JPS61266939A - Pulverous particles measuring instrument using scanning type electron microscope - Google Patents

Pulverous particles measuring instrument using scanning type electron microscope

Info

Publication number
JPS61266939A
JPS61266939A JP10809885A JP10809885A JPS61266939A JP S61266939 A JPS61266939 A JP S61266939A JP 10809885 A JP10809885 A JP 10809885A JP 10809885 A JP10809885 A JP 10809885A JP S61266939 A JPS61266939 A JP S61266939A
Authority
JP
Japan
Prior art keywords
electron microscope
sample
center point
sample stage
measurement positions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10809885A
Other languages
Japanese (ja)
Other versions
JPH0518052B2 (en
Inventor
Tei Saito
斉藤 禎
Akio Hayashi
林 堯夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP10809885A priority Critical patent/JPS61266939A/en
Publication of JPS61266939A publication Critical patent/JPS61266939A/en
Publication of JPH0518052B2 publication Critical patent/JPH0518052B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • G01N15/0618Investigating concentration of particle suspensions by collecting particles on a support of the filter type

Abstract

PURPOSE:To facilitate an operation and to improve its efficiency by computing many measurement positions distributed uniformly on a sample surface by a computer and moving each measurement position to an observation position automatically. CONSTITUTION:A filter film F which collects particulates is set on a sample table 15. The sample table is moved to find coordinate values of three optional points A, B, and C on the periphery of the filter film, and the coordinates of the center P of the sample F are calculated on the basis of said values. Then, many measurement positions distributed uniformly on the surface of the filter film are computed on the basis of the deviation values of coordinates between the center point P of the filter film F and the center point Q of the sample table 15, the desired number of measurement positions to be distributed uniformly on the filter film, and the area of the filter film. Pulse motors 17 and 20 are controlled to move each measurement position to the center of a cathode-ray tube 6 and the focus is adjusted by the automatic focusing mechanism 4 of an electron microscope to photograph the image on the display 5 by a camera 2. The film is taken up automatically after the photographing and the many measurement positions are photographed in order under the control of the computer 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体用の超純水中に含まれる微粒子数その
他各種の試料中に含まれる微粒子数を測定するための走
査型電子顕微鏡を用いた微粒子測定装置に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a scanning electron microscope for measuring the number of fine particles contained in ultrapure water for semiconductors and other types of samples. Regarding the particulate measuring device used.

(従来の技術) 従来、例えば超純水中の微粒子数測定方法として、超純
水の単位量を濾過膜で濾過して微粒子を該濾過膜に捕集
し、微粒子の大きさが0.2マイクロメ一ター以上の場
合は光学顕微鏡を、それ以下の場合は走査型電子顕微鏡
(以下電子顕微鏡と略称する)を使用し、いずれの場合
も上記濾過膜を直交二軸方向へ移動自在の試料台上にセ
ットし、該試料台を測定員の慎重なツマミ回し操作によ
って順次視野(測定位置)をゆっくりと観察位置に移動
させながら各視野に現われる微粒子数を肉眼で数える方
法が行われている。しかし、この従来方法では、超純水
中の微粒子が非常に少いため、光学顕微鏡の場合でも倍
率1500で視野数(測定位置の数)50程度を測定す
る必要があり、従って熟練者でも測定完了までに約2時
間かかり、又、電子顕微鏡の場合は、倍率をより大きく
すると1視野当りの視野面積はさらに狭くなるため視野
数を多くしなければならず、従って例えば視野数を20
0にしたとき測定に約8時間も必要となり、特に電子顕
微鏡の場合、暗室で長時間手回し操作とブラウン管ディ
スプレーの影像をI!察することは、はなはだしい疲労
をもたらす結果となっていた。
(Prior art) Conventionally, for example, as a method for measuring the number of particles in ultrapure water, a unit amount of ultrapure water is filtered through a filtration membrane, the particles are collected on the filtration membrane, and the size of the particles is 0.2. If the size is more than a micrometer, an optical microscope is used, and if it is less than that, a scanning electron microscope (hereinafter referred to as an electron microscope) is used. A method is used in which the number of particles appearing in each field of view is counted with the naked eye while the field of view (measurement position) is slowly moved sequentially to the observation position by carefully rotating the knob by the measurement staff. However, with this conventional method, since there are very few particles in ultrapure water, it is necessary to measure about 50 fields of view (number of measurement positions) at a magnification of 1500 even with an optical microscope, so even an expert can complete the measurement. In addition, in the case of an electron microscope, when the magnification is increased, the field area per field of view becomes smaller, so the number of fields of view must be increased, for example, 20.
When set to 0, it takes about 8 hours to complete the measurement, especially when using an electron microscope. The result was a great deal of fatigue.

