JPS61267104A - Railless self-travelling truck - Google Patents

Railless self-travelling truck

Info

Publication number
JPS61267104A
JPS61267104A JP60109532A JP10953285A JPS61267104A JP S61267104 A JPS61267104 A JP S61267104A JP 60109532 A JP60109532 A JP 60109532A JP 10953285 A JP10953285 A JP 10953285A JP S61267104 A JPS61267104 A JP S61267104A
Authority
JP
Japan
Prior art keywords
distance
driving wheels
trolley
target
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60109532A
Other languages
Japanese (ja)
Inventor
Kenji Yamano
山野 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60109532A priority Critical patent/JPS61267104A/en
Publication of JPS61267104A publication Critical patent/JPS61267104A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To obtain the direction and distance to run without making absolute value control of the direction of running by converting traveled distance of a driving wheel to pulses and measuring the number of pulses. CONSTITUTION:When running from a starting position P0 to a target position P8 following a specified running route, the running route is divided into running sections for each unit time t1. The distance corresponding to (x) component and (y) component of each section (P0-P1)...(Pz1-Pz) is calculated as a target running distance of driving wheels 2, 3. The measured value of distance measuring rollers connected to the driving wheels 2, 3 is made to pulse signals through respective pulse encoders 8, 9 and outputted by the driving wheels and controlled to make the number of pulses target running distance.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は制御機能を内蔵し外部よりの指令を受けること
なく、予じめ設定された走行路に従って目標位置に走行
する無軌道自走台車に関する。この種の自走台車におい
てはできる限り簡便な構成で所期の自走能力を備えてい
るものであることが望まれる。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a trackless self-propelled trolley that has a built-in control function and travels to a target position along a preset travel route without receiving commands from the outside. . It is desirable for this type of self-propelled cart to have the desired self-propelled ability with the simplest possible configuration.

〔従来技術とその問題点〕[Prior art and its problems]

予じめ設定された走行路に従って走行する台車としては
、強固に敷設された軌条の上を外部よりの指令に従って
走行する有軌道式台車が一般的である。しかしこの種の
有軌道車においてはその軌条の敷設に多大の労力と多額
の経費とを要し、環境に対して融通性が乏しいために他
の施設、作業などに対する障害を伴ない易く、かつ軌道
の変更に関して柔軟性を欠くため設備の硬直化の傾向が
強いなどの欠点を有しているから、要求に応じてしばし
ば走行路の変更を必要とする場合や、環境との協調を要
求される場合には、軌道敷設に関してはるかに柔軟性の
ある有軌道式台車か、あるいは軌道を全く必要としない
新組無軌道式台車が導入される。
As a bogie that travels along a preset travel route, a tracked bogie that travels on firmly laid rails in accordance with instructions from the outside is generally used. However, this type of tracked vehicle requires a great deal of labor and expense to lay the tracks, and because it is inflexible with respect to the environment, it tends to cause obstacles to other facilities and operations. They have drawbacks such as a lack of flexibility in changing the track and a strong tendency for the equipment to become rigid, so it is often necessary to change the running route in response to requests, and coordination with the environment is required. In such cases, either tracked bogies, which are much more flexible in terms of track installation, or new trackless bogies, which do not require any tracks at all, are introduced.

前者の場合の例としては、走行床面lこ白線を布設する
かあるいは銀色テープなどをはりつけて通例の軌条に代
る簡便な走行案内路を設け1光電センサなどを利用して
外部の指令により前記案内路に沿って走行するもの、あ
るいは軌条の代りlこ走行床下に誘導用ケーブルを敷設
し、外部から前記ケーブルに信号を送り該ケーブルに沿
って台車の走行を案内するものなどが知られており、ま
た後者の場合の例としては天井や壁面に音、光、電波な
どの通信媒体の発信器あるいは反射器を設け、前記発信
器の発信信号あるいは前記反射器からの反射信号を台車
側で受信して、該信号に従って所定の走行を行なう如く
に制御される所謂燈台基憩式のものがある。
An example of the former case is to install a white line on the running floor or attach silver tape or the like to provide a simple running guide path instead of the usual rails. There are known types that run along the guide path, or types in which a guiding cable is laid under the running floor instead of the rails, and a signal is sent to the cable from the outside to guide the running of the bogie along the cable. In the latter case, a transmitter or reflector for communication media such as sound, light, or radio waves is installed on the ceiling or wall, and the transmitted signal from the transmitter or the reflected signal from the reflector is transmitted to the trolley side. There is a so-called lighthouse-based type, which is controlled so that the lighthouse receives the signal and travels in a predetermined manner according to the signal.

前記の諸例のうち走行案内路を布設もしくは誘導ケーブ
ルを敷設する前者の方式は、従来の軌条を敷設するのに
比較してはるかに柔軟性があり設備経費も比較的低摩で
ある割には台車の走行案内が確実である利点はあるが、
その一方で前記走行案内路や誘導ケーブルは依然として
点検保守を必要とし、また走行路の変更は容易であるが
やはりそのための労力と費用とを要するという欠点を有
している。また後者の燈台基漁方式のものは設備経費が
低摩で走行路の変更も一層容易である利点はあるが、走
行制御用信号が外乱ノイズに対して弱くかつ信号通路に
対して陰になる部分では台車の制御が不能になる上に、
信号エネルギに関して法的規制があり実施に制約を受け
る領域があるなどの厄介な問題を抱える欠点がある。そ
の上前記何れの方式においても台車を所定通りに走行制
御するためには外部より指令を送る必要があり、そのだ
めの労力と経費とを要するという欠点も伴なっている。
Among the above-mentioned examples, the former method of laying a running guideway or laying a guide cable is much more flexible than laying conventional rails, and the equipment cost is relatively low. has the advantage of ensuring reliable travel guidance for the trolley, but
On the other hand, the travel guide path and the guide cable still require inspection and maintenance, and although changing the travel path is easy, it still requires labor and expense. The latter lighthouse-based fishing method has the advantage of low equipment costs and easier route changes, but the travel control signal is weak against disturbance noise and shadows the signal path. In some parts, the trolley becomes uncontrollable, and
It has the disadvantage of having troublesome problems such as legal regulations regarding signal energy and restrictions on implementation in some areas. Furthermore, in any of the above-mentioned systems, it is necessary to send commands from the outside in order to control the traveling of the bogie in a predetermined manner, which requires additional labor and expense.

