JPS61267207A - Compound superconductor - Google Patents

Compound superconductor

Info

Publication number
JPS61267207A
JPS61267207A JP60108724A JP10872485A JPS61267207A JP S61267207 A JPS61267207 A JP S61267207A JP 60108724 A JP60108724 A JP 60108724A JP 10872485 A JP10872485 A JP 10872485A JP S61267207 A JPS61267207 A JP S61267207A
Authority
JP
Japan
Prior art keywords
compound superconducting
critical current
compound
superconducting wire
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60108724A
Other languages
Japanese (ja)
Inventor
穣 山田
村瀬 暁
高津 宗吉
渋木 邦夫
貞廣 孟史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tungaloy Corp
Original Assignee
Toshiba Corp
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Tungaloy Co Ltd filed Critical Toshiba Corp
Priority to JP60108724A priority Critical patent/JPS61267207A/en
Publication of JPS61267207A publication Critical patent/JPS61267207A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、化合物超電導線に係り、特に、高い臨界電流
値が得られるようにした化合物超電導線に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a compound superconducting wire, and particularly to a compound superconducting wire capable of obtaining a high critical current value.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

周知のように、現在最も特性の優れている化合物超電導
体は、Nb5Snであり、このNb33n線を使用した
超電導磁石が多方面で利用されている。
As is well known, the compound superconductor with the most excellent characteristics at present is Nb5Sn, and superconducting magnets using this Nb33n wire are used in many fields.

しかしながら、このNbaSn線を使用した超電導磁石
では、高々11〜20Tの磁界しか発生させることがで
きない。したがって、さらに高磁界を発生させるために
新たな超電導材料の開発が望まれ、現在種々の研究が行
われている。このような研究の結果、NbN、NbC,
NbCN、MoN。
However, a superconducting magnet using this NbaSn wire can only generate a magnetic field of 11 to 20 T at most. Therefore, there is a desire to develop new superconducting materials to generate even higher magnetic fields, and various studies are currently being conducted. As a result of such research, NbN, NbC,
NbCN, MoN.

Nb3 Ge、Nba Ga、Nb5A l 、Nbs
 AIQe等の化合物超電導体が有望視されている。
Nb3Ge, NbaGa, Nb5A l, Nbs
Compound superconductors such as AIQe are considered promising.

これらの化合物は、非平衡相であるため、一般的には蒸
着法、スパッタ法、気相成長法等の真空薄膜作製法によ
って作製される。今までの研究で臨界温度TO1臨界時
間BC2,,臨界電流密度Jcの高い値が報告されてい
る。しかし、実用化には至っていない。その理由は、超
電導磁石に応用する場合には上述した特性の外に高い臨
界電流1cを要求されるからである。真空薄膜作製法で
作製された膜は必然的に非常に薄い。このため、たとえ
ば臨界電流密度Jcが105A/cnと言った高いもの
でも臨界電流1cは数100mAと非常に小さい。実際
に超電導磁石に応用するには数10〜数10OAのIc
を必要とする。したがって、このままでは実用化はでき
ない。
Since these compounds are in non-equilibrium phases, they are generally produced by vacuum thin film production methods such as vapor deposition, sputtering, and vapor phase growth. Previous studies have reported high values of critical temperature TO1, critical time BC2, and critical current density Jc. However, it has not been put into practical use. The reason for this is that when applied to a superconducting magnet, a high critical current 1c is required in addition to the above-mentioned characteristics. Films produced by vacuum thin film production methods are necessarily very thin. For this reason, even if the critical current density Jc is as high as 105 A/cn, the critical current 1c is extremely small at several 100 mA. In order to actually apply it to superconducting magnets, Ic of several tens to several tens of OA is required.
Requires. Therefore, it cannot be put to practical use as it is.

