JPS61268306A - Apparatus for making deaerated water - Google Patents
Apparatus for making deaerated waterInfo
- Publication number
- JPS61268306A JPS61268306A JP10929285A JP10929285A JPS61268306A JP S61268306 A JPS61268306 A JP S61268306A JP 10929285 A JP10929285 A JP 10929285A JP 10929285 A JP10929285 A JP 10929285A JP S61268306 A JPS61268306 A JP S61268306A
- Authority
- JP
- Japan
- Prior art keywords
- water
- degassed
- deaerated
- heating
- cooler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Degasification And Air Bubble Elimination (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は水中の溶存気体の除去を行う脱気水製造装置に
関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a degassed water production device that removes dissolved gas from water.
[発明の技術的背景とその問題点1
水中には空気成分すなわち窒素、酸素、炭酸ガスなどの
種々の気体が溶存している。産業用あるいは化学用に水
を使用する際、上記溶存酸素などが悪影響を及ぼすこと
がある。[Technical background of the invention and its problems 1 Air components, that is, various gases such as nitrogen, oxygen, and carbon dioxide gas, are dissolved in water. When water is used for industrial or chemical purposes, the dissolved oxygen and the like may have an adverse effect.
例えばボイラ等においては溶存酸素により釜の材料が酸
化され、穴がおいてしまうことがある。For example, in boilers and the like, dissolved oxygen may oxidize the material of the kettle, resulting in holes.
また、高速クロマトグラフィあるいは生化学自動分析装
置などにおいてはチューブライン内に気泡が発生するこ
とにより測定データの誤差原因となる。従ってこれらの
分析装置の測定精度についてみると用いる水の脱気は重
要な意味を持つことになる。Furthermore, in high-speed chromatography or biochemical automatic analyzers, the generation of air bubbles in the tube line causes errors in measurement data. Therefore, when considering the measurement accuracy of these analyzers, the deaeration of the water used has an important meaning.
水中の溶存気体の除去を行う方法の1つとして、除圧下
で脱気する方法(真空脱気法)がよく利用されている。As one method for removing dissolved gases from water, a method of degassing under reduced pressure (vacuum degassing method) is often used.
しかし、一般に真空脱気法によると大量の水の脱気を行
う場合、脱気効率が急激に低下し、脱気に長時間を要す
るという問題がある。However, in general, when a large amount of water is degassed using the vacuum deaeration method, there is a problem that the deaeration efficiency rapidly decreases and a long time is required for deaeration.
また、上記方法によればバッチ処理となることから、連
続系とすることが極めて困難であり、大量の脱気水を短
時間で製造することができない。Furthermore, since the above method involves batch processing, it is extremely difficult to use a continuous system, and a large amount of degassed water cannot be produced in a short period of time.
近年、自動化学分析装置が高速化、大型化するにつれ、
大量の脱気水の需要が高まっていることから、大量の脱
気水の短時間での製造が強く望まれる。In recent years, as automatic chemical analyzers have become faster and larger,
Since the demand for large amounts of deaerated water is increasing, it is strongly desired to produce large amounts of deaerated water in a short time.
[発明の目的]
本発明は上記事情に鑑みて成されたものであり、その目
的とするところは、大量の脱気水を効率良く製造するこ
とができる脱気水製造装置を提供することにある。[Object of the Invention] The present invention has been made in view of the above circumstances, and its purpose is to provide a deaerated water production device that can efficiently produce a large amount of deaerated water. be.
[発明の概要]
上記目的を達成するための本発明の概要は、水中の溶存
気体を除去する脱気水製造装置において、水を加熱する
ことにより、水中の溶存気体の脱気を行う加熱脱気手段
と、この脱気手段よりの脱気温水を冷却する冷却手段と
、この冷却手段よりの脱気水を貯蓄する脱気水貯蓄手段
とを有することを特徴とするものである。[Summary of the Invention] The outline of the present invention for achieving the above object is to provide a degassed water production device that removes dissolved gases in water by heating the water to degas the dissolved gases in the water. The device is characterized by having an air means, a cooling means for cooling the hot water degassed from the degassing means, and a deaerated water storage means for storing the deaerated water from the cooling means.
