JPS61266967A - Automatic monitoring device for ground constant of power distribution system - Google Patents

Automatic monitoring device for ground constant of power distribution system

Info

Publication number
JPS61266967A
JPS61266967A JP10951385A JP10951385A JPS61266967A JP S61266967 A JPS61266967 A JP S61266967A JP 10951385 A JP10951385 A JP 10951385A JP 10951385 A JP10951385 A JP 10951385A JP S61266967 A JPS61266967 A JP S61266967A
Authority
JP
Japan
Prior art keywords
ground
power distribution
distribution system
phase
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10951385A
Other languages
Japanese (ja)
Inventor
Koshiro Iwatani
岩谷 高四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP10951385A priority Critical patent/JPS61266967A/en
Publication of JPS61266967A publication Critical patent/JPS61266967A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the ground constant of a high voltage power distribution system automatically at any time without requiring locking a protective relay nor altering its settings by applying extremely small electromotive force which is put in optional phase to the neutral point of the high voltage power distribution system intermittently at intervals of short time. CONSTITUTION:A voltage phase controller EG under the control of controllers CONT1 and CONT2 generates the extremely small electromotive force for measurement which can be put in optional phase and applies it to the neutral point of the system intermittently through an overvoltage suppressing device Di, a switch So, and a grounding transformer GT. An A/D converter 1 inputs a neutral line current to a computer unit CPU, an A/D converter 2 connected to a grounding transformer GPT inputs a zero-phase voltage, and an A/D converter 3 inputs an interline voltage. Then, the CPU computes three-line batch ground admittance and unbalanced ground admittance and displays them on OUTs 1-4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電気事業における配電系統、配電用変電所及
び一般産業の自家用電気設備の配電系統における対地定
数の自動計測に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to automatic measurement of ground constants in power distribution systems in electric utilities, distribution substations, and power distribution systems of private electrical equipment in general industries.

〔従来の技術〕[Conventional technology]

第2図は中性点非接地の配電系統において、1線地絡が
生じたときの電圧電流分布を示す。図中、各記号は以下
の様に定義される。
Figure 2 shows the voltage and current distribution when a one-line ground fault occurs in a power distribution system where the neutral point is not grounded. In the figure, each symbol is defined as follows.

Ea、 Eb、 Ec・・・・・・・・・対称三相起電
力Ya、 Yb、 Yc・・−・・・・・・・・各相対
地アドミタンスVa、 Vb、 Vc・・・・・・・・
・各相対地電圧Vn    −−・−・・−・中性点N
の対地電圧(この場合Vnは対称座標法の零相電圧に 等しい)。
Ea, Eb, Ec...... Symmetrical three-phase electromotive force Ya, Yb, Yc...-... Each relative ground admittance Va, Vb, Vc...・・・
・Each relative earth voltage Vn −−・−・・−・Neutral point N
voltage to ground (in this case Vn is equal to the zero-sequence voltage in the symmetric coordinate method).

Ia、 Ib、 Ic・・・・・・・・・各相電流(負
荷電流は無視する〕。
Ia, Ib, Ic......Each phase current (ignore load current).

ig    ・・・・・・・・・1線地絡電流LH−−
−−−一・・地絡インピーダンス求める対地定数■oo
 (3線一括対地アトミタンス)と■oo(不平衡分対
地アドミタンス〕は次の(1)式及び(2)式で表わさ
れる。
ig ......1 wire ground fault current LH--
−−−1. Ground constant to determine ground fault impedance ■oo
(three-wire collective ground atmittance) and ■oo (unbalanced ground admittance) are expressed by the following equations (1) and (2).

