JPS61269075A - Measuring instrument applying light - Google Patents

Measuring instrument applying light

Info

Publication number
JPS61269075A
JPS61269075A JP60111022A JP11102285A JPS61269075A JP S61269075 A JPS61269075 A JP S61269075A JP 60111022 A JP60111022 A JP 60111022A JP 11102285 A JP11102285 A JP 11102285A JP S61269075 A JPS61269075 A JP S61269075A
Authority
JP
Japan
Prior art keywords
output
optical
differential
differential amplifier
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60111022A
Other languages
Japanese (ja)
Inventor
Yoshiaki Ida
井田 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60111022A priority Critical patent/JPS61269075A/en
Publication of JPS61269075A publication Critical patent/JPS61269075A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To enable both AC and DC components to be measured when a quantity to be measured is optically detected by making a signal processed by a differential integrator and a signal processed by a differential amplifier and processing both the signals for a division. CONSTITUTION:A light from a transmitter 1 is projected into a photosensor unit 15 including a Faraday element 5 and the light modulated by a magnetic field to be measured is received by a receiver 9. A differential amplifier 17 sums up the output of an amplifier 10 and of a differential integrator 16 and this sums up the output of the amplifier 10 and the output of the differential amplifier 17 divided by the gain thereof. The output of the differential amplifier 17 excluding a modulated component is divided by the output of the differential amplifier 17 proportional to the modulated component thereof by a divider 14 to obtain an output. Therefore, not only the phenomena the AC component of a quantity to be measured but also those of the DC component thereof can be measured without being affected by the change in a light transmitting path and the light transmitter.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は例えば電界や磁界などの被測定量により光学
特性が変化する材料を使用し、その光強度変化を利用し
て被測定量を光学的に検出する測定装置に関するもので
ある。
[Detailed Description of the Invention] [Field of Industrial Application] This invention uses a material whose optical properties change depending on the quantity to be measured, such as an electric field or a magnetic field, and utilizes the change in light intensity to optically measure the quantity to be measured. The present invention relates to a measuring device that detects

〔従来の技術〕[Conventional technology]

第8図は従来の光応用測定装置の構成図で、例として7
アラデー効果を利用した磁界測定装置を示したものであ
る。図におhて、t!It’i光送信機、(2)は光フ
ァイバ、(31はレンズ、141は偏光子、(6)は7
ア2デー素子、(61は検光子、17) f′iレンズ
、181 d光7アイパ、(9)ハ光受信機、tto+
は増幅器、(11)は積分器、0乃はカップリングコン
ダンサ、(11は増幅器、α4は割算器である。
Figure 8 is a diagram showing the configuration of a conventional optical measurement device.
This shows a magnetic field measuring device that uses the Alladay effect. In the figure, h and t! It'i optical transmitter, (2) is an optical fiber, (31 is a lens, 141 is a polarizer, (6) is 7
A2 d element, (61 is analyzer, 17) f'i lens, 181 d optical 7 eyeper, (9) C optical receiver, tto+
is an amplifier, (11) is an integrator, 0 to coupling capacitors, (11 is an amplifier, and α4 is a divider.