在来方式の台車が有する前記の諸欠漬を免かれかつ固定
された軌条あるいは案内設備を必要とせず、外部からの
指令を受けることを要せずして所   □定の走行路を
自走し得る無軌道台車として近年ジャイロと走行距離計
測機能とを備えた所謂ジャイロ、式自走台車が開発され
ている。この種の自走台車の例としては例えば第5図(
Alt均に示す如きものが知られている。即ち第5図C
AI 、 (Blにおいて台車印は適宜の間隔で左右に
配置された一対のt/1輪32゜おとl (dのキャス
タ40との3輪によって支持され、前記動輪32 、3
3にはそれぞれ歯車装置M、35を介して主電動機36
 、37が結合されており、該主電動機36 、37の
トルクが台車間の前後進あるいは左右回転の原動力とな
る。その際動輪32 、33それぞれの実走行距離は当
該動輪32.33に連設され相互に独文したパルスエン
コーダ関、39によってパルス数信号として発信され、
台1jL50が内蔵する中央処理装置42(第8図)に
入力される。
It avoids the above-mentioned defects of conventional bogies, does not require fixed rails or guide equipment, and does not require receiving commands from outside, and can run on a predetermined running path. In recent years, a so-called gyro-type self-propelled trolley equipped with a gyro and a distance measuring function has been developed as a trackless trolley that can be used as a trackless trolley. An example of this type of self-propelled trolley is shown in Figure 5 (
The one shown in Alt-uniform is known. That is, Figure 5C
AI, (In Bl, the bogie mark is supported by a pair of t/1 wheels 32 degrees and 1 wheels arranged on the left and right at appropriate intervals, and the casters 40 in d.
3 are connected to a main electric motor 36 via gear devices M and 35, respectively.
, 37 are connected, and the torque of the main electric motors 36, 37 serves as the driving force for the forward and backward movement or left and right rotation between the bogies. At this time, the actual traveling distance of each of the driving wheels 32 and 33 is transmitted as a pulse number signal by a pulse encoder 39 connected to the driving wheels 32 and 33 and mutually written in German.
The data is input to the central processing unit 42 (FIG. 8) built in the platform 1jL50.

一方左右の動輪32 、33の間のほぼ中央の部分にパ
ルスエンコーダ41aの連設されたジャイロ41(第8
図)が設けられ、台車31の走行方向がパルス数信号と
して常時前記ジャイロ41のパルスエンコーダ41aか
ら発信される。
On the other hand, a gyro 41 (eighth
), and the running direction of the truck 31 is always transmitted as a pulse number signal from the pulse encoder 41a of the gyro 41.

台車刃の走行モードは第7図に示す如く、その都度の台
車刃の位置が走行開始位置より目標位置までの距離な動
径R1目標位置までの走行路が原線(x軸)となす角度
を偏角αとする極座標によって表示され、最初の走行開
始位tll’Po(0,0)から先ずPl(Rt、α□
)までの区間は動径としての距離R1と偏角としての方
向角度α1とがそれぞれパルス数信号の形で目標値とし
て第7図の中央処理装置42によって与えられる。
As shown in Figure 7, the running mode of the trolley blade is as shown in Figure 7.The position of the trolley blade each time is the distance from the travel start position to the target position.R1The angle that the travel path to the target position makes with the original line (x-axis) Pl(Rt, α□
), the distance R1 as a radius vector and the direction angle α1 as a declination angle are respectively given as target values in the form of a pulse number signal by the central processing unit 42 of FIG.

それに対して先ず前記台車(資)の実走行方向角度β1
のパルス数信号が前記目標走行角度α1のパルス数信号
と加算増幅器Iにおいて比較演算されその偏差が比例積
分演算器からなる速度調整手段46に入力され、その出
力により前記偏差がOになる如く、換言すれば台車(資
)の実走行方向角度βlと目標走行角度αlとが一致す
る如くそれぞれの増幅器47 、48を介して動輪32
 、33の主電動機ア、37が制御される。その結果台
車刃の実走行方向角度β1と目標走行方向角度α1とが
一致したと判断された時点において、既に中央処理装置
42の内部において演算されている動輪諺、33の実走
行距離SLとSRとの平均で与えられる台車刃の実走行
距離S1のパルス数信号と目標走行距離R1のパルス数
信号とが加算増幅器心において比較演算され、その偏差
が前記と同様の速度調整手段6を介して主電動機I、3
7に入力され、目標走行方向において実走行距離S工と
目標走行距離R1とが一致する如く主電動機関、37の
制御が行なわれて台車(資)は前進あるいは後進して位
置Poから位置Plに至る。この場合台車力の目標走行
距離を指令するノ(ルス数信号は台車(資)の前記実走
行方向角度βlと目標方向角度α1とが一致しない限り
発信されない如きロジックが前記中央処理装置内に組込
まれている。
In contrast, first, the actual running direction angle β1 of the bogie (equipment) is
The pulse number signal of is compared with the pulse number signal of the target traveling angle α1 in the summing amplifier I, and the deviation is inputted to the speed adjusting means 46 consisting of a proportional-integral calculator, and the output thereof is such that the deviation becomes O. In other words, the driving wheels 32 are adjusted through the respective amplifiers 47 and 48 so that the actual running direction angle βl of the bogie (equipment) matches the target running angle αl.
, 33's main motors A, 37 are controlled. As a result, at the time when it is determined that the actual running direction angle β1 of the bogie blade matches the target running direction angle α1, the actual running distances SL and SR of the driving wheel proverb 33 which have already been calculated within the central processing unit 42 are calculated. The pulse number signal of the actual travel distance S1 of the bogie blade given by the average of the pulse number signal and the pulse number signal of the target travel distance R1 are compared in the summing amplifier core, and the deviation is calculated via the same speed adjustment means 6 as described above. Main motor I, 3
7, the main electric engine 37 is controlled so that the actual traveling distance S coincides with the target traveling distance R1 in the target traveling direction, and the bogie (material) moves forward or backward and moves from position Po to position Pl. leading to. In this case, logic is built into the central processing unit such that the pulse number signal that commands the target traveling distance of the bogie force is not transmitted unless the actual running direction angle βl of the bogie (equipment) matches the target direction angle α1. It is.

