JPS6126898A - Method of melting and decontaminating radioactivity contaminated metal - Google Patents

Method of melting and decontaminating radioactivity contaminated metal

Info

Publication number
JPS6126898A
JPS6126898A JP14754484A JP14754484A JPS6126898A JP S6126898 A JPS6126898 A JP S6126898A JP 14754484 A JP14754484 A JP 14754484A JP 14754484 A JP14754484 A JP 14754484A JP S6126898 A JPS6126898 A JP S6126898A
Authority
JP
Japan
Prior art keywords
slag
melting
decontamination
basicity
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14754484A
Other languages
Japanese (ja)
Other versions
JPH0531759B2 (en
Inventor
宇田 達彦
伊庭 甫
三浦 襄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14754484A priority Critical patent/JPS6126898A/en
Publication of JPS6126898A publication Critical patent/JPS6126898A/en
Publication of JPH0531759B2 publication Critical patent/JPH0531759B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、核燃料物質を取扱う原子力施設等で発生する
放射性物質で汚染した金属にスラグ剤を添加して加熱溶
融し、放射性物質をスラグ中に包含させる溶融除染法に
係り、特に放射性物質がスラグへ移行する効率を最適に
するスラグ剤組成を与えるのに好適な放射能汚染金属の
溶融除染法に  □関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention involves adding a slag agent to metal contaminated with radioactive materials generated in nuclear facilities, etc. that handle nuclear fuel materials, heating and melting the metal, and adding the radioactive material to the slag. The present invention relates to melt decontamination methods for radioactively contaminated metals that are suitable for providing a slag agent composition that optimizes the efficiency with which radioactive materials are transferred to slag.

〔発明の背景〕[Background of the invention]

金属溶融除染法は、放射能で汚染した金属と共に無機酸
化物を主体とするスラグ剤を添加し、加熱溶融して放射
性物質をスラグ剤に包含させ金属より分離回収する方式
である。この方式の具体例を第1図によ)説明する。ま
ず放射能としてウランで汚染した金属をルツボlに入れ
、さらに主にケイ酸(Sin2)、カルシア(Cab)
からなるスラグ剤を金属に対してlQwt%以下で適量
添加する。このルツボ1を汚染物飛散防止のためフィル
タなどを設けて排ガス処理対策を施した密閉型電気炉2
に納め、炉内をケミカルトラップ3を介して排気ポンプ
4で真空排気したのち、不活性ガスボンベ5よ)不活性
ガスを封入し一定圧力に制御する。次にヒーター6で加
熱昇温して金属およびスラグ剤を溶融すると、ルツボ1
内では比重差により溶融スラグ7と溶融金属8の2を層
に分離し、この過程でスラグ中にウラン化合物が取り込
まれる。
The metal melting decontamination method is a method in which a slag agent mainly composed of inorganic oxides is added to radioactively contaminated metals, and the slag agent is heated and melted to incorporate the radioactive materials into the slag agent, which is then separated and recovered from the metal. A specific example of this method will be explained with reference to FIG. First, metals contaminated with radioactive uranium are placed in a crucible, and then mainly silicic acid (Sin2) and calcia (Cab) are placed in a crucible.
A suitable amount of a slag agent consisting of 1Qwt% or less is added to the metal. This crucible 1 is used in a closed electric furnace 2 which is equipped with a filter to prevent contaminants from scattering and takes measures to treat exhaust gas.
After the inside of the furnace is evacuated through a chemical trap 3 and an exhaust pump 4, an inert gas (in an inert gas cylinder 5) is filled and the pressure is controlled to be constant. Next, when the metal and slag agent are melted by heating with heater 6, crucible 1
Inside, the molten slag 7 and the molten metal 8 are separated into two layers due to the difference in specific gravity, and in this process, uranium compounds are incorporated into the slag.

このような放射能汚染物質の溶融除染の過程で除染効果
に最も関与しているものはスラグ剤である。従来、この
スラグ剤を選定する上では特に最適化がはかられておら
ず、例えば鉄材に対しては、一般に金属精製錬に用いら
れているSiO□−CaO=A7203 系スラグ剤や
5in2−CaO−Fe20゜系スラグ剤に対して第3
成分を加えてその除染効果の有無を評価していた。しか
し、これではたとえ目標とする除染効果が得られたとし
ても、それが描該スラグ組成の中で最適な組成比である
のかに関しては不明であった。
In the process of melting and decontaminating radioactive pollutants, the slag agent is the one most responsible for the decontamination effect. Conventionally, no particular optimization has been taken in selecting this slag agent.For example, for iron materials, SiO□-CaO=A7203-based slag agent or 5in2-CaO, which is generally used in metal refining and refining, has not been particularly optimized. -3rd for Fe20° type slag agent
Components were added and their decontamination effects were evaluated. However, even if the targeted decontamination effect could be obtained, it was unclear whether this was the optimum composition ratio among the slag compositions.