■oo = Ya + Yb + Yc = ■oo/
θ 町・・(1)8’oo = ’S’a + Yb 
l −120’+ Yc/120゜=YIoo/θI・
・・・・・(2) 第3図は■ooと仝’oo  の測定に従来用いられた
装置の概要を示す。図中、PTは電圧変成器、IN、2
N及び3Nはそれぞれ1次巻線、2次巻線及び3次巻線
である。人工地絡インピーダンス乞gには抵抗器または
コンデンサを用いる。Oと0はそれぞれ零相電圧と位相
を測定する計器であり、Oは線間電圧を測定する計器で
ある。いま配電用母線で常時の残留零相電圧Vnoと線
間電圧9tを測定して E = VL / 1丁とする
。つぎに任意の地絡インピーダンスZgで、基準相(a
相)を開閉器Sgによシ人工地絡させ、そのとき発生す
る零およびY2O2は次の(3)式及び(4)式で求め
られる。
■oo = Ya + Yb + Yc = ■oo/
θ Town... (1) 8'oo = 'S'a + Yb
l −120'+ Yc/120°=YIoo/θI・
...(2) Fig. 3 shows an outline of a device conventionally used for measuring ■oo and 仝'oo. In the figure, PT is a voltage transformer, IN, 2
N and 3N are the primary winding, secondary winding, and tertiary winding, respectively. A resistor or capacitor is used for artificial ground fault impedance. O and 0 are instruments that measure zero-sequence voltage and phase, respectively, and O is an instrument that measures line voltage. Now, measure the constant residual zero-sequence voltage Vno and line voltage 9t on the power distribution bus, and set E = VL / 1 line. Next, at an arbitrary ground fault impedance Zg, the reference phase (a
An artificial ground fault is caused by the switch Sg (phase), and the zero and Y2O2 generated at that time are determined by the following equations (3) and (4).

従来の配電系統対地定数の測定装置は上記(3)式及び
(4)式を応用して■oo及びY2O2を求めるもので
、詳細については特願昭56−12105号(配電線用
人工地絡試験装置)で述べている。
The conventional power distribution system ground constant measuring device calculates ■oo and Y2O2 by applying the above equations (3) and (4). equipment).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記のような従来の配電系統対地定数の測定装置では、
測定中に保護継電器の鎖錠や整定変更が必要であり、従
って測定場所には測定中監視員がいなければならないと
いう問題点があった。その理由を以下に示すっ 第3図において、zgで基準相(a相)を地絡させたと
きに生ずる零相電圧Vnは(5)式で表わされる。
In the conventional power distribution system ground constant measuring device as described above,
There is a problem in that it is necessary to lock the protective relay or change the setting during the measurement, and therefore a supervisor must be present at the measurement location during the measurement. The reason for this is shown below. In FIG. 3, the zero-sequence voltage Vn generated when the reference phase (a-phase) is grounded at zg is expressed by equation (5).

執=−E←1+乞g −Y’oo) / (1+λg 
−■oo )・・・・・・・・・・・・(5) (5)式で、too及びY’ooは測定によって求めよ
うとする未知数であシ、従ってVnを測定前にあらかじ
め正確に予測することは出来ない。また乞gの調整可能
範凹も、インピーダンス本体の大きさ、重量、経済性等
の面から制約される。このため、人工地絡によって発生
する9nを系統の大小に係らず常に継電器の整定値未溝
の値に抑えておくことは不可能で、従って対地定数を測
定する系統の変電所ではVnが地絡保護継電器の整定値
を超えてもよいように継電器を鎖錠したシ、測定中、系
統に地絡故障が生じたときには直ちに手動遮断するため
の要員が必要である。
Dedication=-E←1+beg-Y'oo) / (1+λg
−■oo )・・・・・・・・・・・・(5) In equation (5), too and Y'oo are unknown quantities to be determined by measurement, so Vn must be accurately determined in advance before measurement. cannot be predicted. Further, the adjustable range of the impedance is also limited by the size, weight, economic efficiency, etc. of the impedance body. Therefore, regardless of the size of the system, it is impossible to suppress 9n generated by an artificial ground fault to the unset value of the relay. It is necessary to lock the relay so that the set value of the fault protection relay may not be exceeded, and to have personnel available to manually shut off the system immediately if a ground fault occurs in the system during measurement.

この発明はかかる問題点を解決するためになされたもの
で、対地定数の自動計測が可能な配電系統対地定数自動
監視装置を得ることを目的とする。
The present invention has been made to solve such problems, and an object of the present invention is to obtain an automatic power distribution system ground constant monitoring device that can automatically measure the ground constant.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る配電系統対地定数自動監視装置は、高圧
配電系統の中性点に微小で、かつ任意の位相をとれる起
電力を短時間づつ間欠的に加え得る機能を具備すること
で、保護継電器の鎖錠や整定変更を必要とせずに系統の
対地定数を測定するものである。
The power distribution system ground constant automatic monitoring device according to the present invention is equipped with a function that can intermittently apply a minute electromotive force with an arbitrary phase to the neutral point of a high-voltage power distribution system. This method measures the ground constant of the system without requiring locking or setting changes.