更に位[I P tに対する次の位置P2(R2+α2
)、更にまた位tP2に対する位置P3< R3,α3
)と複数個の位置を前記同じ手続きを反覆することによ
り順次経過して台車刃は最終目標位置に達することがで
きる。
Furthermore, the next position P2 (R2+α2
), and further position P3< R3, α3 for position tP2
) and a plurality of positions by repeating the same procedure, the cart blade can reach the final target position.

以上は台車(資)が原位置PoからpHp2・・・・・
・を経て最終目標位置Pzに至るまで直線区間を折線的
に走行する場合について説明したが、反位t#]:P。
Above, the trolley (capital) is from the original position Po to pHp2...
・A case has been described in which the vehicle travels along a straight line in a broken line until it reaches the final target position Pz.

から最終目標位置Pzまでを曲線走行する場合番こは、
原位置Poから最終目標位置Pzまでを多数の微少直線
区間の連続で近似し、それらの微少区間を前記と同様の
手続で走行すれば良い。
When traveling on a curve from to the final target position Pz, the number is as follows.
The distance from the original position Po to the final target position Pz may be approximated by a series of many minute straight sections, and the vehicle may travel through these minute sections using the same procedure as described above.

以上に説明したジャイロ走行方式の自走台車においては
通常ジャイロ41の北指示が行なわれるまでと安定する
までとに比較的時間を要する上に、台車刃の走行誤差を
防止するためには前記動輪32゜あと走行床面との開の
滑りを極力抑止することが肝要で、そのために中央処理
装置42のプログラムは目標走行方向並びに目標走行距
離を指令するパルスを出力する際できる限り徐々に発信
する如くに組まれており、更に原位置Poから目標位置
Pzまでの走行距離を細分してP1rP2+・・・・・
・P2−1の中間位置を設けて制御する場合にも前記の
如<Po−Pユ間e Pi−22間・・・・・・・・・
と各区間毎のプログラムを組み、それぞれの区間の走行
開始位置で区間毎のプログラムを順次切換えて制御する
如くにすることにより、動輪の滑り、動輪タイヤの摩耗
などが原因で各動輪32 、33の走行誤差が増大し目
標位置に対する正椙な制御が困難になった場合に各区間
毎、に他力により補正信号を入力して前記誤差を強制的
に補正し、最終的には目標位置への正確な到達が可能に
なる如く配属されており、かつ最初の走行試験の結果に
もとづき前記の補正入力を行なった後は殆んど補正する
ことなく曳行な走行制御が得られるなどの利点を有して
いるが、台車刃の走行方向と走行距離とを二元的に制御
するシステムが比較的に複雑である上に、ジャイロ41
そのものが高価であるからこの種自走台車の経済化に対
して著しくあい路になるという欠点がある〇〔発明の目
的〕 本発明は従来のジャイロ式自走台車がその経済化に対し
て有する前記の如き欠点に鑑み、経済的に高負担の原因
となるジャイロを使用することなく、高い走行精度で予
じめ設定された走行路を目標位置に走行し得る制御が簡
易である上に経済的に有利な無軌道自走台車を提供する
ことを目的とする。
In the above-described self-propelled bogie using the gyro traveling system, it usually takes a relatively long time for the gyro 41 to point north and for the vehicle to stabilize. It is important to suppress slippage between the 32° and the running floor surface as much as possible, and for this purpose, the program in the central processing unit 42 outputs pulses commanding the target running direction and target running distance as gradually as possible. The distance traveled from the original position Po to the target position Pz is further subdivided into P1rP2+...
・Even when controlling by providing an intermediate position of P2-1, the same procedure as described above is applied between Po-Pu and Pi-22.
By creating a program for each section and controlling the program by sequentially switching the program for each section at the starting position of each section, each drive wheel 32, 33 can be prevented from slipping or wearing out the tires of the drive wheels. When the running error increases and it becomes difficult to accurately control the target position, a correction signal is input by external force in each section to forcibly correct the error, and finally the target position is reached. It has the advantage that it is possible to reach the target accurately, and that after the above-mentioned correction input is performed based on the results of the first running test, smooth running control can be obtained with almost no correction. However, the system that dually controls the traveling direction and traveling distance of the truck blade is relatively complicated, and the gyro 41
Since the self-propelled trolley itself is expensive, it has the disadvantage that it is a significant impediment to the economicalization of this type of self-propelled trolley.〇 [Object of the Invention] The present invention has the advantage that the conventional gyro-type self-propelled trolley has in terms of its economicalization. In view of the above-mentioned drawbacks, it is simple and economical to have control that allows traveling to a target position on a preset traveling route with high traveling accuracy without using a gyro that causes a high economic burden. The purpose of the present invention is to provide a trackless self-propelled trolley that is advantageous in terms of performance.