〔発明の目的〕[Purpose of the invention]

本発明は、添加するスラグ剤の放射能汚染物質の除染効
果を最大限に引き上げるのに最適な放射能汚染物質の溶
融除染法を提供することにある。
An object of the present invention is to provide a method for melting and decontaminating radioactive contaminants that is most suitable for maximizing the decontamination effect of the added slag agent on radioactive contaminants.

〔発明の概要〕[Summary of the invention]

クランなどの放射性物質で汚染した金属を溶解処理した
とき、ウラン化合物が溶融金属中からスラグ層へ移行す
るメカニズムの一つとしてイオン反応を考えている。す
なわち、溶融金属中で生成したウラニルイオン(UO′
2+)と、溶融スラグ中で生成したスラグイオンが溶融
金属−スラグ界面で会合し、イオン反応でスラグ・ウラ
ニル複合体を形成しスラグ層へ移行すると考える。
When metals contaminated with radioactive substances such as CRAN are melted, ion reactions are considered as one of the mechanisms by which uranium compounds migrate from the molten metal to the slag layer. In other words, uranyl ions (UO') generated in the molten metal
2+) and slag ions generated in the molten slag are considered to associate at the molten metal-slag interface, form a slag-uranyl complex through an ionic reaction, and transfer to the slag layer.

スラグイオン+ウラニルイオン 一スラグ・クラニル複合体   ・・・・・・・・・(
1)ここで代表的なスラグ剤として5iO1−CaO系
を例にとると、CaOはイオン化傾向が高く、Ca0−
Ca”+02−に解離し易く、一方SiO2は共有結合
性が強く遊離した02−イオンをとり込み5io2+2
o2−− Sinニー となって安定なイオン分子とし
て存在し易いと言われている。以上の化学反応を式で表
わすと次のようになる。
Slag ion + uranyl ion - slag/cranyl complex ・・・・・・・・・(
1) Taking the 5iO1-CaO system as a typical slag agent as an example, CaO has a high ionization tendency, and Ca0-
It easily dissociates into Ca''+02-, while SiO2 has a strong covalent bond and takes in the free 02- ion to form 5io2+2.
It is said that it is easy to exist as a stable ionic molecule as o2--Sin. The above chemical reaction can be expressed as follows.

SiO□−1−2CaO:SiOニー+2Ca” ・−
・・−・(2)ここでウシニルイオンの捕集に開力する
スラグイオンがS r Oニーとすると(1)式の反応
で得られる複合体は次の生成物となる。
SiO□-1-2CaO: SiO+2Ca" ・-
... (2) Here, if the slag ion that acts to collect the usinyl ion is S r O nee, the complex obtained by the reaction of formula (1) becomes the following product.

slOニー+2UO;j + = S i 04 (0
02)2 −・・4’)今、(3)式が除染に支配的で
あるとするならば、Sinニーイオンの生成量が多いほ
ど除染効果は高いけずである。5io2−CaO系スラ
グで混合比を色々と変えた時、Cab/5i02モル比
に対して一定量のスラグ中で生成するSinニーイオン
生成量全計算すると、第2図に示す関係となる。図よル
モル比が2のとき最大になることがわかる。
slO knee + 2UO; j + = S i 04 (0
02) 2 -...4') Now, if equation (3) is dominant in decontamination, the greater the amount of Sin knee ions produced, the higher the decontamination effect. When the mixing ratio of 5io2-CaO-based slag is varied and the total amount of Sin knee ions produced in a certain amount of slag is calculated for the Cab/5i02 molar ratio, the relationship shown in FIG. 2 is obtained. It can be seen from the figure that the ratio is maximum when the molar ratio is 2.

一般に、C,aOのごときイオン結合性の高い酸化物を
塩基性酸化物、5in2のごとき共有結合性の高い酸化
物を酸性酸化物と区別する。さらに厳密な規定法として
、金属陽イオンと酸素陰イオンのそれぞれの原子価をz
”、z−とし、両イオン間距離をa(A)とした時、両
イオン間の引力Ie次式で表わし、工の値で塩基性と酸
性を区別する。
Generally, oxides with high ionic bonding properties such as C and aO are distinguished from basic oxides, and oxides with high covalent bonding properties such as 5in2 are distinguished from acidic oxides. As a more strict regulation, the valence of each metal cation and oxygen anion is z
", z-, and when the distance between both ions is a (A), the attractive force Ie between both ions is expressed by the following equation, and basicity and acidity are distinguished by the value of .