一方、電子顕微鏡による測定において視野面積が狭くな
ると、測定の正確さを期するためには測定位置を濾過膜
全面に均一分数させることが重要となる。しかるに従来
の測定方法では、濾過膜の中心を試料台の中心に正確に
合わせることが極めて困難であるから、濾過膜上に測定
位置を均一分散位置で正確に配分できたとしても、それ
ら各測定位置が試料台の中心に対して偏差を生じること
となり、従って時には濾過膜からはみ出した位置を電子
顕微鏡の鏡筒の中心に移動させることとなり、又、操作
においては、測定倍率が大きくなる程測定位置の移動を
正確に行う必要があるが、マイクロメータ一単位で均一
に測定位置移動を行うにはかなり時間がかかる等の欠点
があった。
On the other hand, when the field of view becomes narrower in measurements using an electron microscope, it becomes important to distribute the measurement positions uniformly over the entire surface of the filter membrane in order to ensure measurement accuracy. However, with conventional measurement methods, it is extremely difficult to accurately align the center of the filtration membrane with the center of the sample stage. The position will deviate from the center of the sample stage, and therefore the position protruding from the filtration membrane may have to be moved to the center of the electron microscope lens barrel. Although it is necessary to move the position accurately, there are drawbacks such as the fact that it takes a considerable amount of time to uniformly move the measurement position for each micrometer.

(発明が解決しようとする問題点) 本願第1発明は、濾過膜等の試料面に均一分布された多
数の測定位置を電子顕微鏡の鏡筒の中心点に正確に移動
させることができると共に能率向上を実現できる走査型
電子顕微鏡を用いた微粒子測定装置を提供することを目
的とする。
(Problems to be Solved by the Invention) The first invention of the present application is capable of accurately moving a large number of measurement positions uniformly distributed on the surface of a sample such as a filtration membrane to the center point of the lens barrel of an electron microscope, and at the same time being efficient. The purpose of the present invention is to provide a particle measuring device using a scanning electron microscope that can achieve improved performance.

本願第2発明は、上記第1発明の目的に加え、測定者の
疲労を除くことができる走査型電子顕微鏡を用いた微粒
子測定装置を提供す゛ることを目的とする。
In addition to the object of the first invention, the second invention of the present application aims to provide a particle measuring device using a scanning electron microscope that can eliminate fatigue of the measurer.

(問題点を解決するための手段) 上記目的を達成するため、本願第1発明は、自動焦点機
構を有する走査型電子顕微鏡とコンピュータを具備し、 上記電子顕微鏡は、 互に直交するX軸及びY軸方向に移動自在に支持された
試料をセットすべき試料台と、上記試料台を上記X、Y
両軸方向へそれぞれ駆動させるためのX方向パルスモー
タ及びY方向パルスモータを有する試料台移動機構と、
を有し、上記コンピュータは、 上記電子顕微鏡の試料台を基準位置に合わせたときのブ
ラウン管ディスプレーの中心点を原点とし且上記X、Y
軸を座標軸とする座標系において。
(Means for Solving the Problems) In order to achieve the above object, the first invention of the present application is equipped with a scanning electron microscope having an automatic focusing mechanism and a computer, and the electron microscope has two orthogonal X-axes and a computer. A sample stand on which a sample is to be set is supported movably in the Y-axis direction, and the sample stand is connected to the
a sample stage moving mechanism having an X-direction pulse motor and a Y-direction pulse motor for driving in both axial directions;
The computer has the center point of the cathode ray tube display when the sample stage of the electron microscope is aligned with the reference position, and the X, Y
In a coordinate system with axes as coordinate axes.

上記試料台にセットされた試料面の中心点の座標値を演
算する機構と。
A mechanism for calculating coordinate values of a center point of a sample surface set on the sample stage.