〔発明の要点〕[Key points of the invention]

前記の目的を達成するために本発明では首記の自走台車
において、前記台車に適宜の間隔を以て配置されてそれ
ぞれに固有の駆動手段を有する相互番こ独宣した少なく
とも一対の動輪と、該動輪それぞれに近接して設けられ
かつそれぞれの動輪の実走行距離を計測する相互に独豆
した測距手段と、該測距手段それぞれの計測値をパルス
数信号として出力するそれぞれ独ニしたパルスエンコー
ダと、前記台車の走行すべき方向と走行すべき距離とを
該台車の走行時間を分割してなる複数イ固の単位時間毎
に該単位時間内に前記各動輪が走行すべき目標距離を表
わすパルス数信号として前記各動輪の駆動手段に与える
中央処理装置とを設け、前記単位時間毎に前記測距手段
の計測した前記各動輪の実走行距離に対応する前記各パ
ルスエンコーダの出力パルス数信号が、常iこ前記中央
処理装置の前記各動輪の駆動手段に与える各動輪の目標
走行距離のパルス数信号に一致する如くに前記谷動輪の
駆動手段を個別に制御する如きプログラムを前記中央処
理装置に備える如くにすることlこよって、外力により
前記台車の走行方向の絶対値制御を行なうことなく、単
位時間毎にその走行開始時の位置からの前記各動輪の走
行距離のみを目標値としてパルス数信号の形で与え、前
記単位時間内の前記各動輪の実走行距離を前記各パルス
エンコーダにおいてパルス数信号として捕え該パルス数
信号が前記目標値パルス数信号に一致する如くに前記各
動輪の駆動手段を制御して台車自体の目標通りの方向性
と走行距離とを実現するものである。
In order to achieve the above object, the present invention provides the above-mentioned self-propelled truck, comprising: at least one pair of mutually exclusive driving wheels arranged at appropriate intervals on the truck and each having its own driving means; A mutually unique distance measuring means that is provided close to each of the driving wheels and measures the actual travel distance of each driving wheel, and a unique pulse encoder that outputs the measured value of each of the distance measuring means as a pulse number signal. and represents the target distance that each of the driving wheels should travel within the unit time for each of a plurality of unit times obtained by dividing the traveling time of the trolley into the direction in which the trolley should travel and the distance it should travel. A central processing unit is provided to provide a pulse number signal to the driving means of each of the driving wheels, and an output pulse number signal of each of the pulse encoders corresponds to the actual traveling distance of each of the driving wheels measured by the distance measuring means every unit time. However, the central processing unit usually executes a program for individually controlling the driving means of the valley driving wheels so as to match the pulse number signal of the target travel distance of each driving wheel which is applied to the driving means of the driving wheels of the central processing unit. Therefore, without using an external force to control the absolute value of the traveling direction of the bogie, only the traveling distance of each of the driving wheels from the starting position of the truck is set as a target value for each unit time. The actual traveling distance of each of the driving wheels within the unit time is captured as a pulse number signal by each of the pulse encoders, and the driving wheels are outputted in the form of a pulse number signal such that the pulse number signal matches the target value pulse number signal. The driving means of the truck is controlled to achieve the desired direction and travel distance of the truck itself.

〔発明の実施例〕[Embodiments of the invention]

次に図面に表わされた実施例にもとづいて本発明の詳細
な説明する。
Next, the present invention will be explained in detail based on embodiments shown in the drawings.

第1図(3)、(B)に詔いて台車1は適宜の間隔を以
て左右に配置された2個の動輪2.3と1個のキャスタ
讃との3輪により支持され、前記動輪2,3にはそれぞ
れの歯車装置4,5と主1動機6,7とからなる駆動手
段が連結されており、該主電動機6・、7のトルクによ
り前記動輪2,31こ伝達されて台車lの前後進あるい
は左右回転の原動力となる。
As shown in FIGS. 1(3) and 1(B), the truck 1 is supported by three wheels, two driving wheels 2.3 and one caster support, which are arranged on the left and right at appropriate intervals, and the driving wheels 2, 3 is connected to a driving means consisting of respective gear devices 4, 5 and main motors 6, 7, and the torque of the main motors 6, 7 is transmitted to the driving wheels 2, 31 to drive the bogie L. It serves as the driving force for forward and backward movement or left and right rotation.

その際動輪2.3の走行距離は前記それぞれの駆動手段
とは別個に動輪2,3毎に設けられた測距ローラ16 
、17と該ローラ16 、17に滑りを防止するための
スプロケ、)12.13とシンクロベルト14 、15
 ヲ介して連設されるパルスエンコーダ8.9とからな
る測距手段によって計測され、それらの計測値は前記パ
ルスエンコーダ8.9からパルス数信号として発信され
る如くになっている。
At this time, the traveling distance of the driving wheels 2.3 is measured by a distance measuring roller 16 provided for each driving wheel 2, 3 separately from the respective driving means.
, 17 and the rollers 16 and 17 with sprockets to prevent them from slipping) 12.13 and synchro belts 14 and 15
The measured values are transmitted from the pulse encoder 8.9 as a pulse number signal.

一方前記測距ローラ16 、17は第2図に示す如く支
持腕18 、19を介して台車lに設けられた支持腕保
持具加、21のほぼ中央部の支持軸20a+21aに支
持され、該支持@20 a+ 21 aを支点として該
支点の周りに旋回し得る如くになっており、前記支持軸
20a、21aに中心軸を保持されたコイルばねn、2
3が一方の脚の先端を台車lにより、また他方の脚の先
端を前記支持腕18 、19により支持されることによ
って常に前記測距ローラ16 、17を図示の矢印の方
向に走行床面に押圧する如くになっている。
On the other hand, as shown in FIG. 2, the distance measuring rollers 16 and 17 are supported via support arms 18 and 19 by support shafts 20a+21a located approximately in the center of a support arm holder 21 provided on the truck l. @20 a+ 21 The coil springs n, 2 are capable of rotating around the fulcrum with the support shafts 20a, 21a holding the central axes.
3 is supported with the tip of one leg by the truck L and the tip of the other leg with the support arms 18 and 19, so that the distance measuring rollers 16 and 17 are always directed toward the running floor in the direction of the arrow shown in the figure. It feels like it's pressing down.

その場合台ILIの重量は前記動輪2,3並びにキャス
タ冴によって支持され、コイルばねn、23によって床
面に押圧される測距ローラ16 、17には殆んど負荷
されないから、前記床面との間のほぼ一定、の摩擦力に
より測距ローラ16 、17は回転してその滑りは無視
し得る檻小さいので、前記測距ローラ16 、17はス
プロケ、ト12.13並びにシンクロベルト14 、1
5を介して動輪2,3の回転量を前記パルスエンコーダ
8.9に正確に伝達することができる。
In that case, the weight of the stand ILI is supported by the driving wheels 2, 3 and casters, and is hardly applied to the distance measuring rollers 16, 17 which are pressed against the floor surface by the coil springs n, 23. The distance measuring rollers 16, 17 rotate due to the almost constant frictional force between them, and their slippage is negligible.
5, the amount of rotation of the driving wheels 2, 3 can be accurately transmitted to the pulse encoder 8.9.