[発明の実施例] 以下、本発明を実施例により具体的に説明する。[Embodiments of the invention] Hereinafter, the present invention will be specifically explained with reference to Examples.
第1図は本発明の一実施例たる脱気水製造装置の説明図
である。FIG. 1 is an explanatory diagram of a degassed water production apparatus which is an embodiment of the present invention.
1は加熱脱気手段たる加熱脱気槽であり、供給された水
を加熱するための加熱用ヒータ2と、この加熱用ヒータ
2の加熱温度あるいは加熱時間を制御するために加熱脱
気槽1内の水の温度を検出する温度しンサ3とが取り付
けられている。水中より脱気された気体例えば酸素、窒
素、炭酸ガスなどは排気孔4を介して外部に排出される
ように成っている。Reference numeral 1 denotes a heating deaeration tank which is a heating and deaeration means, and includes a heating heater 2 for heating supplied water, and a heating deaeration tank 1 for controlling the heating temperature or heating time of this heating heater 2. A temperature sensor 3 is attached to detect the temperature of the water inside. Gases degassed from the water, such as oxygen, nitrogen, carbon dioxide, etc., are discharged to the outside through the exhaust hole 4.
5は前記加熱脱気槽1よりの脱気渇水を冷却する冷却手
段であり、第1のクーラー6と第2のクーラー7とを有
して成る。Reference numeral 5 denotes a cooling means for cooling the degassed water from the heating and degassing tank 1, and includes a first cooler 6 and a second cooler 7.
前記第1のクーラー6は、前記加熱脱気槽1より脱気温
水と、脱気に供される原水(供給水)との熱交換により
前記脱気温水を冷却し、且つ、原水を予備加熱するもの
である。原水は純水製造装置8により不純物が除去され
た後にポンプ9及び前記第1のクーラー6を介して前記
加熱脱気槽1内に流入するものである。前記ポンプ9は
後述する水位センサの出力に応じて動作するように成っ
ている。The first cooler 6 cools the degassed hot water by heat exchange between the degassed hot water from the heating deaeration tank 1 and the raw water (supply water) to be deaerated, and also preheats the raw water. It is something to do. After impurities are removed from the raw water by the pure water production device 8, it flows into the heating deaeration tank 1 via the pump 9 and the first cooler 6. The pump 9 is configured to operate according to the output of a water level sensor, which will be described later.
前記第2のクーラー7は、前記第1のクーラー6によっ
て冷却された脱気水をさらに冷却するためのものであり
、構造的に前記第1のクーラー6と同様のものが適用さ
れるが、熱交換に供される冷却水としてはバルブ10を
介して流入する水道水が用いられる。前記バルブ10は
、第2のり一ラー7よりの脱気水の温度を検出する温度
センサ12の出力に応じてバルブ開閉手段11によりそ
の開閉動作が制御されるように成っている。また、第2
のクーラー7において熱交換に供された冷却水は外部に
排出されるように成っている。The second cooler 7 is for further cooling the degassed water cooled by the first cooler 6, and is structurally similar to the first cooler 6. Tap water flowing in through the valve 10 is used as the cooling water used for heat exchange. The opening/closing operation of the valve 10 is controlled by a valve opening/closing means 11 in accordance with the output of a temperature sensor 12 that detects the temperature of the deaerated water from the second gluer 7. Also, the second
The cooling water used for heat exchange in the cooler 7 is discharged to the outside.
13は脱気水貯蓄手段たる脱気水貯蓄槽であり、前記第
2のクーラー7より脱気水を貯蓄するものである。この
脱気水貯蓄槽13は、槽内の脱気水の温度を検出する温
度センサ14と、この温度センサ14の出力に応じて槽
内の脱気水の温度を所定の範囲例えば37℃〜40℃に
保つための保温用ヒータ15と、脱気水の表面に密着す
るカバー16と、脱気水の水位を検出する水位センサ1
7とを備えて成る。A deaerated water storage tank 13 is a deaerated water storage means, and is used to store deaerated water from the second cooler 7. This degassed water storage tank 13 has a temperature sensor 14 that detects the temperature of the degassed water in the tank, and the temperature of the degassed water in the tank is controlled within a predetermined range, for example, 37° C. A heat-retaining heater 15 for maintaining the temperature at 40°C, a cover 16 that tightly contacts the surface of the deaerated water, and a water level sensor 1 that detects the level of the deaerated water.