上記試料面の面積、上記試料面の中心点と試料台の中心
点との座標上の偏差値、及び所望の多数測定位置数に基
づいて上記試料面に均一分布された多数測定位置を上記
偏差値を補正してそれぞれ座標値として演算する機構と
、 上記電子顕微鏡の鏡筒の中心点に上記各測定位置をそれ
ぞれ移動させるため上記多数測定位置の各座標値に基づ
いて上記X方向及びY方向の両パルスモータ−を回転さ
せるに必要なパルス信号を発生させて上記両パルスモー
タ−にそれぞれ送信するパルス制御機構と、を有する構
成としてあり、又、本願第2発明は、上記第1発明の構
成に加え、電子顕微鏡のブラウン管ディスプレーの前面
にフィルム自動巻上げカメラを配置すると共に、コンピ
ュータに上記カメラを作動させるためのシャッター制御
機構を設けた構成としである。
Based on the area of the sample surface, the deviation value on the coordinates between the center point of the sample surface and the center point of the sample stage, and the desired number of multiple measurement positions, multiple measurement positions uniformly distributed on the sample surface are determined by the deviation value. a mechanism for correcting the values and calculating them as coordinate values, and a mechanism for moving each of the measurement positions to the center point of the lens barrel of the electron microscope in the X and Y directions based on the coordinate values of the multiple measurement positions. and a pulse control mechanism that generates a pulse signal necessary to rotate both pulse motors and transmits it to each of the pulse motors, and the second invention of the present application is the same as the first invention of the present invention. In addition to the structure, an automatic film winding camera is placed in front of the cathode ray tube display of the electron microscope, and a shutter control mechanism for operating the camera is provided in the computer.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図において、本例の微粒子測定装置は、走査型電子
顕微鏡(1)、フィルム自動巻上げカメラ(2)、及び
パーソナルコンピュータ(3)を具備し、上記電子顕微
鏡(1)は、自動焦点機構(4)、撮影用のブラウン管
ディスプレー(5)、am用のブラウン管ディスプレー
(6)、及び試料の各測定位置を移動させるためのパル
スモータつき試料台移動機構(7)を有し、又上記カメ
ラ(2)は、上記撮影用のブラウン管ディスプレー(5
)に映し出される像を撮影すべく該ブラウン管ディスプ
レー(5)の前面にセットされており、上記コンピュー
タ(3)は、試料の中心点を演算する機構、試両面に均
一分布された多数測定位置を演算する機構、上記試料台
移動機構(7)のパルスモータへ送信するためのパルス
制御機構、上記電子顕微鏡の自動焦点機構(4)のため
の作動制御機構及び上記カメラ(2)を作動させるため
のシャッター制御機構を有する。なお、ブラウン管ディ
スプレー(5)はブラウン管ディスプレー(6)より画
面が小さいだけで、両者は同じ像が映し出される。
In FIG. 1, the particle measuring device of this example is equipped with a scanning electron microscope (1), an automatic film winding camera (2), and a personal computer (3), and the electron microscope (1) has an automatic focusing mechanism. (4), a cathode ray tube display for photography (5), a cathode ray tube display for AM (6), and a sample stage moving mechanism (7) with a pulse motor for moving each measurement position of the sample; (2) is the cathode ray tube display (5
) is set in front of the cathode ray tube display (5), and the computer (3) is equipped with a mechanism for calculating the center point of the sample and a large number of measurement positions uniformly distributed on the sample surface. A mechanism for calculating, a pulse control mechanism for transmitting signals to the pulse motor of the sample stage moving mechanism (7), an operation control mechanism for the automatic focusing mechanism (4) of the electron microscope, and for operating the camera (2). It has a shutter control mechanism. Note that the cathode ray tube display (5) only has a smaller screen than the cathode ray tube display (6), and both display the same image.

まず、上記電子顕微鏡(1)の試料台移動機構(7)に
ついて説明する。第2図において、地板(8)上にX軸
方向に延長する2本のガイドレール(9)、(9)を敷
設し、該ガイドレール(9)、(9)上に下部台座(1
0)をX軸方向に摺動自在に支持させると共に、上記下
部台座(10)上にY軸方向に延長する2本のガイドレ
ール(11)、(11)を敷設し、該ガイドレール(1
1)、(11)上に上部台座(12)をY軸方向に摺動
自在に支持させ、この上部台座(12)の上面中心部に
支柱(13)を垂直に起立し、該支柱(13)の上端面
中心に突設されたオネジ部(14)に、正方形板からな
る試料台(15)の下面中心に突設されたメネジ部(1
6)を螺合するようにしである。
First, the sample stage moving mechanism (7) of the electron microscope (1) will be explained. In Fig. 2, two guide rails (9), (9) extending in the X-axis direction are laid on the main plate (8), and the lower pedestal (1) is placed on the guide rails (9), (9).
0) is slidably supported in the X-axis direction, and two guide rails (11), (11) extending in the Y-axis direction are laid on the lower pedestal (10).
1), an upper pedestal (12) is supported slidably in the Y-axis direction on top of (11), and a column (13) is vertically erected at the center of the upper surface of this upper pedestal (12). ) has a male threaded portion (14) protruding from the center of the upper end surface, and a female threaded portion (14) has a female threaded portion (14) from the center of the lower surface of the sample stage (15) made of a square plate.
6) are screwed together.