(4)式でI値が1未満の無機酸化物を塩基性、1以上
と大きい無機酸化物を酸性とする。代表例をあげると、
Ca0=0.7,5iQ2=2−8. At20s=1
.9でるる。多成分系のスラグ剤において、スラグのイ
オン的性質を示す定義として塩基度が使われる。
In formula (4), inorganic oxides with an I value of less than 1 are considered basic, and inorganic oxides with a large I value of 1 or more are considered acidic. To give a representative example,
Ca0=0.7, 5iQ2=2-8. At20s=1
.. Ruru at 9. In multi-component slag agents, basicity is used as a definition to indicate the ionic properties of the slag.

第2図に示したCab/5in2モル比は(5)式で示
す塩基度に対応しておl)、Sinニーイオンの生成量
は塩基度2の時最大になることを示している。
The Cab/5in2 molar ratio shown in FIG. 2 corresponds to the basicity shown by equation (5) (1), indicating that the amount of Sin knee ions produced is maximum when the basicity is 2.

塩基度が1以下のときはSi0七イオシの絶対量が不足
しCa”+や02−が過剰になる、一方、塩基度が3以
上になると、SiO2が過剰になj>SiO□が重合し
て還状陰イオンとなって挙動する。例えば5in2が2
分子重合すると5i2Q、とな力、ケイ酸アニオンの生
成反応は次式となる。
When the basicity is less than 1, the absolute amount of Si07ios is insufficient and Ca"+ and 02- are in excess. On the other hand, when the basicity is 3 or more, SiO2 is in excess and j>SiO□ polymerizes. It behaves as a cyclic anion.For example, 5in2 becomes 2
When molecular polymerization occurs, the reaction for producing 5i2Q, tonatori, and silicate anions is as follows.

51204+2CaO=SizOニー+2Ca”  、
・・+・・・46)(6)式の場合Si20七の生成量
のみに着目すると、塩基度が1のときに最大値を示す。
51204+2CaO=SizOney+2Ca”,
...+...46) In the case of formula (6), focusing only on the amount of Si207 produced, the maximum value is shown when the basicity is 1.

従って、上記スラグで重合体を含むケイ酸アニオンがウ
ラン捕集反応に寄与しているとすれば、ケイ酸アニオン
の生成量が最大になる塩基度2以下、1以上の範囲で除
染効果が最大になると考えた方が妥当である。このよう
な理論的な根拠のもとに代表的な酸性−m基性混合酸化
物5i02  A403  CaOスラグ剤を用いて、
ウラン化合物で汚染した鉄材の溶融試験を行った。その
結果を第3図に示す。
Therefore, if silicate anions containing polymers in the slag contribute to the uranium scavenging reaction, the decontamination effect will be effective in the basicity range of 2 or less and 1 or more, where the amount of silicate anions produced is maximum. It is more reasonable to think that it will be the maximum. Based on this theoretical basis, using a typical acidic-m-based mixed oxide 5i02 A403 CaO slag agent,
Melting tests were conducted on iron materials contaminated with uranium compounds. The results are shown in FIG.

第3図の実験条件は表面付着ウラン濃度500ppm相
当、スラグ添加量は鉄材重量の1gwt%、加熱温度約
x6500である。図より、塩基度1.5前後において
除染係数は最大になることがわかる。ここで除染係数は
(金属汚染ウラン量)/(除染後の金属中ウラン量)で
求めた。
The experimental conditions shown in FIG. 3 are as follows: the concentration of uranium attached to the surface is equivalent to 500 ppm, the amount of slag added is 1 gwt% of the weight of the iron material, and the heating temperature is about 6500 x. The figure shows that the decontamination coefficient reaches its maximum when the basicity is around 1.5. Here, the decontamination coefficient was determined by (amount of uranium contaminated with metal)/(amount of uranium in metal after decontamination).

除染係数は理論的に導くことができ、(3)式における
反応で生成した8i04(UCh)2が除染反応に関与
しているものとすれば除染係数DFは次式で表わすこと
ができる。
The decontamination coefficient can be derived theoretically, and if it is assumed that 8i04(UCh)2 generated by the reaction in equation (3) is involved in the decontamination reaction, the decontamination coefficient DF can be expressed by the following equation. can.

ここで、Ws’スラグ剤の重量 WM ’金属の重量 (% )ニスラグ中の重量百分率、 〔饅 〕二金属中の重量百分率、 L :複合酸化物の分配率、を示す。Here, the weight of Ws' slag agent WM Weight of metal (% ) Weight percentage in varnish slag, [Ran] Weight percentage in two metals, L: indicates the distribution ratio of the composite oxide.