7.
前記カバー16は例えば発泡スチロールなどより成るも
のであり、脱気水への気体混入防止のため、脱気水表面
と空気とを遮断するものである。The cover 16 is made of, for example, styrofoam, and serves to block the surface of the degassed water from air in order to prevent gas from entering the degassed water.
また、前記水位センサ17の出力は前記ポンプ9の駆動
制御に供されるように成っている。Further, the output of the water level sensor 17 is used to control the drive of the pump 9.
18は脱気水供給バルブであり、この脱気水供給バルブ
18を介して例えば図示しない自動化学分析装置におけ
る反応槽内に供給されるように成っている。19は排出
用バルブである。Reference numeral 18 denotes a degassed water supply valve, and the degassed water is supplied through the degassed water supply valve 18 into, for example, a reaction tank in an automatic chemical analyzer (not shown). 19 is a discharge valve.
次に、以上構成による実施例装置の作用について説明す
る。Next, the operation of the embodiment device having the above configuration will be explained.
純水製造装置8により不純物が除去された原水がポンプ
9及び第1のクーラー6を介して予備加熱された後、加
熱脱気槽1内に流入する。流入した水は加熱脱気槽1に
おけるヒータ2により80℃以上にまで加熱される。す
ると、水中に含まれていた気体が放出され、放出された
気体は排気孔4を介して外部に排出される。ここに、前
記加熱脱気槽1の出口水温とDo(溶存酸素量)との関
係は第2図のようになる。The raw water from which impurities have been removed by the pure water production device 8 is preheated via the pump 9 and the first cooler 6, and then flows into the heating deaeration tank 1. The water that has flowed in is heated to 80° C. or higher by the heater 2 in the heating and degassing tank 1 . Then, the gas contained in the water is released, and the released gas is exhausted to the outside through the exhaust hole 4. Here, the relationship between the outlet water temperature of the heating deaeration tank 1 and Do (dissolved oxygen amount) is as shown in FIG.
第2図は水温とDoとの関係を示す特性図である。同図
より明らかなように、原水に含まれる気体の溶存濃度は
水温に反比例し、水温80℃以上におけるDOは約5
ppm以下となる。FIG. 2 is a characteristic diagram showing the relationship between water temperature and Do. As is clear from the figure, the dissolved concentration of gases contained in raw water is inversely proportional to the water temperature, and the DO at water temperatures of 80°C or higher is approximately 5.
ppm or less.
ところで、自動化学分析装置などにおいては、20℃〜
37℃の水温で水を使用することか多いが、そこに供給
される原水は通常37℃よりも低く、しかも10ppm
前後のDoが存在する。水温37℃における飽和溶存酸
素量は6.91111mであることから、10ρρ1前
後の原水を37℃にまで加熱した場合、溶存気体が過飽
和状態となって気泡を生ずるのは当然といえる。By the way, in automatic chemical analyzers, etc., temperatures of 20℃~
Water is often used at a temperature of 37°C, but the raw water supplied there is usually lower than 37°C and has a concentration of 10 ppm.
There are Do before and after. Since the amount of saturated dissolved oxygen at a water temperature of 37°C is 6.91111 m, it is natural that when raw water of around 10ρρ1 is heated to 37°C, the dissolved gas becomes supersaturated and bubbles are generated.
しかしながら、Doを予め5ppm!度にまで低下させ
ておけば、仮に水温37℃としても溶存気体が過飽和状
態とならないことから、気泡は生じないことになる。However, do 5ppm in advance! If the water temperature is lowered to 37° C., the dissolved gas will not become supersaturated, and no bubbles will be generated.