上記下部台座(10)をX軸方向へ摺動させる駆動手段
として、X方向パルスモータ(17)を地板(8)上に
設置し、一方下部台座(10)の−側面にメネジブロッ
ク(18)をX軸方向に向けて固定し、該メネジブロッ
ク(18)と螺合するオネジ棒からなるX方向回転駆動
軸(19)と、上記パルスモータ(17)の出力軸とを
連結してあり、又上記上部台座(12)をY軸方向へ摺
動させる駆動手段として、Y方向パルスモータ(20)
を地板(8)上に設置し、−右上部台座(12)の−側
面にメネジブロック(21)をY軸方向に向けて固定し
、該メネジブロック(21)と螺合するオネジ捧からな
るY方向回転駆動軸(22)を、上記下部台座(10)
の他側面に突設されたブラケット(23)、(23)に
開端部において回転自在に支承させ、該回転駆動軸(2
2)(7)一端部にウオームホイル(24)を固着する
と共に、下部台座(10)の別の側面に突設されたブラ
ケット(25)、(25)に支承された連動軸(26)
の一端部にウオーム(27)を固着し、該ウオーム(2
7)を上記ウオームホイル(24)にかみ合わせると共
に、上記連動軸(26)の他端部をユニバーサルジヨイ
ント(28)を介して上記パルスモータ(20)の出方
軸に連結しである。(29)、(30)は上記モータ(
17)、(20)の手回し用ハンドルである。
As a driving means for sliding the lower pedestal (10) in the X-axis direction, an X-direction pulse motor (17) is installed on the main plate (8), and a female screw block (18) is installed on the negative side of the lower pedestal (10). is fixed in the X-axis direction, and an X-direction rotation drive shaft (19) consisting of a male threaded rod screwed into the female threaded block (18) is connected to the output shaft of the pulse motor (17), Further, as a driving means for sliding the upper pedestal (12) in the Y-axis direction, a Y-direction pulse motor (20) is used.
is installed on the main plate (8), and a female screw block (21) is fixed to the side surface of the upper right pedestal (12) facing the Y-axis direction, and consists of a male screw thread that is screwed into the female screw block (21). The Y direction rotation drive shaft (22) is connected to the lower pedestal (10).
Brackets (23), (23) protruding from the other side are rotatably supported at the open end, and the rotary drive shaft (2
2) (7) A worm wheel (24) is fixed to one end, and an interlocking shaft (26) supported by brackets (25) and (25) protruding from the other side of the lower pedestal (10).
A worm (27) is fixed to one end of the worm (27).
7) is engaged with the worm wheel (24), and the other end of the interlocking shaft (26) is connected to the output shaft of the pulse motor (20) via the universal joint (28). (29) and (30) are the motors mentioned above (
17) and (20) are hand-cranked handles.

上記試料台(15)上には、本例では試料として、超純
水の一定量を濾過し、微粒子を捕集した円形の濾過膜(
F)をその中心をほぼ合致させて通常の手段によりセッ
トする。
On the sample stage (15), in this example, as a sample, a circular filtration membrane (
F) with their centers approximately aligned and set by conventional means.

次に、上記パーソナルコンピュータ(3)の試料中心点
演算機構は次のようである。演算に先立ち、まず、上記
試料台(15)を基準位置に合わせる。基準位置は各電
子顕微鏡に予め設定されているもので、該試料台(15
)の中心部にブラウン管鏡筒が向く位置である。ついで
上記試料台(15)を基準位置に合わせたときのブラウ
ン管ディスプレー(6)の中心を原点とし且互に直交す
る上記X軸、Y軸を座標軸とする座標系を設定し、この
座標系の下で、第3図示のように試料台(15)上にセ
ットされた濾過膜(F)の円周上の任意の3点A、B、
Cの座標値(Xいy工)、(x z、yz)、(Xi、
 y3)を求める。これは、電子顕微鏡を100〜20
0倍の低倍率に調整し。
Next, the sample center point calculation mechanism of the personal computer (3) is as follows. Prior to calculation, first, the sample stage (15) is aligned with the reference position. The reference position is set in advance for each electron microscope, and the reference position is set in advance for each electron microscope.
) is the position where the cathode ray tube lens barrel faces the center. Next, a coordinate system is set whose origin is the center of the cathode ray tube display (6) when the sample stage (15) is aligned with the reference position, and whose coordinate axes are the X and Y axes that are orthogonal to each other. Below, as shown in the third figure, arbitrary three points A, B, on the circumference of the filter membrane (F) set on the sample stage (15),
Coordinate values of C (X y work), (x z, yz), (Xi,
Find y3). This requires an electron microscope of 100 to 20
Adjust to low magnification of 0x.