(7)式からDF’はスラグ・ウラニルイオン複合体の
分配率りに依存することがわかる。しかし、一般的にL
は被分配物質の濃度に依存すると言われておシ、汚染物
質であるウランの濃度に対してLは必ずしも一定値をと
らない。一方、完全除染に最適な、十分なりF値を一様
に規定することはできず、むしろよ、り高いDF値が要
求されるのみである。実際に低レベル汚染廃棄物を対象
にした場合、表面汚染レベルでio−”μCi/r;m
”以下、濃度にして約100 ppm&考えられるので
、例えば鉄に付着したウラン濃度が1001)pmとし
たとき、一般廃材中のウラン濃度0.02I)pmまで
汚染するのに必要なりF値は5X10” となる。この
観点から第3図のグラフをみると、S i 02−At
20s=CaO系スラグを用いた場合には塩基度が1〜
20間にあるスラグ剤を用いれば一応満足すべき除染効
果が得られることがわかる。データのパンツキを考慮に
入れて塩基度0.5〜30間であれば除染の目的に使用
できると考えられる。
From equation (7), it can be seen that DF' depends on the distribution ratio of the slag/uranyl ion complex. However, generally L
It is said that L depends on the concentration of the substance to be distributed, and L does not necessarily take a constant value with respect to the concentration of uranium, which is a pollutant. On the other hand, it is not possible to uniformly define a sufficient F value that is optimal for complete decontamination; rather, a higher DF value is required. When actually targeting low-level contaminated waste, the surface contamination level is io-"μCi/r;
``Hereafter, it is considered that the concentration is about 100 ppm, so for example, if the concentration of uranium attached to iron is 1001) pm, it is necessary to contaminate the uranium concentration in general waste to 0.02 I) pm, and the F value is 5 x 10 ” becomes. Looking at the graph in Figure 3 from this point of view, S i 02-At
20s=Basicity is 1 to 1 when using CaO-based slag
It can be seen that a satisfactory decontamination effect can be obtained by using a slag agent between 20 and 20%. Taking Panski data into account, it is considered that basicity between 0.5 and 30 can be used for decontamination purposes.

一方、同じ塩基度範囲であっても、スラグ剤の桝成成分
が変わると除染係数も大きく変わる。例えば第3図から
れかるようにS i O2F e205−CaO系スラ
グを用いたときには、約1桁除染係数が悪くなる。しか
し、塩基度1〜2の範囲に最適値が存在することにおい
ては、前記5in2−Az2o、−CaO系スラグを用
いた場合と同様の傾向にある。このことはS i 02
−Cao系スラグを基本とした場合、塩基度1〜2の範
囲に除染効果が最大となる最適値が存在し、ウランの捕
集機構から考祭して予想したように、SiOニー  イ
オンの生成量と除染効果はほぼ一致した傾向を示してい
る。
On the other hand, even if the basicity is within the same range, the decontamination coefficient will vary greatly if the slag agent composition changes. For example, as shown in FIG. 3, when SiO2F e205-CaO-based slag is used, the decontamination coefficient deteriorates by about one order of magnitude. However, the optimum basicity value exists in the range of 1 to 2, which is the same tendency as in the case of using the 5in2-Az2o, -CaO-based slag. This is S i 02
- When Cao-based slag is used as a base, there is an optimum basicity value in the range of 1 to 2 that maximizes the decontamination effect, and as expected from the uranium collection mechanism, the basicity of SiO ions is The amount produced and the decontamination effect tend to be almost the same.

8102  At203−CaQ系スラク剤ニオイテ、
At20sをFe20gに換えると総じて除染係数は高
くないが、5i02 A4Os  CaO系スラク剤ニ
第三成分を添加すると除染効果が向上する場合もある。
8102 At203-CaQ based slack agent niote,
Although the decontamination coefficient is generally not high when At20s is replaced with Fe20g, the decontamination effect may be improved if a third component of 5i02 A4Os CaO-based slack agent is added.

表1に第三成分添加による除染係数向上の例を示す。表
において、第三成分を添加したことによる除染係数向上
の理由は二つ考えられる。一つは、塩基度がより最適な
塩基度範囲である1〜2の範囲に推移したため、他の理
由は第三成分が固有の除染反応促進効果を有しているた
めである。
Table 1 shows an example of improvement in decontamination coefficient by adding a third component. In the table, there are two possible reasons for the improvement in the decontamination coefficient due to the addition of the third component. One reason is that the basicity shifted to the more optimal basicity range of 1 to 2, and the other reason is that the third component has a unique decontamination reaction promoting effect.

従って、最適なスラグ組成を選定する条件は、除染効果
が本質的に高い種類のスラグ成分を用い、かつ最適な塩
基度範囲になるように成分比を調整することにある。こ
れによって処理金属中のウラン濃度を原材中のウラン濃
度と同等もしくはそれ以下にすることができる。
Therefore, the conditions for selecting the optimal slag composition are to use slag components of a type that has essentially high decontamination effects and to adjust the component ratio so that the basicity range is optimal. This allows the uranium concentration in the treated metal to be equal to or lower than the uranium concentration in the raw material.