第4図は、第2図に示す地絡インピーダンスを取り外し
、中性点Nに微小でかつ任意の位相をとれる測定用起電
力EOを加えた回路を示す。図中、Soは測定電源用ス
イッチ、  InはSOを閉じたときの中性線電流であ
る。い’! Soを閉じるとVn =+Yc (Vn+
BZl 20°) =■oo Eo+Y’ooE         −(6
)また、SOを開くと父n=Vnoであり、In =■
oo Vno + Y’oo E =0       
  ”’・””’(7)なるゆえ Y’oo = −(Vno / E ) ■oo   
      −−・(8)(6)式及び(8)式よ)、 ■oo  =  I’n / (Eo −V no )
         −(9)を得る。即ち、E、Vno
及びInを測定すると、(9)式及び(8)式より■o
o及びY2O2が求められる。ここで、Eoは任意の値
を取ることが可能で、保護継電器を鎖錠する必要のない
小さな値とする。
FIG. 4 shows a circuit in which the ground fault impedance shown in FIG. 2 is removed and a measuring electromotive force EO, which is minute and can have an arbitrary phase, is added to the neutral point N. In the figure, So is the measurement power supply switch, and In is the neutral line current when SO is closed. stomach'! When So is closed, Vn = +Yc (Vn+
BZl 20°) =■oo Eo+Y'ooE -(6
) Also, when you open SO, father n = Vno, and In = ■
oo Vno + Y'oo E = 0
``'・''''(7) Y'oo = -(Vno / E) ■oo
--(8) (6) and (8)), ■oo = I'n / (Eo -V no)
−(9) is obtained. That is, E, Vno
When measuring and In, from equations (9) and (8), ■ o
o and Y2O2 are determined. Here, Eo can take any value and is a small value that does not require locking the protective relay.

〔作用〕[Effect]

この発明においては、高圧配電系統の中性点に保護継電
器の鎖錠や整定変更を必要としない十分微小で、かつ任
意の位相をとれる起電力を加えることにより、該当配電
系統の対地定数を常時自動的に計測可能としている。
In this invention, by adding an electromotive force to the neutral point of the high-voltage distribution system that is sufficiently small that it does not require locking or changing the setting of the protective relay and that can take any phase, the ground constant of the distribution system is constantly maintained. It can be measured automatically.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示すブロック図で、A/
D−1とA/D−2とA/D−3は、それぞれアナログ
/デジタルの変換器である。0UT−1と0UT−2と
0UT−3と0UT−4は、それぞれ出力装置であfi
、C0NT−1とC0NT−2とC0NT−3とC0N
T−4は、それぞれ制御装置である。E G f′iE
oを発生する電圧位相調整器、GTはEoを系統の中性
点に与える接地変圧器18gはGT用の開閉器、Snは
中性点用電流遮断機、SoはkO供給用開閉器、GPT
は接地変圧器である。A/D−1はInを、A/D−2
はVn (即ちVnoと止0)を、A/D−3は※tを
、それぞれ計算機ユニツ)CPUに取シ込む。CPUの
出力である■ooとθとY′00とθ′は、それぞれ0
UT−1と0UT−2と0UT−3と0UT−4に表示
される。InとVnと乾よ#) ■ooと8’oo C
)算出は、(8)式と(9)式に基いてCPUで処理さ
れる。C0NT−1はEGで発生するEoの大きさを、
C0NT−2はEOの位相を、C0NT−3はSoの開
閉を、C0NT4はanの開閉をそれぞれ制御する。D
iは過電圧抑制装置であl)、Eoが常規対地電圧の2
チを超えないように整定し、系統に大きなEOが加わら
ないようにするとともに、系統の1線地絡等があっても
GTから高電圧が入らないようにこの計測装置を保護す
るものである。SOは常時開放して系統を中性点非接地
にしておき、測定に要する短時間だけ間欠的に閉じるも
のとする。以上述べた様にVn (即ちVno、!:E
o)とInをCPUに送)込むことで、常時系統の■o
o及びY′00 の値を自動計測監視することが可能で
ある。
FIG. 1 is a block diagram showing an embodiment of the present invention.
D-1, A/D-2, and A/D-3 are analog/digital converters, respectively. 0UT-1, 0UT-2, 0UT-3 and 0UT-4 are output devices respectively.
, C0NT-1 and C0NT-2 and C0NT-3 and C0N
T-4 is a control device. E G f'iE
18g is the switch for GT, Sn is the current breaker for the neutral point, So is the switch for supplying kO, GPT
is a grounding transformer. A/D-1 is In, A/D-2
inputs Vn (that is, Vno and zero), and A/D-3 inputs *t into the CPU (computer unit), respectively. ■oo and θ, Y'00 and θ', which are the outputs of the CPU, are 0, respectively.
Displayed on UT-1, 0UT-2, 0UT-3, and 0UT-4. In, Vn and Inui #) ■oo and 8'oo C
) calculation is processed by the CPU based on equations (8) and (9). C0NT-1 is the magnitude of Eo generated in EG,
C0NT-2 controls the phase of EO, C0NT-3 controls the opening/closing of So, and C0NT4 controls the opening/closing of an. D
i is the overvoltage suppressor l), Eo is the normal ground voltage 2
This is to prevent large EO from being applied to the grid by setting the voltage so that it does not exceed the voltage range, and to protect this measuring device from high voltage from the GT even if there is a one-wire ground fault in the grid. . The SO shall be open at all times to keep the neutral point of the system ungrounded, and shall be intermittently closed for a short period of time required for measurement. As mentioned above, Vn (i.e. Vno, !:E
By sending o) and In to the CPU, the constant system ■o
It is possible to automatically measure and monitor the values of o and Y'00.