上記試料台移動機構(7)のハンドル(29)、(30
)操作により上記3点A、B、Cをそれぞれブラウン管
ディスプレー(6)の中心に移動させた際の各X、Y座
標値によって得られる。この3点A、B、Cより等距離
の点が濾過膜(F)の中心であり、換言すれば例えば線
分ABの垂直二等分線と線分ACの垂直二等分線の交点
が三角形ABCに外接する円の中心であるから1円の中
心即ち試料の中心をP (xo、yo)とすると、中心
の座標は下記の展開式から求めることができる。
The handles (29) and (30) of the sample stage moving mechanism (7)
) is obtained by the respective X and Y coordinate values when the three points A, B, and C are moved to the center of the cathode ray tube display (6). A point equidistant from these three points A, B, and C is the center of the filter membrane (F). In other words, for example, the intersection of the perpendicular bisector of line segment AB and the perpendicular bisector of line segment AC is Since it is the center of a circle circumscribing the triangle ABC, if the center of one circle, that is, the center of the sample is P (xo, yo), the coordinates of the center can be determined from the following expansion formula.

Vo=              −3’a   V
I       Y2 ’11又、上記試料面における
均一分布の測定位置演算機構は、第4図示のような上記
濾過膜CF)の中心点(P)と試料台(15)の中心点
(Q)との間の座標上の偏差値と、濾過膜(F)面上に
均一分布すべき所望の測定位置数と、濾過膜(F)の面
積とから、第5図示のように該濾過膜(、F )の円形
面に均一分布された多数測定位置(S)−−を上記偏差
値を補正した座標値で演算するものである。
Vo=-3'a V
I Y2 '11 In addition, the measurement position calculation mechanism for uniform distribution on the sample surface is based on the relationship between the center point (P) of the filter membrane CF) and the center point (Q) of the sample stage (15) as shown in Figure 4. From the deviation value on the coordinates between, the desired number of measurement positions to be uniformly distributed on the surface of the filtration membrane (F), and the area of the filtration membrane (F), the filtration membrane (, F ) are calculated using coordinate values with the deviation values corrected.

さらに、上記パルス制御機構は、上記各測定位置(S)
−−−一を上記ブラウン管ディスプレー(6)の中心点
にそれぞれ移動させるため、各測定位置(S)−−−−
の上記X、Y座標値に基づいて上記X方向及びY方向の
両パルスモータ(17)、(20)を回転させるに必要
なパルス数を発生させて該パルスモータ(17)、(2
0)にそれぞれ送信するものである。本例では1パルス
で1マイクロメーター移動するようにしである。
Furthermore, the pulse control mechanism is configured to control the pulse control mechanism at each of the measurement positions (S).
--- Each measurement position (S) is moved to the center point of the CRT display (6).
The number of pulses necessary to rotate both the pulse motors (17) and (20) in the X and Y directions is generated based on the X and Y coordinate values of
0) respectively. In this example, one pulse moves one micrometer.

測定においては、濾過膜(F)上の1つの測定位置(S
)のX、Y座標値に対応するパルス信号をパルス制御機
構からX方向及びY方向パルスモータ(17)、 (2
o)にそれぞれ送って所要角度回転させ、それにより該
測定位置(S)をブラウン管ディスプレー(6)の中心
に移動させる。移動後電子顕微鏡の自動焦点機構(4)
によって焦点を調整し、ついでカメラ(2)にシャッタ
ー制御機構からシャッター開放信号を送ってブラウン管
ディスプレー(5)の映像を撮影する。撮影後カメラ(
2)はフィルムを自動的に巻上げ、次の撮影に備える。
In the measurement, one measurement position (S
) from the pulse control mechanism to the X-direction and Y-direction pulse motors (17), (2
o) and rotated by a required angle, thereby moving the measuring position (S) to the center of the cathode ray tube display (6). Automatic focusing mechanism of electron microscope after movement (4)
The focus is adjusted using the shutter control mechanism, and then a shutter release signal is sent to the camera (2) from the shutter control mechanism to take an image on the cathode ray tube display (5). Camera after shooting (
2) automatically winds the film and prepares for the next shot.