本発明者らは放射性物質で汚染した物質の除染係数を高
め、最適な榮件下で溶融除染が可能となるスラグ剤の選
定方式を検討した。その結果、スラグ剤の塩基度が0.
5から3の範囲、すなわち塩基性無機酸化物のスラグ中
のモルパーセントが33から75の範囲にあり、残部が
酸性無機酸化物である組成のスラグ剤を用いると除染条
件を最適化しうろことを、除染機構の推定と実験の結果
から見い出し、本発明を完成するに至った。
The present inventors investigated a method for selecting a slag agent that increases the decontamination coefficient of materials contaminated with radioactive substances and enables melting and decontamination under optimal conditions. As a result, the basicity of the slag agent was 0.
Decontamination conditions can be optimized by using a slag agent with a composition in the range of 5 to 3, that is, the molar percentage of basic inorganic oxides in the slag is in the range of 33 to 75, with the remainder being acidic inorganic oxides. This was discovered based on the estimation of the decontamination mechanism and the results of experiments, leading to the completion of the present invention.

すなわち、S 1o2−CaO−Aj20s系スラグ剤
においては、第4図に示す三成分系図における図示範囲
にあることが条件となる。この塩基度の範囲であればC
aOを他の塩基性無機酸化物に、SiO□やA40s 
k他の酸性無機酸化物に変え、よ)高い除染効果を得る
ことも可能である。さらに、無機フッ化物を代表例とす
る無機ハロゲン化合物は、イオン化傾向が高く、重合し
たケイ酸の結合を切断し、結果的にケイ酸イオンを増大
させる作用があって除染効果を高める。無機ノ・ロゲン
化物はイオン結合性の高い傾向を示すので、塩基性酸化
物と置き換わることが可能である。このため等モルのハ
ロゲン化物と塩基性酸化物で置き換えても、ハロゲン化
物を塩基性酸化物とみなして塩基度を計算し、その塩基
度を0.5から3の範囲に調整すれば除染用スラグ剤と
して有効である。無機ハロゲン化物では特にフッ化物が
有効である。
That is, the S 1o2-CaO-Aj20s-based slag agent must be within the range shown in the ternary component diagram shown in FIG. If the basicity is within this range, C
aO to other basic inorganic oxides, SiO□ and A40s
It is also possible to obtain a high decontamination effect by changing to other acidic inorganic oxides. Furthermore, inorganic halogen compounds, of which inorganic fluoride is a typical example, have a high tendency to ionize, cut bonds in polymerized silicic acid, and have the effect of increasing silicate ions, thereby enhancing the decontamination effect. Since inorganic halogenides exhibit a high tendency to ionic binding, they can be substituted for basic oxides. Therefore, even if equimolar halide and basic oxide are substituted, the basicity can be calculated by considering the halide as a basic oxide, and the basicity can be adjusted to a range of 0.5 to 3 for decontamination. It is effective as a slag agent. Among inorganic halides, fluoride is particularly effective.

以上、溶融除染効果のみをねらったスラグ剤組成につい
て述べてきたが、実際にはスラグ剤の融点もスラグ剤選
定の条件になる。スラグ剤の融点は対象金属の融点に近
く、かつ可能な限り低い方が良い。従って、第4図に示
すS i 02 kl 20s−CaO系スラグ剤を例
にとっても、塩基度が0.5〜3の範囲におって、なお
かつ融点が鉄の融点1550t:’よりも低い範囲はさ
らに限定を受ける。
The above has described the composition of a slag agent aimed only at the melting decontamination effect, but in reality, the melting point of the slag agent is also a condition for selecting a slag agent. It is preferable that the melting point of the slag agent be close to the melting point of the target metal and as low as possible. Therefore, even if we take the S i 02 kl 20s-CaO-based slag agent shown in Fig. 4 as an example, the basicity is in the range of 0.5 to 3, and the melting point is lower than the melting point of iron, 1550t:'. Even more limited.

スラグの低融点化に対してはハロゲン化物を添加すると
効果がおり、除染効果を高めることと合いまって一部ハ
ロゲン化物を添加することは有効で必る。
Adding a halide is effective in lowering the melting point of slag, and it is necessary to add a portion of the halide in order to enhance the decontamination effect.

本発明における適用金属は鉄以外にステンレスを始めと
する鉄合金および銅があげられる。
In addition to iron, applicable metals in the present invention include iron alloys including stainless steel and copper.

′!、た、汚染核種としては、クラン以外にプルトニウ
ムなどの超ウラン元素およびその他の安定な酸化物形態
を有する放射性元素がアシ、本発明はこれら放射性物質
で汚染した金属の除染にも適用可能である。
′! Contaminated nuclides include transuranium elements such as plutonium and other radioactive elements in the form of stable oxides, and the present invention can also be applied to the decontamination of metals contaminated with these radioactive substances. be.