次に、本配電系統対地定数自動監視装置によシ精度の高
い対地常数が計測可能であることを示す試験結果を示す
。試験は対地常数の大きさが略一般的な6KV実験用配
電系統において、既知の容量を持つ電力用高圧コンデン
サを用いて各相対地アドミタンスとし、本配電系統対地
定数自動監視て求めた対地常数と真の対地定数の比較を
行った。
Next, we will show test results showing that the automatic distribution system ground constant monitoring device can measure ground constants with high accuracy. The test was conducted in a 6KV experimental power distribution system with a generally standard ground constant, using a high-voltage power capacitor with a known capacity to set each relative ground admittance to the ground constant determined by automatic monitoring of the ground constant of the distribution system. A comparison of the true ground constant was made.

試験条件は第1表に示す様に、1線地絡電流が10A程
度の規模でアンバランスの比率(Y’oo/■oo )
が1.94%のA系統と、3.80%のB系統について
、それぞれEoの位相を正と逆にする組合せを選んだ。
The test conditions are as shown in Table 1, where the single-wire ground fault current is approximately 10A and the unbalance ratio (Y'oo/■oo)
For the A system with 1.94% and the B system with 3.80%, we selected combinations in which the phase of Eo is positive and reversed, respectively.

即ち、A系統は名板容量がそれぞれ次の Ca = 2.5μF Cb = 2.6μF Cc=2.67μF 3個の電力用高圧コンデンサを6KV母線に接続し1各
相コンデンサにそれぞれ電圧を加えてその電流、位相を
測定することによシ、予じめ各相の対地アドミタンスを
算出して次の値を得た。
In other words, the A system has the following plate capacitances: Ca = 2.5μF Cb = 2.6μF Cc = 2.67μF Three power high-voltage capacitors are connected to the 6KV bus, and a voltage is applied to each phase capacitor. By measuring the current and phase, the ground admittance of each phase was calculated in advance and the following values were obtained.

Ya = 808188.5°μs Yb = 831788.5°μs Yc = 863788.6°μs 従って(1)式及び(2)式よシ ■oo = 2502/88.5°μsY’oo= 4
8.5/−125,3°μs即ち、6600VのA系統
の3線一括対地充電電流は9.54Aである。なお、上
記■ooの値にはGPT3次側抵抗によるYn(=67
ZO°μs)も含まれている。B系統は名板容量がそれ
ぞれ次のCa=2.5μF Cb=2.77μF Cc = 2.83μF 3個の電力用高圧コンデンサを6KV母線に接続し、予
じめ各相の対地アドミタンスを算出して次の値を得た。
Ya = 808188.5°μs Yb = 831788.5°μs Yc = 863788.6°μs Therefore, according to equations (1) and (2), ■oo = 2502/88.5°μsY'oo = 4
8.5/-125.3[mu]s, that is, the 3-wire collective ground charging current of the 6600V A system is 9.54A. Note that the value of ■oo above includes Yn (=67
ZO°μs) is also included. For the B system, the name plate capacitances are as follows: Ca = 2.5 μF Cb = 2.77 μF Cc = 2.83 μF Three power high voltage capacitors are connected to the 6KV bus, and the ground admittance of each phase is calculated in advance. The following values were obtained.