以上より、自動化学分析装置に供給する脱気水を製造す
るに際しては、加熱脱気槽1における加熱温度を80℃
以上沸点未満に設定すれば良い。From the above, when producing degassed water to be supplied to an automatic chemical analyzer, the heating temperature in the heating deaeration tank 1 is set at 80°C.
It is sufficient to set the temperature above the boiling point.
加熱脱気槽1内の水温は、温度センサ3の出力によりフ
ィードバック制御されることから、はぼ一定に保たれる
。The water temperature in the heating deaeration tank 1 is kept approximately constant because it is feedback-controlled by the output of the temperature sensor 3.
加熱脱気槽1よりの脱気温水は、第1のクーラー6に流
入し、前記純水製造装置よりの原水との熱交換に供され
る。この熱交換により、原水の温度はある程痕上昇する
ので、加熱脱気槽1の加熱効率を向上させることができ
る。一方、加熱脱気槽1よりの脱気温水は冷却され、第
2のクーラー7を介して脱気貯蓄楡13内に流入する。The degassed hot water from the heating deaeration tank 1 flows into the first cooler 6 and is subjected to heat exchange with the raw water from the pure water production apparatus. Due to this heat exchange, the temperature of the raw water increases to a certain extent, so that the heating efficiency of the heating deaeration tank 1 can be improved. On the other hand, the degassed hot water from the heating and deaeration tank 1 is cooled and flows into the deaeration storage wall 13 via the second cooler 7.
第2のクーラー7より流出する脱気水の温度が所定温度
(例えば37℃)にまで低下していない場合には、温度
センサ12の検出結果に応じてバルブ開閉手段11が動
作し、バルブ10が開かれる。すると、水道水が第2の
クーラー7に流れ込み、この水通水によって、前記第1
のクーラー6よりの脱気水はさらに冷却されることにな
る。また、当然ながら、純水製造装置8よりの原水の温
度が低く、第1のクーラー6のみの冷却で十分の場合に
は第2のクーラー7は不要となる。If the temperature of the degassed water flowing out from the second cooler 7 has not decreased to a predetermined temperature (for example, 37° C.), the valve opening/closing means 11 operates according to the detection result of the temperature sensor 12, and the valve 10 will be held. Then, the tap water flows into the second cooler 7, and this water flow causes the first
The degassed water from the cooler 6 will be further cooled. Furthermore, as a matter of course, if the temperature of the raw water from the pure water production device 8 is low and cooling only by the first cooler 6 is sufficient, the second cooler 7 is not necessary.
脱気水貯蓄槽13内の脱気水は、温度センサ14の出力
により保温用ヒータ14の動作がフィードバック制御さ
れるので、所定温度(例えば37℃)に保たれる。脱気
水貯蓄槽13内の脱気水量が減少し、所定水位以下にな
ると、水位センサ17の出力に応じてポンプ9が動作し
、純水製造装置8よりの原水が加熱脱気槽1内に流入さ
れる。そして、この流入した原水量に相当する脱気温水
が加熱脱気槽1より流出し、第1.第2のクーラー6.
7を介して脱気水貯蓄槽13内に流れ込むことになる。The degassed water in the degassed water storage tank 13 is maintained at a predetermined temperature (for example, 37° C.) because the operation of the heat-retaining heater 14 is feedback-controlled by the output of the temperature sensor 14. When the amount of deaerated water in the deaerated water storage tank 13 decreases to below a predetermined water level, the pump 9 operates according to the output of the water level sensor 17, and the raw water from the pure water production device 8 is pumped into the heated deaerate tank 1. is flowing into the country. Then, the degassed hot water corresponding to the amount of raw water that has flowed in flows out from the heating deaeration tank 1. Second cooler6.
7 into the deaerated water storage tank 13.
以上の自動制御により、脱気水貯蓄槽13は常時満水状
態になっていることから、大量の脱気水を迅速に外部例
えば自動化学分析装置に供給することが可能となる。ま
た、脱気水貯蓄槽13内の脱気水を所定温度に保温して
おくことにより、自動化学分析装置における恒温水(脱
気水)加熱時間を大幅に短縮することができる。Due to the above automatic control, the degassed water storage tank 13 is always kept full of water, so that a large amount of degassed water can be rapidly supplied to an external device, such as an automatic chemical analyzer. Furthermore, by keeping the degassed water in the degassed water storage tank 13 at a predetermined temperature, the heating time for constant temperature water (degassed water) in the automatic chemical analyzer can be significantly shortened.