〔発明の実施例〕[Embodiments of the invention]

第1図に示す放射能汚染金属の溶融装置において、上述
した操作手順に従ってウラン汚染金属の溶融処理を行っ
た。本実施例ではウラン汚染濃度500 ppm相当を
99%純鉄表面に塗布したのち、10wt%fjlQ各
種スラグ剤と共にルツボにおさめ、約1650″C加熱
溶融後得られたインゴット中のウラン濃度を測定し除染
係数を求めた。実施例の結果を第3図と表1に示す。第
3図において最適塩基度範囲にあつ−C3最も高い除染
係数が得られたスラグ剤の組成例はモルチで12810
2−61CaO27At20 g (塩基度=156)
であった。表1のA1〜3にはS i 02−Az2o
3−CaO系スラグの組成比を変えることによって塩基
度を変化させ、A1に塩基度1以下の例を、I62に塩
基度1〜20例を、A3に塩基度2以上の例をあげた。
In the apparatus for melting radioactively contaminated metal shown in FIG. 1, uranium contaminated metal was melted according to the operating procedure described above. In this example, a uranium contamination concentration equivalent to 500 ppm was applied to the surface of 99% pure iron, and then placed in a crucible together with 10 wt% FJlQ various slag agents, and the uranium concentration in the obtained ingot was measured after heating and melting at approximately 1650"C. The decontamination coefficient was determined. The results of the examples are shown in Figure 3 and Table 1. In Figure 3, an example of the composition of the slag agent in which the highest decontamination coefficient was obtained for -C3 in the optimum basicity range is Morti. 12810
2-61CaO27At20 g (basicity = 156)
Met. A1 to 3 in Table 1 are S i 02-Az2o
The basicity was changed by changing the composition ratio of the 3-CaO-based slag, and examples were given for A1 with a basicity of 1 or less, examples of I62 with a basicity of 1 to 20, and examples of A3 with a basicity of 2 or more.

いづれも10’以上の除染係数を示しているが、塩基度
1.5前後に於ては104以上の除染係数が得られ、第
3図において塩基度1〜2の範囲のスラグ剤を用いれば
、sooppm程度の汚染金属を原材レベルまで除染で
きることがうかがえる。次に、表1の54〜6には屋1
の組成スラグ剤に第三のスラグ成分を添加した例を示す
。A4でM−go  を添加したことにより、塩基度は
0.82から1.03側へ推移した影響もあってやや除
染係数が上った。
All of them show a decontamination coefficient of 10' or more, but when the basicity is around 1.5, a decontamination coefficient of 104 or more is obtained. This suggests that if used, it is possible to decontaminate contaminated metals of the order of sooppm down to the level of raw materials. Next, in 54-6 of Table 1, ya 1
An example in which a third slag component is added to the slag agent having the composition shown in FIG. By adding M-go to A4, the basicity shifted from 0.82 to 1.03, which resulted in a slight increase in the decontamination coefficient.

A5にMgOをCaF、に換えた例を示す。CaF2は
MgOよりは除染効果が高く、フッ化物で塩基性酸化物
の一部を置き換えることによって除染効果が高ぐなるこ
との例を示している。A6はMgOやCaF2に換えて
NjOを添加した例を示すが、これでは大巾に除染係数
が上昇している。この理NiO+Fe=FeO+Niな
る反応で還元を受は易く、溶融スラグ−金属界面近傍で
酸素イオン濃度を増し、これらイオンの受は渡しが活発
となシ、結果としてウラン化合物の捕集イオンと考えら
れるSiO七などのスラグイオンの生成を促進するため
と考えられる。
A5 shows an example in which MgO was replaced with CaF. CaF2 has a higher decontamination effect than MgO, and this example shows that the decontamination effect can be enhanced by replacing a portion of the basic oxide with fluoride. A6 shows an example in which NjO was added instead of MgO or CaF2, and in this case, the decontamination coefficient increased significantly. Due to this reaction, NiO+Fe=FeO+Ni, it is easy to undergo reduction, increasing the concentration of oxygen ions near the molten slag-metal interface, and these ions are considered to be actively transferred, and as a result, they are considered to be ions that collect uranium compounds. This is thought to be because it promotes the production of slag ions such as SiO7.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、溶融処理金属に適したス
ラグ成分種、およびスラグの融点や処理後の金属の化学
的性質等を調整するために添加するスラグ成分種を決め
た後、スラグの塩基度が1.5前後の値になるような組
成比に調整することによって最適な除染用スラグ剤を与
えることができる。
As described above, according to the present invention, after determining the slag component type suitable for the molten metal and the slag component type to be added to adjust the melting point of the slag and the chemical properties of the metal after treatment, the slag An optimal decontamination slag agent can be provided by adjusting the composition ratio so that the basicity of the slag agent becomes around 1.5.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶融処理装置のフロー図、第2図は5iQ2−
CaO系溶融スラグの塩基度とSinニーイオン生成量
(計算値)の関係図、第3図は塩基度と除染係数の関係
図、第4図はS i Ox  htt 0s−CaO系
スラグ剤における塩基度0.5〜3の範囲の組成比を限
定する図を示す。 l・・・ルツボ、2・・・密閉型電気炉、3・・・ケミ
カルトラップ、4・・・排気ポンプ、5・・・不活性ガ
スボンベ、6・・・ヒータ、7・・・溶融スラグ、8・
・・溶融金属。
Figure 1 is a flow diagram of the melt processing equipment, Figure 2 is 5iQ2-
A diagram showing the relationship between the basicity of CaO-based molten slag and the amount of Sin knee ions produced (calculated value). Figure 3 is a diagram showing the relationship between basicity and decontamination coefficient. Figure 4 shows the relationship between basicity and decontamination coefficient of CaO-based molten slag. The figure which limits the composition ratio in the range of degree 0.5-3 is shown. l... Crucible, 2... Closed electric furnace, 3... Chemical trap, 4... Exhaust pump, 5... Inert gas cylinder, 6... Heater, 7... Molten slag, 8・
...molten metal.

