the A1 wiring layer 7C has a transistor 20 and a capacitor 3.
Connect with the negative electrode of 0. Then, on the board 5, 5if
t etc. oxide films 71 to 74, PSG nato Nlt conversion 111
6B to 6D, S i s N 4th Class Nohassibation I! ! 8 is installed. A plan view of the above situation is shown in FIG. 2, and an equivalent circuit diagram of the same embodiment is shown in FIG. The numbers attached to the lead lines in FIGS. 2 and 3 correspond to the numbers attached to FIG. 1. The device of this embodiment is provided with terminals 2A and 2B.

以下、第4図に示す特性図を用いて、第1実施例装置の
作用を示す。第4図は、横軸にトランジスタ2oのゲー
ト電位を示し、縦軸に端子2A。
The operation of the device of the first embodiment will be described below using the characteristic diagram shown in FIG. In FIG. 4, the horizontal axis shows the gate potential of the transistor 2o, and the vertical axis shows the terminal 2A.

2B間の容量を示す。又、実線108,118はコンデ
ンサ10の電圧特性を示し、破11308゜31Sはコ
ンデンサ30の電圧特性を示し、実線10S、15Sが
本実施例装置のコンデンサ全体つまり、端子2A、28
間の電圧特性を示す。
It shows the capacity between 2B. Further, solid lines 108 and 118 indicate the voltage characteristics of the capacitor 10, broken lines 11308°31S indicate the voltage characteristics of the capacitor 30, and solid lines 10S and 15S indicate the entire capacitor of this embodiment, that is, the terminals 2A and 28.
The voltage characteristics between

コンデンサ10+の電圧特性は、よく知られている事で
あるが、反転領域でのキャリアの発生、再結合により、
第4図のグラフ10S→118で示される様に「しきい
値」電圧VT付近で階段的に変化する。又、コンデンサ
30の電圧特性も同様な理由により、同図に示されるグ
ラフ308→318で示される。コンデンサ10.30
とトランジスタ20の接続は第3図の等価回路図で示さ
れるため、端子2A、2B間の容量Cabは、端子2A
の電位が、端子2Bの電位Vに対して前記VT以下では
トランジスタ20が非反転である。
It is well known that the voltage characteristics of capacitor 10+ are due to the generation and recombination of carriers in the inversion region.
As shown by the graph 10S→118 in FIG. 4, it changes stepwise around the "threshold" voltage VT. Further, for the same reason, the voltage characteristics of the capacitor 30 are also shown as graphs 308→318 shown in the figure. Capacitor 10.30
Since the connection between the transistor 20 and the transistor 20 is shown in the equivalent circuit diagram in FIG. 3, the capacitance Cab between the terminals 2A and 2B is
The transistor 20 is non-inverted when the potential of the terminal 2B is less than the VT with respect to the potential V of the terminal 2B.

そのため、Cabは、コンデンサ10の容量のみである
が、該■がVTを越えるとトランジスタ20は反転する
。つまり、コンデンサ1oの電極61とコンデンサ30
の電極63は電気的に接続される。その結果、該Cab
はコンデンサ10とコンデンサ30の並列容量となる。
Therefore, Cab is only the capacitance of the capacitor 10, but when the value (2) exceeds VT, the transistor 20 is inverted. In other words, the electrode 61 of the capacitor 1o and the capacitor 30
The electrodes 63 of are electrically connected. As a result, the Cab
is the parallel capacitance of capacitor 10 and capacitor 30.

以上述べた様子は、グラフ1oS→158で示される。The situation described above is shown by the graph 1oS→158.

ところで、例えば、コンデンサ10.3oのそれぞれの
電極の面積を任意に設定することで、それぞれのコンデ
ンサの容量が設定できる。つまり、前述したグラフ10
8→158の特性が任意に選べる。
By the way, for example, by arbitrarily setting the area of each electrode of the capacitor 10.3o, the capacitance of each capacitor can be set. In other words, the graph 10 mentioned above
Characteristics from 8 to 158 can be selected arbitrarily.

本第1実施例によれば、PN接合面を容量素子とするコ
ンデンサ10.30と、それぞれのコンデンサを並列に
接続するスイッチング素子として働くトランジスタの回
路構成をした事で、実施例装置の総合コンデンサ容量が
2位置の設定ができ、ゲート電圧に追従する可変容量素
子として利用できる。
According to the first embodiment, by using a circuit configuration of a capacitor 10.30 whose PN junction surface is a capacitive element and a transistor which functions as a switching element by connecting each capacitor in parallel, the overall capacitor of the embodiment device The capacitance can be set in two positions and can be used as a variable capacitance element that follows the gate voltage.