コンピュータ(3)により上記制御を繰返して多数の測
定位置(S)−−−一を順番に移動させてカメラ(2)
で撮影していく。
The computer (3) repeats the above control to sequentially move one of the measurement positions (S) to the camera (2).
I'm going to take pictures.

全測定位置(S)−−−−の撮影が完了したら、フィル
ムを現像し、該フィルムによって微粒子の測定を行う。
When all measurement positions (S) have been photographed, the film is developed and the particles are measured using the film.

(発明の効果) 本願第1発明の走査型電子顕微鏡を用いた微粒子測定装
置によれば、コンピュータにより試料面に均一分布され
た多数測定位置を演算すると共にX方向及びY方−面周
パルスモータに所要のパルス信号を送信することにより
、上記各測定位置を観察位置に正確かつ自動的に移動さ
せることができ。
(Effects of the Invention) According to the particle measuring device using the scanning electron microscope of the first invention of the present application, a computer calculates a large number of measurement positions uniformly distributed on the sample surface, and a pulse motor in the X direction and Y direction By sending the required pulse signals to the sensor, each of the above measurement positions can be accurately and automatically moved to the observation position.

それにより従来のような煩雑な手回し操作を省略し、作
業の容易化、能率化を実現できるのであり。
This eliminates the complicated manual operation required in the past, making work easier and more efficient.

特にコンピュータにより試料面の中心点を演算し、該中
心点と試料台の中心点との偏差値を補正して上記各測定
位置を算出するから、試料面に対する各測定位置の位置
決めを正確に行うことができるのであり、それらが相ま
って精度の高い微粒子測定を実現できるのである。
In particular, the computer calculates the center point of the sample surface, corrects the deviation value between the center point and the center point of the sample stage, and calculates each of the above measurement positions, so each measurement point can be accurately positioned with respect to the sample surface. The combination of these features makes it possible to achieve highly accurate particulate measurement.

本願第2発明の走査型電子顕微鏡を用いた微粒子測定装
置によれば、上記第1発明の効果に加えて、ブラウン管
ディスプレーに映し出される各測定位置の映像をフィル
ム自動巻上げカメラで次々に撮影し、それらの写真を用
いて微粒子を測定することにより、従来方法に比較し、
測定者の疲労を大巾に除くことができると共に、より正
確な測定が可能となるのである。
According to the particle measuring device using a scanning electron microscope of the second invention of the present application, in addition to the effects of the first invention, images of each measurement position projected on a cathode ray tube display are sequentially photographed by an automatic film winding camera, By measuring fine particles using those photographs, compared to the conventional method,
This greatly reduces the fatigue of the measurer and enables more accurate measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は全体のブロック
図、第2図は試料台移動機構の試料台を分離した斜面図
、第3図は濾過膜の中心点算出法を示す説明図、第4図
は濾過膜と試料台との中心点偏差を示す説明図、第5図
は濾過膜面に配置した測定位置を示す説明図である。 1−一一一走査型電子顕微鏡、2−一一一フィルム自動
巻上げカメラ、3−一一一パーソナルコンピュータ。 4−一一一自動焦点機構、5−−−−撮影用ブラウン管
ディスプレー、6−−−−観察用ブラウン管ディスプレ
ー、7−−−−試料台移動機構、15−−−−試料台、
17−−−− X方向パルスモータ、2O−−−−Y方
向パルスモータ、F−一一一濾過膜。
The drawings show an embodiment of the present invention; FIG. 1 is an overall block diagram, FIG. 2 is a perspective view of the sample stage moving mechanism with the sample stage separated, and FIG. 3 is an explanation showing a method for calculating the center point of a filtration membrane. FIG. 4 is an explanatory diagram showing the center point deviation between the filtration membrane and the sample stage, and FIG. 5 is an explanatory diagram showing measurement positions arranged on the filtration membrane surface. 1-111 scanning electron microscope, 2-111 automatic film winding camera, 3-111 personal computer. 4-111 automatic focus mechanism, 5----Cathode-ray tube display for photographing, 6----Cathode-ray tube display for observation, 7----Sample stage moving mechanism, 15----Sample stage,
17---X direction pulse motor, 2O---Y direction pulse motor, F-111 filtration membrane.