Claims (1)

【特許請求の範囲】 1、放射性物質で汚染した金属に主として無機酸化物か
らなるスラグ剤を添加して加熱溶融し、放射性物質をス
ラグ中に包含させる放射能汚染金属の溶融処理法におい
て、塩基性無機酸化物の含有率が33から75モルパー
セントの範囲にあり、残部が前記酸化物より酸性側に偏
倚する無機酸化物よりなり、塩基度が0.5と3の間に
ある組成のスラグ剤を用いることを特徴とする放射能汚
染金属の溶融除染方法。 2、特許請求の範囲第1項において、塩基性無機酸化物
の一部または全部を無機ハロゲン化物で置き換え、双方
の和が33から75モルパーセントの範囲にあり、残部
が前記塩基性酸化物より酸性側に偏倚する無機酸化物よ
りなる組成のスラグ剤を用いることを特徴とする放射能
汚染金属の溶融除染方法。 3、特許請求の範囲第1項および第2項において、放射
能で汚染した金属が鉄であり、もしくは鉄を含む合金で
あることを特徴とする放射能汚染金属の溶融除染方法。 4、特許請求の範囲第3項において、添加するスラグ剤
中に少くとも塩基性酸化物として酸化カルシウムを、酸
性酸化物としてケイ酸もしくは、ケイ酸と酸化アルミニ
ウムを含むことを特徴とする放射能汚染金属の溶融除染
方法。
[Scope of Claims] 1. A method for melting radioactively contaminated metal in which a slag agent mainly consisting of an inorganic oxide is added to a metal contaminated with a radioactive substance and then heated and melted to incorporate the radioactive substance into the slag. A slag having a composition in which the content of inorganic oxides is in the range of 33 to 75 mol percent, the remainder is inorganic oxides that are more acidic than the oxides, and the basicity is between 0.5 and 3. 1. A method for melting and decontaminating radioactively contaminated metals, characterized by using a chemical agent. 2. In claim 1, part or all of the basic inorganic oxide is replaced with an inorganic halide, the sum of both being in the range of 33 to 75 mol percent, and the remainder being less than the basic oxide. A method for melting and decontaminating radioactively contaminated metals, characterized by using a slag agent having a composition consisting of an inorganic oxide biased towards the acidic side. 3. A method for melting and decontaminating radioactively contaminated metal according to claims 1 and 2, characterized in that the radioactively contaminated metal is iron or an alloy containing iron. 4. Radioactivity according to claim 3, characterized in that the slag agent added contains at least calcium oxide as a basic oxide and silicic acid or silicic acid and aluminum oxide as an acidic oxide. Method for melting and decontaminating contaminated metals.
JP14754484A 1984-07-18 1984-07-18 Method of melting and decontaminating radioactivity contaminated metal Granted JPS6126898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14754484A JPS6126898A (en) 1984-07-18 1984-07-18 Method of melting and decontaminating radioactivity contaminated metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14754484A JPS6126898A (en) 1984-07-18 1984-07-18 Method of melting and decontaminating radioactivity contaminated metal

Publications (2)

Publication Number Publication Date
JPS6126898A true JPS6126898A (en) 1986-02-06
JPH0531759B2 JPH0531759B2 (en) 1993-05-13

Family

ID=15432718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14754484A Granted JPS6126898A (en) 1984-07-18 1984-07-18 Method of melting and decontaminating radioactivity contaminated metal