第1実施例では、コンデンサ、トランジスタをそれぞれ
2個、1個の素子を形成したが、それぞれの個数はこれ
に限定したものではない。
In the first embodiment, two capacitors and two transistors and one element were formed, but the number of each is not limited to this.

次に第2実施例について述べる。第2実施例は、第1実
施例におけるコンデンサ30をコンデンサ10の上に構
成したものである。その様子を第5図示すが、第1実施
例と対応する素子は同番号を付した。なおコンデンサ1
0.30のそれぞれの正極は共用のポリシリコン9Eで
構成する。又、コンデンサ3oの負極7bはA1配線、
A1配線7Cと電気的に接続されている。ところで、コ
ンデンサ30は電圧特性をもたないが第2実施例装置全
体で見ると、その作用は第1実施例と同様である。
Next, a second embodiment will be described. In the second embodiment, the capacitor 30 in the first embodiment is constructed on the capacitor 10. The situation is shown in FIG. 5, where elements corresponding to those in the first embodiment are given the same numbers. Note that capacitor 1
Each positive electrode of 0.30 mm is made of common polysilicon 9E. Moreover, the negative electrode 7b of the capacitor 3o is A1 wiring,
It is electrically connected to the A1 wiring 7C. Incidentally, although the capacitor 30 does not have voltage characteristics, the operation of the second embodiment device as a whole is similar to that of the first embodiment.

第2実施例によれば、第1実施例装置の効果の他に、コ
ンデンサ30のために新たな基板面積を必要としない効
果が生じる。
According to the second embodiment, in addition to the effects of the device of the first embodiment, there is an effect that no additional board area is required for the capacitor 30.

次に応用例について述べる。応用例は、本発明装置を発
振器に利用した装置である。
Next, we will discuss application examples. An example of application is a device using the device of the present invention as an oscillator.

そのブロック図を第6図に示す。即ち、応用例装置はイ
ンバータ90乃至92、抵抗93、及び本発明のコンデ
ンサ94である。ここでコンデンサ94は、例えば、第
1実施例装置の全体と考えてよい。この回路は方形波を
出力する本発振器は方形波を出力する発振器であるが、
インバータ90乃至92が有するトランジスタの能力に
より電圧特性を生じてしまう。
Its block diagram is shown in FIG. That is, the application example devices are inverters 90 to 92, resistor 93, and capacitor 94 of the present invention. Here, the capacitor 94 may be considered as the entire device of the first embodiment, for example. This circuit outputs a square wave.This oscillator outputs a square wave.
Voltage characteristics occur depending on the capabilities of the transistors included in the inverters 90 to 92.

応用例によれば、それぞれのインバータの電圧特性を補
償する様にコンデンサ94の電圧特性を設定することで
、発振器全体の電圧特性をなくす事が出来、安定した発
振器が実現できる。
According to the applied example, by setting the voltage characteristics of the capacitor 94 to compensate for the voltage characteristics of each inverter, the voltage characteristics of the entire oscillator can be eliminated, and a stable oscillator can be realized.