以上説明した実施例装置の成績を下表に示す。The results of the example apparatus described above are shown in the table below.
脱気水貯蓄槽13において、槽内の脱気水表面にカバー
16を設け、空気と遮断していることから、−夜装置し
た場合でもDOの上昇は極めて少ない。In the deaerated water storage tank 13, a cover 16 is provided on the surface of the deaerated water in the tank to isolate it from the air, so that the increase in DO is extremely small even when the device is used at night.
以上、本発明の一実施例について説明したが、本発明は
上記実施例に限定されるものではなく、本発明の要旨の
範囲内で適宜に変形実施が可能であるのはいうまでもな
い。Although one embodiment of the present invention has been described above, it goes without saying that the present invention is not limited to the above-mentioned embodiment, and can be modified as appropriate within the scope of the gist of the present invention.
上記実施例においては、製造した脱気水を自動化学分析
装置に供給する場合ついて説明したが、他の装置に供給
可能であるのはいうまでもない。In the above embodiment, a case has been described in which the produced degassed water is supplied to an automatic chemical analyzer, but it goes without saying that it can be supplied to other apparatuses.
その際、他の装置における脱気水の使用温度を考慮して
冷却側り保温温度等を設定すれば良い。At this time, the cooling side heat retention temperature, etc. may be set in consideration of the temperature at which deaerated water is used in other devices.
[発明の効果]
以上詳述したように本発明によれば、連続系により、人
聞の脱気水を効率良く製造することができ、製造した脱
気水を迅速に外部に供給することができる脱気水製造装
置を提供することができる。[Effects of the Invention] As detailed above, according to the present invention, it is possible to efficiently produce human-sized deaerated water using a continuous system, and it is possible to quickly supply the produced deaerated water to the outside. It is possible to provide a deaerated water production device that can produce degassed water.
第1図は本発明の一実施例たる脱気水製造装置の説明図
、第2図は本実施例装置における加熱脱気槽1の出口水
温と溶存酸素量との関係を示す特性図である。
1・・・加熱脱気槽(加熱脱気手段)、5・・・冷却手
段、6・・・第1のクーラー、7・・・第2のクーラー
、13・・・脱気水貯蓄槽、15・・・保温用ヒータ、
16・・・カバー。FIG. 1 is an explanatory diagram of a degassed water production apparatus according to an embodiment of the present invention, and FIG. 2 is a characteristic diagram showing the relationship between the outlet water temperature of the heating deaeration tank 1 and the amount of dissolved oxygen in the apparatus of this embodiment. . 1... Heating deaeration tank (heating deaeration means), 5... Cooling means, 6... First cooler, 7... Second cooler, 13... Deaerated water storage tank, 15... Heater for heat retention,
16...Cover.
Claims (5)
て、水を加熱することにより、水中の溶存気体の脱気を
行う加熱脱気手段と、この脱気手段よりの脱気温水を冷
却する冷却手段と、この冷却手段よりの脱気水を貯蓄す
る脱気水貯蓄手段とを有することを特徴とする脱気水製
造装置。(1) In a deaerated water production device that removes dissolved gases from water, there is a heating deaeration means that deaerates dissolved gases from water by heating the water, and the degassed hot water from this deaeration means is cooled. 1. A degassed water production apparatus comprising: a cooling means for cooling the water; and a deaerated water storage means for storing the degassed water from the cooling means.
である特許請求の範囲第1項に記載の脱気水製造装置。(2) The degassed water production device according to claim 1, wherein the heating temperature in the heating and degassing means is 80° C. or higher.
された脱気温水と、前記加熱脱気手段による脱気に供さ
れる供給水との熱交換により前記脱気温水を冷却するク
ーラーを有するものである特許請求の範囲第1項又は第
2項に記載の脱気水製造装置。(3) The cooling means cools the degassed hot water by heat exchange between the degassed hot water degassed by the heating deaerator and the supplied water to be deaerated by the heating deaerator. The degassed water production device according to claim 1 or 2, which has a cooler.