前記の如くに構成された本発明の自走台車lを制御する
には第3図に示す如く、始動位置Poより目標位置P8
に至る間の所定走行路に従って走行する場合、当該走行
路を単位時間11毎に走行すべき多数の区間距離に分割
し、各区間距離(PG−Pi ) +(Pl−Pz)、
・・・・・・・・・・・・・・・e(Pz−IPz)の
直角座標におけるX成分とy成分とに相当する距離を動
輪2゜3の目標走行距離として算出し得る如く第4図の
制御システムプロ、り図に示す中央処理装置5において
予じめプログラム化しておき、前記台車lがその始動位
置Poから最初の目標位置PI3更に該位置P!から次
の目標位置P2.更に該P2位置から次の目標位置P3
とそれぞれの区間距離を経て最終目標位置Pzに至るま
で、単位時間tiに対応する各区間距離毎にその区間走
行開始時に即座に動輪2,3の前記駆動手段に前記目標
走行距離を算出して指令する如くにする。
To control the self-propelled trolley l of the present invention configured as described above, as shown in FIG.
When traveling along a predetermined travel route until reaching , the travel route is divided into a large number of section distances to be traveled every unit time 11, and each section distance (PG-Pi) + (Pl-Pz),
・・・・・・・・・・・・・・・The distance corresponding to the X component and the y component in the rectangular coordinates of e(Pz-IPz) can be calculated as the target traveling distance of the driving wheels 2゜3. The control system shown in FIG. 4 is programmed in advance in the central processing unit 5 shown in FIG. to the next target position P2. Furthermore, from the P2 position to the next target position P3
and the target travel distance is calculated by the drive means of the driving wheels 2 and 3 immediately at the start of the section for each section distance corresponding to the unit time ti, until reaching the final target position Pz through the respective section distances. Do as instructed.

これに対して前記単位時間11毎の各動輪2.3の実走
行距離は、該動輪2,3に連設された前記測距ローラ1
6 、17の計測値をそれぞれのパルスエンコーダ8.
9を介してパルス信号としたものが出力され、該パルス
数信号が常に前記目標走行距離のパルス数信号に一致す
る如くに前記動輪2歩3の前記駆動手段の制御が行なわ
れる。しかしその際各動輪2,3の目標走行5離と実走
行距離との間に誤差を生じた場合には、その直後の単位
時間11内に走行する単位距離の走行開始時に前記実走
行距離の目標走行距離に対する誤差を修正する如き新た
な目標走行距離が与えられ、常に動輪2.3の目標走行
距離と実走行距離との誤差が最小になる如き自動的に修
正されるプログラムが採用されている。
On the other hand, the actual traveling distance of each driving wheel 2.3 per unit time 11 is the distance measuring roller 1 connected to the driving wheels 2, 3.
The measured values of 6 and 17 are transmitted to each pulse encoder 8.
A pulse signal is output through 9, and the driving means of the driving wheels 2 and 3 is controlled so that the pulse number signal always matches the pulse number signal of the target travel distance. However, if an error occurs between the target travel distance of each driving wheel 2, 3 and the actual travel distance, the actual travel distance will be calculated at the start of the unit distance traveled within the unit time 11 immediately after that. A new target mileage is given to correct the error with respect to the target mileage, and a program is adopted that automatically corrects the error between the target mileage of the driving wheels 2.3 and the actual mileage to always be minimized. There is.

第5 INは前記動輪2,3の目標走行距離に対する実
走行距離の誤差を修正する手続きの一例を示すものであ
る。この場合第4図に示す本発明の自走台車lの制御シ
ステムプロ、り図において、台車lの最初の走行単位時
間t□の走行区間(位置Poと位置P1との1間)の走
行開始時即ちl=Qにおいて動輪2,3に与えられる目
標走行距離M!。
The fifth IN shows an example of a procedure for correcting the error between the actual traveling distance and the target traveling distance of the driving wheels 2 and 3. In this case, in the diagram of the control system of the self-propelled trolley l of the present invention shown in FIG. The target travel distance M given to the driving wheels 2 and 3 at the time, that is, l=Q! .