そこで、化合物超電導層の膜厚を増すことが考えられる
が、真空薄膜作製法を採用した場合、膜厚を増すと結晶
粒が粗大化し、これが原因して臨界電流密度Jcが劣化
し、やはり実用化することはできない。
Therefore, it is possible to increase the thickness of the compound superconducting layer, but if a vacuum thin film fabrication method is adopted, increasing the thickness will coarsen the crystal grains, which will cause the critical current density Jc to deteriorate. cannot be converted into

(発明の目的〕 本発明は、このような事情に鑑みてなされたもので、そ
の目的とするところは、真空薄膜作製法1   でしか
化合物超電導層を形成することができない化合物超電導
線において、臨界電流Icを充分大きくすることができ
、もって発生磁界の大きい超電導磁石の実現に寄与でき
る化合物超電導線を提供することにある。
(Objective of the Invention) The present invention has been made in view of the above circumstances, and its purpose is to improve critical The object of the present invention is to provide a compound superconducting wire that can make the current Ic sufficiently large and thereby contribute to the realization of a superconducting magnet that generates a large magnetic field.

〔発明の概要〕[Summary of the invention]

本発明によれば、化合物超電導層と常電導層とが交互に
積層されてなる化合物超電導線が提供される。
According to the present invention, a compound superconducting wire is provided in which compound superconducting layers and normal conducting layers are alternately laminated.

ざらに詳しく述べると、各化合物超電導層は。To explain in detail, each compound superconducting layer is as follows.

臨界電流密度Jcがほぼ最大となる膜厚に設定されてい
る。
The film thickness is set so that the critical current density Jc is approximately the maximum.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、独立した化合物超電導層が複数層並列
的に存在していることになる。したがって、この超電導
線全体の臨界電流1cは、各化合物超電導層の臨界電流
を合計した値となる。このため、臨界電流1cの大きい
超電導線を得ることができる。この場合、各化合物超電
導層の膜厚をそれぞれ最大の臨界電流密度Jcが得られ
る値に設定すると化合物超電導層の暦数をそれほど増す
ことなく大きな臨界電流Icのものを得ることができる
According to the present invention, a plurality of independent compound superconducting layers exist in parallel. Therefore, the critical current 1c of the entire superconducting wire is the sum of the critical currents of each compound superconducting layer. Therefore, a superconducting wire with a large critical current 1c can be obtained. In this case, if the thickness of each compound superconducting layer is set to a value that provides the maximum critical current density Jc, a large critical current Ic can be obtained without increasing the number of compound superconducting layers.

〔発明の実施例〕[Embodiments of the invention]

以下2本発明の実施例を図面を参照しながら説明する。 Two embodiments of the present invention will be described below with reference to the drawings.

第1図は1本発明の一実施例に係る化合物超電導線を局
部的に取り出して示す図である。
FIG. 1 is a diagram partially showing a compound superconducting wire according to an embodiment of the present invention.

同図において、1は銅、アルミチ、サファイア。In the figure, 1 is copper, aluminum, and sapphire.

AINなどの基板を示し、この基板1の一方の面上にば
NbN’、NbC,NbCN、’MON。
A substrate such as AIN is shown, and on one side of this substrate 1 are NbN', NbC, NbCN, and 'MON.

Nb3Ge、N”tg’AI、 Nba AlGe。Nb3Ge, N"tg'AI, NbaAlGe.

Nb3’Gaなどの化合物超電導層2が形成されている
。そして、化合物超電導層2の上面にはCu。
A compound superconducting layer 2 such as Nb3'Ga is formed. Further, the upper surface of the compound superconducting layer 2 is made of Cu.

AIなどの常電導層3が形成ぎれており、この常電導層
3の上面には化合物超電導層2が形成されている。以下
、同様に常電導層3と化合物超電導層2とが交互に積層
状態に形成されている。
A normal conducting layer 3 such as AI is partially formed, and a compound superconducting layer 2 is formed on the upper surface of this normal conducting layer 3. Thereafter, similarly, normal conductive layers 3 and compound superconducting layers 2 are alternately formed in a laminated state.