Claims (2)

【特許請求の範囲】[Claims] (1)自動焦点機構を有する走査型電子顕微鏡とコンピ
ュータを具備し、 上記電子顕微鏡は、 互に直交するX軸及びY軸方向に移動自在に支持された
試料をセットすべき試料台と、 上記試料台を上記X、Y両軸方向へそれぞれ駆動させる
ためのX方向パルスモータ及びY方向パルスモータを有
する試料台移動機構と、を有し、上記コンピュータは、 上記電子顕微鏡の試料台を基準位置に合わせたときのブ
ラウン管ディスプレーの中心点を原点とし且上記X、Y
軸を座標軸とする座標系において、上記試料台にセット
された試料面の中心点の座標値を演算する機構と、 上記試料面の面積、上記試料面の中心点と試料台の中心
点との座標上の偏差値、及び所望の多数測定位置数に基
づいて上記試料面に均一分布された多数測定位置を上記
偏差値を補正してそれぞれ座標値として演算する機構と
、 上記電子顕微鏡の鏡筒の中心点に上記各測定位置をそれ
ぞれ移動させるため上記多数測定位置の各座標値に基づ
いて上記X方向及びY方向の両パルスモータを回転させ
るに必要なパルス信号を発生させて上記両パルスモータ
にそれぞれ送信するパルス制御機構と、を有する。 走査型電子顕微鏡を用いた微粒子測定装置。
(1) The electron microscope is equipped with a scanning electron microscope having an automatic focusing mechanism and a computer, and the above-mentioned electron microscope is equipped with a sample stage on which a sample is set, which is supported movably in mutually orthogonal X-axis and Y-axis directions; a sample table moving mechanism having an X-direction pulse motor and a Y-direction pulse motor for driving the sample table in both the X and Y axis directions, and the computer moves the sample table of the electron microscope to a reference position. The origin is the center point of the cathode ray tube display when set to
In a coordinate system with the axis as the coordinate axis, a mechanism for calculating the coordinate values of the center point of the sample surface set on the sample stage, an area of the sample surface, a center point of the sample surface, and a center point of the sample stage. a mechanism that corrects the deviation value and calculates each of the multiple measurement positions uniformly distributed on the sample surface as coordinate values based on the deviation value on the coordinates and the desired number of multiple measurement positions; and the lens barrel of the electron microscope. In order to move each measurement position to the center point of the measurement position, a pulse signal necessary to rotate both the pulse motors in the X direction and the Y direction is generated based on the coordinate values of the multiple measurement positions. and a pulse control mechanism for transmitting signals to the respective pulses. A particle measurement device using a scanning electron microscope.
(2)自動焦点機構を有する走査型電子顕微鏡と、フィ
ルム自動巻上げカメラと、コンピュータとを具備し、 上記電子顕微鏡は、 互に直交するX軸及びY軸方向に移動自在に支持された
試料をセットすべき試料台と、 上記試料台を上記X、Y両方向へそれぞれ駆動させるた
めのX方向パルスモータ及びY方向パルスモータを有す
る試料台移動機構と、を有し、上記フィルム自動巻上げ
カメラは、上記電子顕微鏡のブラウン管ディスプレーの
前面に配置され、上記コンピュータは、 上記電子顕微鏡の試料台を基準位置に合わせたときのブ
ラウン管ディスプレーの中心点を原点とし且上記X、Y
軸を座標軸とする座標系において、上記試料台にセット
された試料面の中心点の座標値を演算する機構と、 上記試料面の面積、上記試料面の中心点と試料台の中心
点との座標上の偏差値、及び所望の多数測定位置数に基
づいて上記試料面に均一分布された多数測定位置を上記
偏差値を補正してそれぞれ座標値として演算する機構と
、 上記電子顕微鏡の鏡筒の中心点に上記各測定位置をそれ
ぞれ移動させるため上記多数測定位置の各座標値に基づ
いて上記X方向及びY方向の両パルスモータを回転させ
るに必要なパルス停号を発生させて上記両パルスモータ
にそれぞれ送信するパルス制御機構と、 上記カメラを作動させるためのシャッター制御機構と、
を有する、走査型電子顕微鏡を用いた微粒子測定装置。
(2) Equipped with a scanning electron microscope having an automatic focusing mechanism, an automatic film winding camera, and a computer, the electron microscope is capable of handling a sample supported movably in the mutually perpendicular X-axis and Y-axis directions. The automatic film winding camera has a sample stage to be set, and a sample stage moving mechanism having an X-direction pulse motor and a Y-direction pulse motor for driving the sample stage in both the X and Y directions, respectively. The computer is placed in front of the cathode ray tube display of the electron microscope, and the computer uses the center point of the cathode ray tube display when the sample stage of the electron microscope is aligned with the reference position as the origin, and
In a coordinate system with the axis as the coordinate axis, a mechanism for calculating the coordinate values of the center point of the sample surface set on the sample stage, an area of the sample surface, a center point of the sample surface, and a center point of the sample stage. a mechanism that corrects the deviation value and calculates each of the multiple measurement positions uniformly distributed on the sample surface as coordinate values based on the deviation value on the coordinates and the desired number of multiple measurement positions; and the lens barrel of the electron microscope. In order to move each measurement position to the center point of the measurement position, a pulse stop signal necessary to rotate both the pulse motors in the X direction and the Y direction is generated based on the coordinate values of the multiple measurement positions, and both pulses are generated. a pulse control mechanism that sends signals to each motor; a shutter control mechanism that operates the camera;
A particle measuring device using a scanning electron microscope.
JP10809885A 1985-05-22 1985-05-22 Pulverous particles measuring instrument using scanning type electron microscope Granted JPS61266939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10809885A JPS61266939A (en) 1985-05-22 1985-05-22 Pulverous particles measuring instrument using scanning type electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10809885A JPS61266939A (en) 1985-05-22 1985-05-22 Pulverous particles measuring instrument using scanning type electron microscope