次に動作について説明する。光送信機1!1から出た光
は光7アイパ(2)を通り、レンズ(3]で平行ビーム
とあり偏光子(4)に入射する・偏光子(4)で直線偏
光になり、ファラデー素子(5)に入るが、光の進行方
向と平行方向の磁界があると、この磁界により、上記直
線偏光の偏光面がファラデ    □−効果により回転
する。従って検光子(61である角度の偏光面の光を透
過するように設定しておくと(一般的には直線性が最も
良くなるように上記偏光子(41と検光子(6)とはそ
の偏光面が45.0の角度をなすように配置される)磁
界により光が強度変調される0この光をレンズ17)で
集光し、光ファイバ(8)に入り、光受信機(9)で光
電変換された後、必要な電圧に増幅器(lαで増幅後、
一方は変調成分を平均化するため、積分器(川に入れ、
他方は変調成分だけを増幅するため、カップリングコン
デンサ(1′4で交流分だけ七通し、増幅器(I埠で増
幅す条。これら両者の出力を割算器04で割算する。こ
の割算処理することにより、光伝送路(例えば光7アイ
パ+21 +81自体や、これらとレンズ+31171
との結合部分)%光送信様+11でのロス変化や光パワ
ー変化による誤差を補償している。これは光センサM(
1119(レンズ+31、偏光子(41、ファラデー素
子tfi)、検光子(6)、レンズ1フ)で構成される
)での磁界にLる光強度変調の度合は不変であるため、
光送信機+11の光パワーが小さくなったり、光伝送路
でのロスが大きくなつ九すしても、平均受光パワー(変
調成分を収り除いた分、即ち積分器(11)の出力に相
当する)も小さくなり、割算する結果、常に一定の出力
が得られるわけである。
Next, the operation will be explained. The light emitted from the optical transmitter 1!1 passes through the optical 7 eyeper (2), becomes a parallel beam at the lens (3), and enters the polarizer (4).It becomes linearly polarized light at the polarizer (4), and becomes a Faraday beam. When the light enters the element (5), if there is a magnetic field in a direction parallel to the traveling direction of the light, this magnetic field rotates the plane of polarization of the linearly polarized light due to the Faraday effect.Therefore, the analyzer (61) If the polarizer (41) and the analyzer (6) are set to transmit light from the plane (generally, the polarization planes of the polarizer (41) and the analyzer (6) make an angle of 45.0 so that the linearity is the best. The light is intensity-modulated by a magnetic field (arranged as shown in Fig. After amplification with an amplifier (lα,
On the other hand, in order to average the modulation components, an integrator (injected into the river,
On the other hand, in order to amplify only the modulation component, a coupling capacitor (1'4) is used to pass the AC component, and an amplifier (I is used to amplify it).The outputs of both of these are divided by a divider 04.This division By processing, the optical transmission path (for example, the optical 7-eyeper +21 +81 itself, and these and the lens +31171)
This compensates for errors due to loss changes and optical power changes at +11% optical transmission. This is the optical sensor M (
1119 (consisting of lens +31, polarizer (41, Faraday element TFI), analyzer (6), and lens 1f)) does not change the degree of light intensity modulation caused by the magnetic field.
Even if the optical power of the optical transmitter +11 becomes smaller or the loss in the optical transmission line increases, the average received light power (the amount after removing the modulation component, that is, equivalent to the output of the integrator (11) ) also becomes smaller, and as a result of division, a constant output is always obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の光応用測定装置は以上のように構成されているの
で交流分だけしか測定することができず、例えば直流の
パルスのような測定量は測れなかつ九・ この発明は上記のような問題点を解消するためになされ
たもので、直流のパルスまで測定できる光応用測定装置
を提供するものである。
Since the conventional optical applied measuring device is configured as described above, it can only measure alternating current, and cannot measure quantities such as direct current pulses. It was developed to solve this problem, and provides an optical measuring device that can measure up to DC pulses.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る光応用測定装置は、光受信機の出力を一
方の入力として動作する差動積分器と、上記光受信機の
出力と上記差動積分器の出力との差を入力として動作し
その出力を自己の利得倍数で除したものを上記差動積分
器の他方の入力とする差動増幅器と、上記差動積分器と
上記差動増幅器との両出力の比を出力する割算器とを備
えたものである。
The optical applied measurement device according to the present invention includes a differential integrator that operates with the output of an optical receiver as one input, and a differential integrator that operates with the output of the optical receiver and the output of the differential integrator as input. a differential amplifier whose output is divided by its own gain multiple as the other input of the differential integrator; and a divider which outputs the ratio of both outputs of the differential integrator and the differential amplifier. It is equipped with the following.

〔作用〕[Effect]

この発明においては、差動積分器は光受信機の出力と変
調成分との差を積分して変調成分を取シ除いた平均値の
信号を出力し、差動増幅器は光受信機の出力と平均値と
の差を増幅して変調成分のみに比例した信号・を出力す
る。
In this invention, the differential integrator integrates the difference between the output of the optical receiver and the modulation component and outputs an average value signal with the modulation component removed, and the differential amplifier integrates the difference between the output of the optical receiver and the modulation component. The difference from the average value is amplified and a signal proportional to only the modulation component is output.