化合物超電導層2は、゛蒸着法、スパッタ法、″イオン
ブレーティング法、熱CVD法、プラズマCVD法など
の真空薄膜作製法と、これに必要に応じて熱処理工程を
組み合わせた方法によって形成されている。そして、各
化合物超電導層2ば。
The compound superconducting layer 2 is formed by a vacuum thin film production method such as evaporation method, sputtering method, ion blating method, thermal CVD method, or plasma CVD method, and a method that combines this with a heat treatment process as necessary. Then, each compound superconducting layer 2.

臨界電流密度Jcが最大になる膜厚に形成されている。The film thickness is formed to maximize the critical current density Jc.

また、常電導層3は、同じく蒸着法、スパッタ法、イオ
ンブレーティング法、熱CVD法。
Further, the normal conductive layer 3 can be formed using the same vapor deposition method, sputtering method, ion blating method, or thermal CVD method.

プラズマCVD法などの真空薄膜作製法で形成されてい
る。
It is formed by a vacuum thin film manufacturing method such as a plasma CVD method.

このような、構成であると、化合物超電導層2の数に比
例した臨界電流1cに設定できる。すなわち、前述した
化合物超電導層を真空薄膜作製法で連続的に形成した場
合、その膜厚tと臨界電流Icとの間には第2図中Aで
示すように、膜厚の増加とともに臨界電流Icが飽和す
る傾向がある。
With such a configuration, the critical current 1c can be set in proportion to the number of compound superconducting layers 2. That is, when the above-described compound superconducting layer is continuously formed by a vacuum thin film manufacturing method, the critical current increases as the film thickness increases, as shown by A in FIG. 2, between the film thickness t and the critical current Ic. Ic tends to be saturated.

一方、臨界電流密度Jcは、臨界電流Icを膜の断面積
で割ったものであるから第2図中8で示すように、ある
膜厚1.においてピーク値を示し、゛膜厚の増加ととも
に減少する傾向となる。この実施例では、各化合物超電
導層2の膜厚を、最大臨界電流密度Jcの得られる膜厚
toに設定しているので、超電導線全体の臨界電流1a
・は化合物超電導層2の数に正確に比例したものとなり
、第2図中Cで示すように直線状に増加する。したかっ
6一 て、充分大きな臨界電流Icをもった実用的な超電導線
を得ることができ、結局、前述した効果を発揮すること
になる。
On the other hand, the critical current density Jc is the critical current Ic divided by the cross-sectional area of the film, so as shown by 8 in FIG. It shows a peak value at , and tends to decrease as the film thickness increases. In this example, the thickness of each compound superconducting layer 2 is set to the thickness to that provides the maximum critical current density Jc, so the critical current 1a of the entire superconducting wire
. is exactly proportional to the number of compound superconducting layers 2, and increases linearly as shown by C in FIG. As a result, a practical superconducting wire with a sufficiently large critical current Ic can be obtained, and the above-mentioned effects can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る化合物超電導線を局部
的に取り出して示(斜視図、第2図は本発明の詳細な説
明するための図である。 1・・・基板、2・・・化合物超電導層、3・・・常電
導層。 出願人代理人 弁理士 鈴江武彦 第1図 第2図
FIG. 1 is a partially taken out perspective view of a compound superconducting wire according to an embodiment of the present invention, and FIG. 2 is a diagram for explaining the present invention in detail. 1...Substrate, 2 ... Compound superconducting layer, 3... Normally conducting layer. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)化合物超電導層と常電導層とが交互に積層されて
なることを特徴とする化合物超電導線。
(1) A compound superconducting wire characterized in that compound superconducting layers and normal conducting layers are alternately laminated.
(2)前記化合物超電導層は、臨界電流密度が最大とな
る膜厚に設定されてなることを特徴とする特許請求の範
囲第1項記載の化合物超電導線。
(2) The compound superconducting wire according to claim 1, wherein the compound superconducting layer is set to have a thickness that maximizes critical current density.
(3)前記化合物超電導層は、NbN、NbC、NbC
N、MoN、Nb_3Ge、Nb_3Ga、Nb_3A
l、Nb_3AlGeの中の何れかで形成されているこ
とを特徴とする特許請求の範囲第1項記載の化合物超電
導線。
(3) The compound superconducting layer is NbN, NbC, NbC
N, MoN, Nb_3Ge, Nb_3Ga, Nb_3A
2. The compound superconducting wire according to claim 1, wherein the compound superconducting wire is formed of any one of Nb_3AlGe and Nb_3AlGe.
(4)前記常電導層は、CuおよびAlのうちの少なく
とも一つで形成されていることを特徴とする特許請求の
範囲第1項記載の化合物超電導線。
(4) The compound superconducting wire according to claim 1, wherein the normal conductive layer is made of at least one of Cu and Al.
JP60108724A 1985-05-21 1985-05-21 Compound superconductor Pending JPS61267207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60108724A JPS61267207A (en) 1985-05-21 1985-05-21 Compound superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60108724A JPS61267207A (en) 1985-05-21 1985-05-21 Compound superconductor