Hlに対し、前記走行区間(位置P、と位tP1との間
)の走行終了時、即ち1=11 における動輪2.3の
実走行距離がml、hlであるとすると、その時点にお
ける各動輪2,3それぞれの距離偏差(Ml −ml 
) + (Ht  ht )がパルス信号トシテ加算増
幅器カ、27において与えられ、中央処理装置5にフィ
ードパ、りされる。該フィードパ、りにより中央処理装
置5は台車lの次の走行単位時間1゜の走行区間(位f
tPlと位置P2との間)の走行開始時即ち1 = 1
1+Δt1において最初に設定されている目標走行距離
M2 、H2に代えて前記の走行誤差(Mlmt)、 
(Ht ht ) を解消すべく修正目標走行距K (
M2+M1 mt ) + (H2+8l−hl )を
それぞれ主電動機6,7に指令する。更に前記走行区間
(位置P、と位置P2との間)の走行終了時即ちt:=
2t1において動輪2.3の実走行距離がm2 、 h
zであるとすると、前記と同様に加算増幅器26.27
によって中央処理装置部にフィードパ、りされる偏差に
より、次の走行区間(位置P2と位置P3との間)の走
行開始時即ちt=2t、+Δt!における走行目標距離
として最初に設定された目標定行距離M3.H31こ代
えてt:2歩1時における誤差(M2 +M1−m、−
mz ) e (H2+H1−hl−hz)を解消すべ
く新たに修正目標走行距離(M3+M2+M1  ml
−m2L (H3+H2+H1h□−hz)をそれぞれ
主電動機6.7に指令する。同様にして(位置P3と位
置P4との間)、(位置248位[I Ps ト0:)
 間) 、 ・・・・・・・・・、 (位&Pz−tと
位置Pzとの間)の各走行区間においても必要に応じて
自動的に左右の動輪2,3それぞれの目標走行距離の修
正を当該走行区間を走行開始時に行ない、該修正目標走
行距離により第4図に示す如く比例積分演算器からなる
速度調整手段側、29を介して動輪2.3の駆動用主電
動機6,7をそれぞれ制御して、台車1を最終目標位置
Pzに高い走行精度を維持しながら走行させることがで
きる。
Assuming that the actual traveling distance of the driving wheels 2.3 at the end of the traveling section (between position P and point tP1), that is, 1=11, is ml and hl for Hl, each driving wheel at that time Distance deviation of 2 and 3 (Ml −ml
) + (Ht ht ) is applied to the pulse signal summing amplifier 27 and fed to the central processing unit 5 . The feeder allows the central processing unit 5 to determine the next traveling section (position f
tPl and position P2), that is, 1 = 1
In place of the target traveling distance M2 and H2 initially set at 1+Δt1, the aforementioned traveling error (Mlmt),
(Ht ht) In order to eliminate the problem, the revised target mileage K (
M2+M1 mt ) + (H2+8l-hl) are commanded to the main motors 6 and 7, respectively. Further, at the end of the traveling section (between positions P and P2), that is, t:=
At 2t1, the actual traveling distance of driving wheel 2.3 is m2, h
z, the summing amplifiers 26 and 27 as before
Due to the deviation fed to the central processing unit by the deviation, at the start of the next traveling section (between positions P2 and P3), that is, t=2t, +Δt! The target regular traveling distance M3. which is initially set as the target traveling distance in M3. H31 t: Error at 2 steps 1 o'clock (M2 +M1-m, -
mz ) e In order to eliminate (H2+H1-hl-hz), we have newly revised the target mileage distance (M3+M2+M1 ml
-m2L (H3+H2+H1h□-hz) are each commanded to the main motor 6.7. Similarly, (between position P3 and position P4), (position 248 [I Ps to 0:)
(between position &Pz-t and position Pz), the target travel distance of each of the left and right driving wheels 2 and 3 is automatically adjusted as necessary. The correction is made at the start of traveling in the relevant travel section, and based on the corrected target travel distance, the main electric motors 6, 7 for driving the driving wheels 2.3 are adjusted via the speed adjusting means side, which is a proportional integral calculator, as shown in FIG. By controlling each of these, it is possible to drive the trolley 1 to the final target position Pz while maintaining high running accuracy.

更に台車iicgける過負荷あるいは走行路におけ、る
障害物などのために前記走行誤差の累積値が動輪2,3
の駆動手段の制御に許容される範囲を逸脱して大きくな
った場合は、前記の通常の走行制御プログラムを一時的
に停止し、各単位時間tl毎の単位区間走行開始時の目
標走行距離を与えないで前記走行誤差の累積値を修正す
る修正走行のみを行ない、しかもこのような単位時間1
1を必要回数反覆し得る如くに中央処理装置のグログラ
ムを切換える。かくすることにより、予期しない事態が
生じた場合にも最初の始動位WIPoより最終月原位置
Pzに至るまでの所要時間が修正走行のだめの単位時間
t1の反覆回数分だけ余計に要するだけで、多少の時間
的遅延を我慢すれば台車1はその所定の走行路や目標位
置から大きく外れることなく走行することができる。
Furthermore, due to an overload on the bogie IICG or an obstacle on the running path, the cumulative value of the running error is increased by the driving wheels 2 and 3.
If the distance exceeds the allowable range for controlling the drive means, the normal travel control program is temporarily stopped and the target travel distance at the start of unit section travel for each unit time tl is calculated. Only corrective running is performed to correct the cumulative value of the running error without giving any
The program of the central processing unit is switched so that 1 can be repeated as many times as necessary. By doing this, even if an unexpected situation occurs, the time required from the initial starting position WIPo to the final starting position Pz is only increased by the number of repetitions of the unit time t1 for corrective travel. If a certain amount of time delay is tolerated, the trolley 1 can travel without significantly deviating from its predetermined travel path or target position.

更に本発明の無軌道自走台車においても従来のこの種自
走台車におけると同様に、最初の始動位tikPoにお
ける台車1の走行方向を機械的に強制する手段や前記本
位時間11に相当する単位区間の走行毎に生ずる誤差の
累積値を解消して台車Iの走行方向や走行停止位置を強
制的に修正し得る゛機械的手段や、更には最初の走行試
験の結果にもとづいて外部より目標値に対する修正を入
力することにより球径の走行精度の向上を計る手段など
を附設することは有利で、本発明の主旨に対して矛盾す
るものではない。
Furthermore, in the trackless self-propelled trolley of the present invention, as in the conventional self-propelled trolley of this type, means for mechanically forcing the running direction of the trolley 1 at the initial starting position tikPo and a unit section corresponding to the standard time 11 are provided. It is possible to forcibly correct the running direction and running stop position of bogie I by eliminating the cumulative error value that occurs every time it runs. It is advantageous to provide a means for improving the traveling accuracy of the ball diameter by inputting corrections to the ball diameter, and this does not contradict the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明は以上に説明した如く、制御機能を内蔵し外部よ
りの指令を受けることなく予じめ設定された走行路に従
って目標位置に走行する無軌道自走台車において、前記
台車に適宜の間隔を以て配置されてそれぞれに固有の駆
動手段を有する相互に9又した少なくとも一対の動輪と
、該動輪それぞれに近接して設けられかつそれぞれの動
輪の実走行距離を計測する相互に独旦した測距手段と。
As explained above, the present invention provides a trackless self-propelled trolley that has a built-in control function and travels to a target position along a preset travel route without receiving commands from the outside. at least one pair of mutually nine-pronged driving wheels each having its own driving means, and mutually independent distance measuring means provided close to each of the driving wheels and measuring the actual travel distance of each driving wheel. .