〔実施例〕〔Example〕

以下、この発明の一実施例を図につ−て説明する。K1
図において、第8図と同一符号のものは従来と同一のも
のを示す。04mは差動J積分器で、増幅器tlolの
出力信号と抵抗all四により後述の差動増幅器αηの
出力をその利得Aで除した値に分圧した信号との差を入
力とする。a?)は増幅器(lαとDC結合された差動
増幅器で、増幅器(1(1の出力信号と、差動積分器−
の出力信号との差を入力とする。
An embodiment of the present invention will be described below with reference to the drawings. K1
In the figure, the same reference numerals as those in FIG. 8 indicate the same parts as in the prior art. 04m is a differential J integrator which inputs the difference between the output signal of the amplifier tlol and a signal obtained by dividing the output of a differential amplifier αη, which will be described later, by its gain A using a resistor all4. a? ) is a differential amplifier DC-coupled with the amplifier (lα), and the output signal of the amplifier (1 (1) and the differential integrator -
The difference between the output signal and the output signal is input.

次に動作につ−て説明する。光送信機+11から、増幅
器001までに至る動作は従来と同一なのでここでは省
略する。
Next, the operation will be explained. The operation from the optical transmitter +11 to the amplifier 001 is the same as the conventional one, and therefore will not be described here.

差動増幅器11ηは増幅器fillの出力、即ち光セン
サ部−が変調されないときの光パワー(平均受光パワー
]と光センサ部0均が変調された分の光パワーの合成光
パワーに比例した電圧′t″1つの入力とし、差動積分
器α・の出力をもう1つの入力とし、サミングする。こ
こで差動積分器Qflは増幅器(重αの出力を1つの入
力とし、差動増幅器1ηの出力をその利得分の1にした
電圧をもう1つの入力とし、サミングしたものであり、
このようにして差681分器a・は、変調成分1−*り
除いた光パワーに比例した電圧を出力し、差動増幅器+
171は変調成分に比例した電圧を出力することとなり
、これら両者の割算を割算器04で行うことにより、光
伝送路や光送信機+13の変動に影響    ゛されな
−で正確に直流のパルス現象まで測定することができる
The differential amplifier 11η generates a voltage proportional to the output of the amplifier fill, that is, the combined optical power of the optical power when the optical sensor section is not modulated (average received optical power) and the optical power when the optical sensor section is modulated. t'' is one input, and the output of the differential integrator α is the other input, and the output of the differential integrator α is used as one input. The voltage with the output divided by its gain is used as another input and summed.
In this way, the differential divider 681 a outputs a voltage proportional to the optical power removed from the modulation component 1-*, and the differential amplifier +
171 outputs a voltage proportional to the modulation component, and by dividing both of them by the divider 04, it is possible to accurately generate DC voltage without being affected by fluctuations in the optical transmission line or the optical transmitter. Even pulse phenomena can be measured.

なお、以上の実施例では、ファラデー効果を利用した磁
界測定の例であるが、ポッケルス効果を利用した電界、
電圧測定や、光弾性効果を利用した圧力や加速度測定、
その地被測定量に    ゛より光が強度変調されるも
のにつhても同様の効果全奏する。またこの°実施例で
は差動積分器01として、DC利得が1の場合について
述べたが、利得が1以外の場合は、その出力を利得分の
1にした値にして差動増幅器aηにサミングしても同様
の効果を奏する。
Note that the above example is an example of magnetic field measurement using the Faraday effect, but electric field measurement using the Pockels effect,
Voltage measurement, pressure and acceleration measurement using photoelastic effect,
The same effect can be achieved even when the intensity of the light is modulated based on the measured amount of ground cover. In addition, in this embodiment, the case where the DC gain is 1 is described as the differential integrator 01, but if the gain is other than 1, the output is set to 1 of the gain and summed to the differential amplifier aη. The same effect can be achieved even if