密着するカバーを有するものである特許請求の範囲第1
項乃至第3項のいずれかに記載の脱気水製造装置。(4) The deaerated water storage means has a cover that is in close contact with the surface of the deaerated water to be stored.
The degassed water production apparatus according to any one of items 1 to 3.
に保つ保温用ヒーターを有するものである特許請求の範
囲第1項乃至第4項のいずれかに記載の脱気水製造装置
。(5) The degassed water production device according to any one of claims 1 to 4, wherein the degassed water storage means has a heat-retaining heater that keeps the stored degassed water at a predetermined temperature. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10929285A JPS61268306A (en) | 1985-05-23 | 1985-05-23 | Apparatus for making deaerated water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10929285A JPS61268306A (en) | 1985-05-23 | 1985-05-23 | Apparatus for making deaerated water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61268306A true JPS61268306A (en) | 1986-11-27 |
Family
ID=14506476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10929285A Pending JPS61268306A (en) | 1985-05-23 | 1985-05-23 | Apparatus for making deaerated water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61268306A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02293003A (en) * | 1989-05-01 | 1990-12-04 | Shinko Pantec Co Ltd | Heated and deaerated ultrapure water generator |
JPH03118890A (en) * | 1989-10-03 | 1991-05-21 | Mitsubishi Electric Corp | Water treating device |
JP2011133367A (en) * | 2009-12-24 | 2011-07-07 | Tosoh Corp | Degassing apparatus |
-
1985
- 1985-05-23 JP JP10929285A patent/JPS61268306A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02293003A (en) * | 1989-05-01 | 1990-12-04 | Shinko Pantec Co Ltd | Heated and deaerated ultrapure water generator |
JPH03118890A (en) * | 1989-10-03 | 1991-05-21 | Mitsubishi Electric Corp | Water treating device |
JP2011133367A (en) * | 2009-12-24 | 2011-07-07 | Tosoh Corp | Degassing apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2549946A (en) | Immersion cooling | |
JP3037121B2 (en) | Hydrogen / oxygen generator | |
JPH07263777A (en) | Laser gas purifier | |
JP4326461B2 (en) | Temperature control system for small flow rate liquid | |
JPS61268306A (en) | Apparatus for making deaerated water | |
JP2000271549A (en) | Gas-dissolved water supply device | |
JP2000051606A (en) | Gas permeation membrane apparatus | |
EP0655274A1 (en) | A method of and an apparatus for separating a liquid mixture | |
JPH0569773B2 (en) | ||
JP4842787B2 (en) | Steam generating apparatus, processing system, steam generating method and recording medium | |
JPH11193904A (en) | Deaerator and deaerating method for boiler supply water | |
JP2781931B2 (en) | Deoxidizer | |
JP3694399B2 (en) | Membrane deaerator that uses chemical deaeration depending on the feed water temperature | |
US3102789A (en) | Determination of iron in boiler water | |
JPH03284323A (en) | Method and apparatus for membrane separation | |
JPH0210664A (en) | Fuel cell water treatment system | |
JPH04340077A (en) | Liquid refrigerant circulation system | |
JPH06134446A (en) | Method for manufacturing deaerated water and module for manufacture of deaerated water | |
JP2564655Y2 (en) | Water supply system for small once-through boiler | |
JP3322798B2 (en) | Membrane deaerator using circulation of sealing water | |
JPH10309566A (en) | Ultrapure water production device | |
RU2793265C2 (en) | Method for removing carbonic acid from the steam-water path of a heat power set and apparatus for removing carbonic acid from the steam-water path of a heat power set | |
JPH047003A (en) | Removal of gas or low boiling point volatile organic matter | |
JP2000065710A (en) | Method and device for measuring concentration of gas dissolved in liquid | |
JPH0942179A (en) | Cooler for vacuum pump and film deaeration type piping corrosion preventing device using vacuum pump with cooler |