Ya = 808Z88.5°μs Yb = 890Z88.6°μs Yc = 921788.5°μs 従って(1)式及び(2)式よシ ■oo= 2619Z88.5°μs Y’oo=99.61−106.7°μs即ち、660
0VのB系統の3線一括対地充電電流は9.98Aであ
る。以上の■oo及びY’oo  の値をそれぞれA系
統及びB系統の対地定数の真値とし、本配電系統対地定
数自動監視装置によって求められた対地定数の計測値及
び真値に対する誤差を第2表〜第5表に整理して示す。
Ya = 808Z88.5°μs Yb = 890Z88.6°μs Yc = 921788.5°μs Therefore, according to equations (1) and (2) .7°μs or 660
The 3-wire bulk ground charging current of the 0V B system is 9.98A. The above values of ■oo and Y'oo are taken as the true values of the ground constants of the A system and B system, respectively, and the error with respect to the measured value and true value of the ground constant obtained by this distribution system ground constant automatic monitoring device is calculated as the second value. The results are summarized in Tables 5 to 5.

第2表は、第1表に定義する試験A1の結果を、第3表
は試験A2の結果を、第4表は試験&3の結果を、第5
表は試験44の結果をそれぞれ示す。
Table 2 shows the results of Test A1 defined in Table 1, Table 3 shows the results of Test A2, Table 4 shows the results of Test &3, and Table 5 shows the results of Test &3.
The table shows the results of test 44 respectively.

第1表 試験ケース一覧表 第2表に示す測定41004〜A1006及び第4表に
示す測定A3008−43012はE。
Table 1 Test Case List Measurements 41004 to A1006 shown in Table 2 and Measurements A3008-43012 shown in Table 4 are E.

とVnoの位相が等しく従ってInが流れなくなって■
ooとY2O2の測定誤差が大きくなる。一方、第3表
に示す測定l62002〜A2005及び第51表に示
す測定&4002〜A4009はEoと立n。
Since the phases of and Vno are equal, In stops flowing and ■
The measurement error of oo and Y2O2 increases. On the other hand, measurements 162002 to A2005 shown in Table 3 and measurements &4002 to A4009 shown in Table 51 are Eo and n.

の位相が逆位相で■ooとY’ooの測定誤差が小さく
、またEOが残留零相電圧中no以下で実測に適した条
件を満足しているので、これ等測定12ケースについて
測定誤差を第6表に整理して示す。
Since the phases of are opposite to each other, the measurement error of The information is summarized in Table 6.

第6表IE01≦1Vnolの実測に適した12ケース
についての測定誤差 J■oo % : ■oo(Q大きさの誤差(%)δθ
’   : ■ooの位相の誤差角度δY’ooチ: 
Y’ooの大きさの誤差(チ)δθ″:Y′OOの位相
の誤差角度 第6表により、本配電系統対地定数自動監視装置による
精度の高い対地定数が計測可能であることが示された。
Table 6 Measurement error J■oo %: ■oo (Error in Q magnitude (%) δθ
': Error angle δY'oo of the phase of ■oo:
Error in the magnitude of Y'oo (ch) δθ'': Error angle in the phase of Y'OO Table 6 shows that it is possible to measure the ground constant with high accuracy by this automatic power distribution system ground constant monitoring device. Ta.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、系統に与える零相電圧
が、平常の系統の残留零相電圧以下で対地定数を測定出
来るので、地絡保護継電器を鎖錠したり、測定中系統の
事故に対処する要員を配置したシすることなく対地常数
の自動計測監視が実現出来るという効果がある。
As explained above, in this invention, the ground constant can be measured when the zero-sequence voltage applied to the system is less than the residual zero-sequence voltage of the normal system, so it is possible to lock the earth fault protection relay or deal with an accident in the system during measurement. This has the effect that automatic measurement and monitoring of ground constants can be realized without having to deploy personnel to do so.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すブロック図、第2図
は地絡インピーダンスZgによシ1線地絡をさせたとき
の電圧電流分布を示す回路図、第3図は従来の人工地絡
で対地定数を測定する手段を示す回路図、第4図はこの
発明の詳細な説明するための電圧電流分布図である。 第1図において、A/Dはアナログ/デジタルの変換器
、C0NTは制御装置、OUTは出力装置、CPUは計
算機ユニットである。 第1図 gtP7iz献 第2図 1a          Va 第3図
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a circuit diagram showing the voltage and current distribution when a one-line ground fault is caused by ground fault impedance Zg, and Fig. 3 is a circuit diagram showing a conventional artificial FIG. 4 is a circuit diagram showing a means for measuring the ground constant due to a ground fault, and is a voltage-current distribution diagram for explaining the present invention in detail. In FIG. 1, A/D is an analog/digital converter, C0NT is a control device, OUT is an output device, and CPU is a computer unit. Fig. 1 gtP7iz Fig. 2 1a Va Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 高圧配電系統の中性点に、微小でかつ任意の位相をとれ
る起電力を短時間づつ間欠的に加えて配電系統の対地定
数である3線一括対地アドミタンス(■oo)及び不平
衡分対地アドミタンス(■′oo)を常時自動的に計測
することを特徴とする配電系統対地定数自動監視装置。
By intermittently applying a small electromotive force with an arbitrary phase to the neutral point of the high-voltage power distribution system, the three-wire collective ground admittance (■oo), which is the ground constant of the power distribution system, and the unbalanced ground admittance are determined. An automatic power distribution system ground constant monitoring device characterized by automatically measuring (■'oo) at all times.
JP10951385A 1985-05-22 1985-05-22 Automatic monitoring device for ground constant of power distribution system Pending JPS61266967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10951385A JPS61266967A (en) 1985-05-22 1985-05-22 Automatic monitoring device for ground constant of power distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10951385A JPS61266967A (en) 1985-05-22 1985-05-22 Automatic monitoring device for ground constant of power distribution system