Country Status (1)

Country Link
JP (1) JPS6126898A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0714103A1 (en) * 1994-11-25 1996-05-29 Doryokuro Kakunenryo Kaihatsu Jigyodan Method for melt-decontaminating metal contaminated with radioactive substance
FR2730091A1 (en) * 1995-02-01 1996-08-02 Commissariat Energie Atomique DECONTAMINATION OF ZIRCALOY USING A SLAG BY A COLD CRUCIBLE MELTING OPERATION WITH CONTINUOUS LINGOT DRAWING
EP0768361A1 (en) 1995-10-16 1997-04-16 Shin-Etsu Chemical Co., Ltd. Liquid crystal composition and liquid crystal display element comprising the same
WO1997019455A1 (en) * 1995-11-22 1997-05-29 Siemens Aktiengesellschaft Method of utilizing contaminated metal parts
WO1997022124A3 (en) * 1995-12-14 1997-09-12 Ernst Haas Process for recycling contaminated metal parts
US8157000B2 (en) 2003-05-06 2012-04-17 Meggitt (Uk) Ltd. Heat exchanger core

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928700A (en) * 1982-08-11 1984-02-15 株式会社日立製作所 Dissolving equipment for radioactive substance- polluted metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928700A (en) * 1982-08-11 1984-02-15 株式会社日立製作所 Dissolving equipment for radioactive substance- polluted metal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0714103A1 (en) * 1994-11-25 1996-05-29 Doryokuro Kakunenryo Kaihatsu Jigyodan Method for melt-decontaminating metal contaminated with radioactive substance
US5640710A (en) * 1994-11-25 1997-06-17 Doryokuro Kakunenryo Kaihatsu Jigyodan Method for melt-decontaminating metal contaminated with radioactive substance
FR2730091A1 (en) * 1995-02-01 1996-08-02 Commissariat Energie Atomique DECONTAMINATION OF ZIRCALOY USING A SLAG BY A COLD CRUCIBLE MELTING OPERATION WITH CONTINUOUS LINGOT DRAWING
EP0768361A1 (en) 1995-10-16 1997-04-16 Shin-Etsu Chemical Co., Ltd. Liquid crystal composition and liquid crystal display element comprising the same
WO1997019455A1 (en) * 1995-11-22 1997-05-29 Siemens Aktiengesellschaft Method of utilizing contaminated metal parts
WO1997022124A3 (en) * 1995-12-14 1997-09-12 Ernst Haas Process for recycling contaminated metal parts
US8157000B2 (en) 2003-05-06 2012-04-17 Meggitt (Uk) Ltd. Heat exchanger core

Also Published As

Publication number Publication date
JPH0531759B2 (en) 1993-05-13

Similar Documents

Publication Publication Date Title
JP4690347B2 (en) Methods and compositions for immobilizing radioactive and hazardous waste borosilicate glass
Kor Effect of fluorspar and other fluxes on slag-metal equilibria involving phosphorus and sulfur
Jung et al. Effect of Al2O3 and MgO on interfacial tension between calcium silicate‐based melts and a solid steel substrate
JP2009526967A (en) Process and composition for immobilizing radioactive and hazardous waste in borosilicate glass
Li et al. Investigation on properties of fluorine‐free mold fluxes based on CaO–Al2O3–B2O3 system
JPS6126898A (en) Method of melting and decontaminating radioactivity contaminated metal
Park et al. Hydrogen dissolution in the TiO2–SiO2–FeO and TiO2–SiO2–MnO based welding-type fluxes
Schwemmer et al. The relationship of weld penetration to the welding flux
JP3765772B2 (en) Stainless steel flux cored wire
JPH0136919B2 (en)
US5221646A (en) Neutron absorbing glass compositions
Yu et al. Rapid vitrification of simulated HLLW by ultra-high power laser
Heshmatpour et al. Metallurgical aspects of waste metal decontamination by melt refining
Uda et al. Decontamination of uranium-contaminated mild steel by melt refining
Chigarev et al. Regulating the silicon‐reduction process in welding under ceramic fluxes with an active deoxidising agent
JPH0242432B2 (en)
SU1685660A1 (en) Fused low-silicon welding flux
Min et al. Partition characteristics of radionuclides during a melt decontamination of a contaminated metal waste
Song et al. Effects of a slag former on the absorption of cerium and uranium oxide within a slag during a melting of stainless steel contaminated with uranium
Okafor et al. Diffusion and electrotransport of carbon in γ-phase iron-nickel alloys
Nakamura et al. Melting tests for recycling slightly radioactive metallic wastes arising from decommissioning
RU2020181C1 (en) Process for producing ferrotitanium
JPH0320719B2 (en)
US4564391A (en) Method for the recovery of silver from silver zeolite
JPS6251440B2 (en)