該測距手段それぞれの計測値をパルス数信号として出力
するそれぞれ9旦したパルスエンコーダと、前記台車の
走行すべき方向と走行すべき距離とを複数個の単位時間
からなる走行時間内の、前記単位時間毎に前記各動輪が
走行する目標距離を表わすパルス数信号として前記各動
輪の駆動手段に与える中央処理装置とを設け、前記単位
時間毎に前記測距手段の計測した前記各動輪の実走行距
離に対応する前記各パルスエンコーダの出力パルス数信
号が、常に前記中央処理装置の前記各動輪の駆動手段に
与える各動輪の目標走行距離のパルス数信号に一致する
如くに前記各動輪の駆動手段を個別に制御する如きプロ
グラムを前記中央処理装置に備えることにより、種々不
利な条件の伴なう固定軌道や外部からの制御のための信
号を必要とせずかつ高価なジャイロを不要とするととも
に、動輪の駆動手段と走行距離測定手段とが相互に9豆
しているから動輪の滑りあるいは摩耗の影響を受けるこ
となくかつ走行方向と走行距離とを一元的に制御し得る
経済性と柔軟性を備えた無軌道自走台車が得られる効果
がある。
a pulse encoder that outputs the measurement value of each of the distance measuring means as a pulse number signal; A central processing unit is provided which supplies the driving means of each of the driving wheels with a pulse number signal representing a target distance traveled by each of the driving wheels for each unit of time, Drive each of the driving wheels such that the output pulse number signal of each of the pulse encoders corresponding to the traveling distance always matches the pulse number signal of the target traveling distance of each driving wheel that is applied to the driving means of each of the driving wheels of the central processing unit. By equipping the central processing unit with a program for individually controlling the means, there is no need for a fixed orbit with various disadvantageous conditions, no external control signals, and no need for an expensive gyro. Since the drive means for the driving wheels and the distance measuring means are mutually connected, it is economical and flexible because it is not affected by slippage or abrasion of the driving wheels, and it is possible to centrally control the running direction and distance. This has the effect of providing a trackless self-propelled trolley equipped with

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A) (Blはそれぞれ本発明の無軌道自走台
車の側面及び裏平面の外形を示す概略図を、82図は本
発明の測距ローラの台車に対する取付関係を示す外形概
略図を、第3図は本発明の自走台車のはそれぞれ従来の
ジャイロ式自走台車の側面及び裏平面の外形を示す概略
図を、i@7図は前記自走台車の走行路の模型図を、第
9図は前記自動台車の制御システムのブロック図を表わ
す。 1・・・自走台車、2.3・・・動輪、4.5・・・歯
車装置、6.7・・・主電動機、8,9・・・パルスエ
ンコーダ、16 、17・・・測距ローラ、5・・・中
央処理装置、 26.27・・・加算増幅器、田、29
・・・比例積分演算器。 1創ヒ陣 第1図(B) 第3図 第4図 第5図 (A)。 第6図
FIG. 1(A) (Bl is a schematic diagram showing the outer shape of the side and back surfaces of the trackless self-propelled trolley of the present invention, respectively, and FIG. 82 is a schematic diagram of the outer shape showing the attachment relationship of the distance measuring roller of the present invention to the trolley. , FIG. 3 is a schematic diagram showing the external shape of the side and back surfaces of the conventional gyro-type self-propelled trolley of the self-propelled trolley of the present invention, and Figure i@7 is a model diagram of the running path of the self-propelled trolley. , FIG. 9 shows a block diagram of the control system of the automatic trolley. 1...Self-propelled bogie, 2.3...Driving wheels, 4.5...Gear device, 6.7...Main electric motor , 8, 9... Pulse encoder, 16, 17... Distance measuring roller, 5... Central processing unit, 26.27... Summing amplifier, field, 29
...proportional integral calculator. Figure 1 (B) Figure 3 Figure 4 Figure 5 (A). Figure 6

Claims (1)