[発明の効果] 本発明によれば、導電型半導体基板上に複数の逆導電型
領域、トランジスタ、配線層、出力端子を配設した事で
、発明装置を、該トランジスタのゲート電圧を変化する
事で、可変容量素子として利用できる。
[Effects of the Invention] According to the present invention, by disposing a plurality of opposite conductivity type regions, transistors, wiring layers, and output terminals on a conductivity type semiconductor substrate, the inventive device can change the gate voltage of the transistor. Therefore, it can be used as a variable capacitance element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の具体的な第1実施例に係る半導体装
置の構成を示した断面図である。第2図1、第3図、第
4図はそれぞれ同実施例装置を示す平面図、等価回路図
、特性図である。第5図は同第2実施例に係る半導体装
置の構成を示した断面図である。第6図は、本発明の具
体的な実施例装置を用いた発振器のブロックダイアグラ
ムである。 5・・・N型シリコン基板 7A〜7C・・・AI配線層 9A〜9C・・・ポリシリコン配線層 10.30・・・コンデンサ 20・・・トランジスタ 特許出願人    日本電装株式会社 代理人     弁理士 大川 宏 量      弁理士 藤谷 修 同      弁理士 丸山明夫 第1図 第2図 r 第3図 一ゲート@立l 第5図 第6図
FIG. 1 is a sectional view showing the structure of a semiconductor device according to a first embodiment of the present invention. FIGS. 2 1, 3, and 4 are a plan view, an equivalent circuit diagram, and a characteristic diagram showing the same embodiment device, respectively. FIG. 5 is a sectional view showing the structure of a semiconductor device according to the second embodiment. FIG. 6 is a block diagram of an oscillator using a specific embodiment of the present invention. 5...N-type silicon substrate 7A to 7C...AI wiring layer 9A to 9C...Polysilicon wiring layer 10.30...Capacitor 20...Transistor patent applicant Nippondenso Co., Ltd. agent Patent attorney Hiroki Okawa Patent Attorney Shudo Fujitani Patent Attorney Akio Maruyama Figure 1 Figure 2 r Figure 3 1 Gate @ Stand l Figure 5 Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)導電型半導体基板と、 前記基板に設けられたトランジスタと、 前記基板に形成され、前記基板とのPN接合面を容量素
子として用いる少なくとも2個の逆導電型領域と、 前記トランジスタに設けられたソース端子、ドレイン端
子を、前記逆導電型領域のそれぞれに設けられた端子に
個別に、且つ電気的に接続する配線層と、 前記トランジスタのゲート、ソース、前記基板のそれぞ
れと接続される出力端子と、を有し、該トランジスタの
ゲート電位に応じて、前記ソース、前記基板間の容量を
変化させることを特徴とする半導体装置。
(1) a conductive type semiconductor substrate; a transistor provided on the substrate; at least two opposite conductivity type regions formed on the substrate and using a PN junction surface with the substrate as a capacitor; and provided on the transistor. a wiring layer that individually and electrically connects the source terminal and drain terminal provided in each of the opposite conductivity type regions to terminals provided in each of the opposite conductivity type regions; and a wiring layer that is connected to each of the gate, source, and substrate of the transistor. What is claimed is: 1. A semiconductor device comprising: an output terminal; the semiconductor device is characterized in that the capacitance between the source and the substrate is changed according to a gate potential of the transistor;
(2)前記導電型半導体基板はP型又はN型の半導体基
板であり、前記逆導電型領域は該P型又はN型に対応し
てN型又はP型の導電型半導体領域である特許請求の範
囲第1項記載の半導体装置。
(2) A patent claim in which the conductivity type semiconductor substrate is a P type or N type semiconductor substrate, and the opposite conductivity type region is an N type or P type conductivity type semiconductor region corresponding to the P type or N type. The semiconductor device according to item 1.
(3)前記基板は、相対する面のそれぞれに前記逆導電
型領域を有する特許請求の範囲第1項記載の半導体装置
(3) The semiconductor device according to claim 1, wherein the substrate has the opposite conductivity type regions on each of opposing surfaces.
JP11116285A 1985-05-23 1985-05-23 Semiconductor device Granted JPS61269380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11116285A JPS61269380A (en) 1985-05-23 1985-05-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11116285A JPS61269380A (en) 1985-05-23 1985-05-23 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS61269380A true JPS61269380A (en) 1986-11-28
JPH0569315B2 JPH0569315B2 (en) 1993-09-30

Family

ID=14554046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11116285A Granted JPS61269380A (en) 1985-05-23 1985-05-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61269380A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162381A (en) * 1987-11-27 1989-06-26 American Teleph & Telegr Co <Att> Voltage control variable capacitor and variable frequency oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162381A (en) * 1987-11-27 1989-06-26 American Teleph & Telegr Co <Att> Voltage control variable capacitor and variable frequency oscillator

Also Published As

Publication number Publication date
JPH0569315B2 (en) 1993-09-30

Similar Documents

Publication Publication Date Title
US3609479A (en) Semiconductor integrated circuit having mis and bipolar transistor elements
JPH02246261A (en) Capacitor structure and monolithic voltage maltiplier
JPS6244418B2 (en)
EP0633612A2 (en) Fast charging MOS capacitor structure for high magnitude voltage of either positive or negative polarity
US4626881A (en) Capacitor produced of a layer combination of metal, insulator and semiconductor
JPH02280621A (en) Transistor circuit
JPH01283863A (en) Mos type semiconductor device
CN100431151C (en) Integrated circuit capacitor
US4241360A (en) Series capacitor voltage multiplier circuit with top connected rectifiers
US3450965A (en) Semiconductor having reinforced lead structure
JPS6386465A (en) Method of forming capacitor on substrate
JPS61269380A (en) Semiconductor device
US3544862A (en) Integrated semiconductor and pn junction capacitor
JPS63310156A (en) Integrated circuit
JPH01214055A (en) Electrostatic breakdown protective device
US4190778A (en) A.C. supplied integrated semi-conductor logic circuit
JP2980142B2 (en) Semiconductor capacitive element and circuit using the same
JP2563456B2 (en) MIS type capacitive element
JPH0396267A (en) Semiconductor integrated circuit device
JPH03257855A (en) Semiconductor device
JPH0473960A (en) Integrated circuit
JPH07135296A (en) Semiconductor integrated circuit device
JPS5853864A (en) Seiconductor variable capacitance element
JPS62154661A (en) Semiconductor device
JPH01187965A (en) Protective circuit against surge voltage