Publications (1)

Publication Number Publication Date
JPS61266967A true JPS61266967A (en) 1986-11-26

Family

ID=14512167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10951385A Pending JPS61266967A (en) 1985-05-22 1985-05-22 Automatic monitoring device for ground constant of power distribution system

Country Status (1)

Country Link
JP (1) JPS61266967A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100383724B1 (en) * 2000-12-22 2003-05-14 이창영 An automatical power supply switching apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540939A (en) * 1978-09-15 1980-03-22 Matsushita Electric Works Ltd Impedance measuring unit
JPS5811873A (en) * 1981-07-16 1983-01-22 Fuji Electric Co Ltd Measuring device for ground impedance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540939A (en) * 1978-09-15 1980-03-22 Matsushita Electric Works Ltd Impedance measuring unit
JPS5811873A (en) * 1981-07-16 1983-01-22 Fuji Electric Co Ltd Measuring device for ground impedance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100383724B1 (en) * 2000-12-22 2003-05-14 이창영 An automatical power supply switching apparatus

Similar Documents

Publication Publication Date Title
JP4167872B2 (en) Leakage current monitoring device and monitoring system therefor
US5455776A (en) Automatic fault location system
CA1247225A (en) Protective relaying apparatus for providing fault- resistance correction
US11355912B2 (en) Method and device for detecting faults in transmission and distribution systems
EP1101264B1 (en) Method and apparatus for deriving power system data from configurable source points
JP2008164374A (en) Device and method for measuring leakage current
JP2009058234A (en) Leak current measuring instrument and measuring method
Bainy et al. Enhanced generalized alpha plane for numerical differential protection applications
Calero Rebirth of negative-sequence quantities in protective relaying with microprocessor-based relays
JP2004184346A (en) Insulation state measuring apparatus
JP3167620B2 (en) Harmonic outflow evaluation device
JPS61266967A (en) Automatic monitoring device for ground constant of power distribution system
JP3312172B2 (en) Distribution line ground fault protection relay test method and apparatus
JP2904748B2 (en) Ground fault protection device
US11940476B2 (en) Three-phase power meter monitoring for star and delta configurations
JP2010060329A (en) Apparatus and method for measuring leakage current of electrical path and electric instrument
JPH0692997B2 (en) Measuring device for ground capacitance of power system
Nicorescu et al. On the impact of winding selection of current instrument transformers for PMU measurements
JPH02105073A (en) Artificial ground-fault testing device for distribution line
JPH041579A (en) Detection of insulation deterioration of electric power system
EP0013104A1 (en) Fault distance locator
JPH0697245B2 (en) Measuring device for ground capacitance of ungrounded power system
JPS61189119A (en) Disconnection detector
Roskosz et al. Measurement accuracy of short-circuit loop impedance in power systems
RU2041472C1 (en) Device for transformer testing by short-circuit currents