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明は差動積分器により変調成分を
取シ除いた平均値の信号を出力し1差動増幅器により変
調成分に比例した信号を出力して両出力全割算器で割算
する構成としたので、被測定量の交流成分に限らず直流
成分も測定することができる。
As described above, in this invention, a differential integrator removes the modulation component to output an average value signal, one differential amplifier outputs a signal proportional to the modulation component, and the two outputs are divided by a full divider. Since it is configured to calculate, not only the alternating current component but also the direct current component of the quantity to be measured can be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による磁界測定装置の構成
図、第8図は従来の磁界測定装置構成図である。図にお
いて、1に房は光発信機、(91は光受信機、l14は
割算(、Onは光センサ部、Q・は差動積分器、a′6
t−x差動増幅器である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a block diagram of a magnetic field measuring device according to an embodiment of the present invention, and FIG. 8 is a block diagram of a conventional magnetic field measuring device. In the figure, 1 is an optical transmitter, (91 is an optical receiver, l14 is a divider (, On is an optical sensor part, Q is a differential integrator, a'6 is
It is a t-x differential amplifier. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)被測定量の変化により光の透過量が変化する光セ
ンサ部、この光センサ部に光を送信する光送信機、上記
光センサ部を透過した光を受信する光受信機を備えた光
応用測定装置において、上記光受信機の出力を一方の入
力として動作する差動積分器、上記光受信機の出力と上
記差動積分器の出力との差を入力として動作する差動増
幅器、この差動増幅器の出力を上記差動増幅器の利得倍
数で除したものを上記差動積分器の他方の入力とし、上
記差動積分器と上記差動増幅器との両出力の比を出力す
る割算器を備えたことを特徴とする光応用測定装置。
(1) Equipped with an optical sensor section in which the amount of light transmitted changes according to a change in the amount to be measured, an optical transmitter that transmits light to this optical sensor section, and an optical receiver that receives the light transmitted through the optical sensor section. In the optical applied measurement device, a differential integrator operates with the output of the optical receiver as one input, a differential amplifier operates with the difference between the output of the optical receiver and the output of the differential integrator as input; The output of this differential amplifier divided by the gain multiple of the differential amplifier is set as the other input of the differential integrator, and the ratio of the outputs of the differential integrator and the differential amplifier is output. An optical application measuring device characterized by being equipped with a calculator.
JP60111022A 1985-05-23 1985-05-23 Measuring instrument applying light Pending JPS61269075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60111022A JPS61269075A (en) 1985-05-23 1985-05-23 Measuring instrument applying light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60111022A JPS61269075A (en) 1985-05-23 1985-05-23 Measuring instrument applying light

Publications (1)

Publication Number Publication Date
JPS61269075A true JPS61269075A (en) 1986-11-28

Family

ID=14550405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60111022A Pending JPS61269075A (en) 1985-05-23 1985-05-23 Measuring instrument applying light

Country Status (1)

Country Link
JP (1) JPS61269075A (en)

Similar Documents

Publication Publication Date Title
US4629323A (en) Birefringence type measuring device
DE69912969D1 (en) OPTICAL PHASE DETECTOR
US3506833A (en) Apparatus for transmitting variable quantities to a remote point of measurement incorporating modulated light beam as information carrier
WO2006095620A1 (en) Photo-sensor and photo-current/voltage sensor
US6563589B1 (en) Reduced minimum configuration fiber optic current sensor
US6285182B1 (en) Electro-optic voltage sensor
JP4127413B2 (en) Method and apparatus for measuring voltage
US5075793A (en) Apparatus for detecting intensity-modulated light signals
JPS61269075A (en) Measuring instrument applying light
EP0666976A1 (en) Method and apparatus for compensating for the residual birefringence in interferometric fiber-optic gyros
US3552860A (en) Refraction measuring apparatus
EP0565603B1 (en) Fiber optic gyroscope bias modulation amplitude determination
JP3533755B2 (en) Fiber optic gyro
RU2160885C1 (en) Method of stabilization of scale factor of fiber-optical gyroscope
RU2109258C1 (en) Piezooptical meter of mechanical values
JPS6156909A (en) Method of evaluating signal in optical fiber type rotary sensor
SU883801A1 (en) Device for amplitude modulation coefficient control
SU901920A1 (en) Device for contactless current measuring
JPS63188704A (en) High-sensitivity optical fiber sensor
JPS61260174A (en) Measuring apparatus applying light
RU2010236C1 (en) Device for graduation of means measuring angular parameters of motion
SU917099A1 (en) Device for touch-free measuring of current
SU1257588A1 (en) Device for calibration checking of group lag time
SU1645818A1 (en) Phasic light distance finder
SU483585A1 (en) Doppler recording device