Publications (1)

Publication Number Publication Date
JPS61267207A true JPS61267207A (en) 1986-11-26

Family

ID=14491942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60108724A Pending JPS61267207A (en) 1985-05-21 1985-05-21 Compound superconductor

Country Status (1)

Country Link
JP (1) JPS61267207A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211518A (en) * 1987-02-26 1988-09-02 Sumitomo Electric Ind Ltd Superconductive conductor
JPS643908A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Composite conductor
JPH07263765A (en) * 1994-03-24 1995-10-13 Agency Of Ind Science & Technol Insulating gate field effect transistor, production thereof, and integrated circuit device of insulating gate field effect transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211518A (en) * 1987-02-26 1988-09-02 Sumitomo Electric Ind Ltd Superconductive conductor
JPS643908A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Composite conductor
JPH07263765A (en) * 1994-03-24 1995-10-13 Agency Of Ind Science & Technol Insulating gate field effect transistor, production thereof, and integrated circuit device of insulating gate field effect transistor

Similar Documents

Publication Publication Date Title
Iijima et al. Biaxially aligned YBa2Cu3O7− x thin film tapes
KR910002311B1 (en) A superconductor device
US6849580B2 (en) Method of producing biaxially textured buffer layers and related articles, devices and systems
KR100766052B1 (en) Filament type coated superconductor and the method for fabricating the same
JP2523647B2 (en) Metal oxide superconducting thin film
JPS61267207A (en) Compound superconductor
US20070148330A1 (en) Superconducting article and method of forming a superconducting article
JPH05894A (en) Compound oxide superconducting thin film
Maruyama et al. Interface-treated Josephson junctions in trilayer structures
US3458842A (en) Superconducting magnet having dual conductors forming the turns thereof
US20060116293A1 (en) Method of producing biaxially textured substrates and related articles, devices and systems
JPH0510285B2 (en)
JP3061627B2 (en) Manufacturing method of oxide superconducting tape conductor
Watanabe et al. Nb/sub 3/Al formation process in powder metallurgy processed wires and sputtered multilayer films
JPS60189813A (en) Method of producing compound superconductive lead
JP3016566B2 (en) Superconducting switch element
JP2741277B2 (en) Thin film superconductor and method of manufacturing the same
JP2890709B2 (en) Processing method of oxide superconductor
JP3379533B2 (en) Method for manufacturing superconducting device
JPS63280469A (en) Composite superconducting shield plate and manufacture thereof
JPH03242320A (en) Oxide superconductor thin film
JP2994190B2 (en) High-temperature superconducting thin film structure and method for producing the same
JPH0575699B2 (en)
Overmyer et al. Epitaxial solution deposition of YBa2Cu3O7-6 coated conductors.
Kitazawa Superconducting Materials: History and the Future