【特許請求の範囲】 1)制御機能を内蔵し外部よりの指令を受けることなく
予じめ設定された走行路に従って目標位置に走行する無
軌道自走台車において、前記台車に適宜の間隔を以て配
置されてそれぞれに固有の駆動手段を有する相互に独立
した少なくとも一対の動輪と、該動輪それぞれに近接し
て設けられかつそれぞれの動輪の実走行距離を計測する
相互に独立した測距手段と、該測距手段それぞれの計測
値をパルス数信号として出力するそれぞれ独立したパル
スエンコーダと、前記台車の走行すべき方向と走行すべ
き距離とを該台車の走行時間を分割してなる複数個の単
位時間毎に、該単位時間内に前記各動輪が走行すべき目
標距離を表わすパルス数信号として前記各動輪の駆動手
段に与える中央処理装置とを設け、前記単位時間毎に前
記測距手段の計測した前記各動輪の実走行距離に対応す
る前記各パルスエンコーダの出力パルス数信号が常に前
記中央処理装置が前記各動輪の駆動手段に与える各動輪
の目標走行距離のパルス数信号に一致する如くに前記各
動輪の駆動手段を個別に制御する如きプログラムを前記
中央処理装置に備えてなることを特徴とする無軌道自走
台車。 2)特許請求の範囲第1項に記載の自走台車において、
前記動輪の任意の前記単位時間における目標走行距離と
して、常に当該単位時間に先行する単位時間における前
記動輪の実走行距離の目標走行距離に対る誤差を自動的
に修正する如き目標走行距離を与えるプログラムを前記
中央処理装置に備えてなることを特徴とする無軌道自走
台車。 3)特許請求の範囲第1項ないし第2項の何れかに記載
の自走台車において、任意に定め得る特定個数の前記単
位時間の経過後に、該特定個数の前記単位時間経過中に
累積する前記動輪の実走行距離の目標走行距離に対する
誤差を修正するための前記単位時間もしくは複数個の前
記単位時間の割込みを許す如きプログラムを前記中央処
理装置に備えてなることを特徴とする無軌道自走台車。 4)特許請求の範囲第1項ないし第3項の何れかに記載
の自走台車において、前記台車の最初の走行試験におけ
る結果にもとづいて前記動輪の目標走行距離の修正を任
意に行ない得る如きプログラムを前記中央処理装置に備
えてなることを特徴とする無軌道自走台車。 5)特許請求の範囲第1項ないし第4項の何れかに記載
の自走台車において、該台車の最初の走行開始時の該台
車に要求される走行方向を強制的かつ機械的に選択し得
る手段を備えてなることを特徴とする無軌道自走台車。
[Scope of Claims] 1) In a trackless self-propelled trolley that has a built-in control function and travels to a target position along a preset travel route without receiving commands from the outside, the trackless self-propelled trolley is arranged at appropriate intervals on the trolley. at least one pair of mutually independent driving wheels each having its own driving means, mutually independent distance measuring means provided close to each of the driving wheels and measuring the actual travel distance of each driving wheel, and the measuring means. an independent pulse encoder that outputs the measurement value of each distance means as a pulse number signal, and a plurality of units of time each of which is determined by dividing the traveling time of the trolley into the direction in which the trolley should travel and the distance that the trolley should travel. and a central processing unit which supplies the driving means of each of the driving wheels as a pulse number signal representing the target distance that each of the driving wheels should travel within the unit time, and the central processing unit provides a pulse number signal representing the target distance that each of the driving wheels should travel within the unit time, and The output pulse number signal of each of the pulse encoders corresponding to the actual traveling distance of each driving wheel always matches the pulse number signal of the target traveling distance of each driving wheel that the central processing unit gives to the driving means of each of the driving wheels. A trackless self-propelled trolley, characterized in that the central processing unit is equipped with a program for individually controlling the drive means of the driving wheels. 2) In the self-propelled trolley according to claim 1,
As the target travel distance of the driving wheels in any unit time, a target travel distance is always provided that automatically corrects the error of the actual travel distance of the driving wheels in the unit time preceding the unit time with respect to the target travel distance. A trackless self-propelled trolley, characterized in that the central processing unit is provided with a program. 3) In the self-propelled trolley according to any one of claims 1 to 2, after a specific number of units of time that can be determined arbitrarily has elapsed, accumulation occurs during the unit time of the specific number of units. The trackless self-propelled vehicle is characterized in that the central processing unit is equipped with a program that allows interruption of the unit time or a plurality of unit times in order to correct an error between the actual travel distance of the driving wheels and the target travel distance. Dolly. 4) In the self-propelled truck according to any one of claims 1 to 3, the target travel distance of the driving wheels can be arbitrarily corrected based on the results of an initial running test of the truck. A trackless self-propelled trolley, characterized in that the central processing unit is provided with a program. 5) In the self-propelled trolley according to any one of claims 1 to 4, the traveling direction required of the trolley at the time of first traveling of the trolley is forcibly and mechanically selected. A trackless self-propelled trolley characterized by being equipped with a means for obtaining.
JP60109532A 1985-05-22 1985-05-22 Railless self-travelling truck Pending JPS61267104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60109532A JPS61267104A (en) 1985-05-22 1985-05-22 Railless self-travelling truck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60109532A JPS61267104A (en) 1985-05-22 1985-05-22 Railless self-travelling truck

Publications (1)

Publication Number Publication Date
JPS61267104A true JPS61267104A (en) 1986-11-26

Family

ID=14512637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60109532A Pending JPS61267104A (en) 1985-05-22 1985-05-22 Railless self-travelling truck

Country Status (1)

Country Link
JP (1) JPS61267104A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165218A (en) * 1986-01-17 1987-07-21 Matsushita Electric Ind Co Ltd Self-traveling carriage
JPH01199746A (en) * 1988-02-02 1989-08-11 Yamazaki Mazak Corp Tool conveying device
JPH0812031A (en) * 1994-07-01 1996-01-16 Murata Mach Ltd Picking system
JP2004295430A (en) * 2003-03-26 2004-10-21 Toyota Motor Corp Moving carrier and method for controlling moving carrier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165218A (en) * 1986-01-17 1987-07-21 Matsushita Electric Ind Co Ltd Self-traveling carriage
JPH01199746A (en) * 1988-02-02 1989-08-11 Yamazaki Mazak Corp Tool conveying device
JPH0812031A (en) * 1994-07-01 1996-01-16 Murata Mach Ltd Picking system
JP2004295430A (en) * 2003-03-26 2004-10-21 Toyota Motor Corp Moving carrier and method for controlling moving carrier

Similar Documents

Publication Publication Date Title
US4816998A (en) Self-piloting vehicle
US6721638B2 (en) AGV position and heading controller
KR920008053B1 (en) Vehicle control and guidance system
US5764014A (en) Automated guided vehicle having ground track sensor
CA2095442A1 (en) Downward Compatible AGV System and Methods
JPH10318478A (en) In-pipeline traveling device
JPH0379157B2 (en)
JPS61267104A (en) Railless self-travelling truck
JP4372397B2 (en) Method and apparatus for measuring the state of rail stretch
JPS6170618A (en) Unmanned run system
JP6570237B2 (en) Self-propelled cart turning method and turning equipment
JP2615015B2 (en) Self-propelled work vehicle position measurement method
JPH0443282B2 (en)
JP2864295B2 (en) Automatic direction correction system for self-propelled vehicles
JPS61139807A (en) Running controller of unattended running car
CN110799705B (en) Procedure for controlling a guidance system of a railway working machine, associated method and associated guidance system
JP3201050B2 (en) Unmanned vehicle guidance system
JP3609200B2 (en) Travel control method and travel control device for autonomous vehicle
TW250547B (en) Tri-mode guided vehicle system
JPS62288909A (en) Distance measuring instrument for unattended carriage
JPS61198308A (en) Autonomous guide type unattended carriage
JPS58107909A (en) Inducing system for unattended car
JP2000112524A (en) Method and device for controlling traveling of gantry crane
JPH04181118A (en) Method for measuring position of tunnel
CN116560374A (en) Method for improving transverse movement precision of magnetic navigation AGV