Publications (2)

Publication Number Publication Date
JPS61266939A true JPS61266939A (en) 1986-11-26
JPH0518052B2 JPH0518052B2 (en) 1993-03-10

Family

ID=14475822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10809885A Granted JPS61266939A (en) 1985-05-22 1985-05-22 Pulverous particles measuring instrument using scanning type electron microscope

Country Status (1)

Country Link
JP (1) JPS61266939A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207683A (en) * 2006-02-03 2007-08-16 Tokyo Seimitsu Co Ltd Electron microscope
JP2009528580A (en) * 2006-03-03 2009-08-06 3ディーヒステック ケイエフティー. Method for digitally photographing slides and automatic digital image recording system therefor
JP2019020154A (en) * 2017-07-12 2019-02-07 オルガノ株式会社 Method for evaluating ultrapure water, method for evaluating membrane module for manufacturing ultrapure water, and method for evaluating ion exchange resin for manufacturing ultrapure water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207683A (en) * 2006-02-03 2007-08-16 Tokyo Seimitsu Co Ltd Electron microscope
JP2009528580A (en) * 2006-03-03 2009-08-06 3ディーヒステック ケイエフティー. Method for digitally photographing slides and automatic digital image recording system therefor
JP2019020154A (en) * 2017-07-12 2019-02-07 オルガノ株式会社 Method for evaluating ultrapure water, method for evaluating membrane module for manufacturing ultrapure water, and method for evaluating ion exchange resin for manufacturing ultrapure water

Also Published As

Publication number Publication date
JPH0518052B2 (en) 1993-03-10

Similar Documents

Publication Publication Date Title
US4099880A (en) Method and an apparatus for stereoscopic measurement utilizing a three-dimensional image
CN109739239B (en) Planning method for uninterrupted instrument recognition of inspection robot
CN109191527A (en) A kind of alignment method and device based on minimum range deviation
CN108805940B (en) Method for tracking and positioning zoom camera in zooming process
CN108519067B (en) Method for determining coordinates of shooting target in camera shift operation process
JPS61266939A (en) Pulverous particles measuring instrument using scanning type electron microscope
JP5365960B2 (en) 3D two-point simple distance measuring device
JP2000121902A (en) Method and device for adjusting lens system optical axis
CN116381712A (en) Measurement method based on linear array camera and ground laser radar combined device
JPH09318351A (en) Distance survey apparatus and size measuring method of object
SU1107618A1 (en) Method of transforming panoramic aerial photographs
JP3081231B2 (en) electronic microscope
JP3732299B2 (en) Transmission electron microscope
JPS62273432A (en) Counter for number of fine particles in fluid
CN111385476A (en) Method and device for adjusting shooting position of shooting equipment
Adams The use of non-metric cameras in short-range photogrammetry
Van Gheluwe Errors caused by misalignment of the cameras in cinematographical analyses
JPH0419899Y2 (en)
JPH0435846A (en) Positioning of semiconductor wafer
JPH0670636B2 (en) High-precision dynamic measuring instrument
Vozikis Some Theoretical and Practical Aspects of the OR1 ISORA-PR System
JPS6154586A (en) Counter for fine particle in fluid
CN114862717A (en) Fisheye camera image pair checking and correcting method for simultaneously constraining orthogonal principal optical axis and collinear lateral axis of epipolar line
JP3068325B2 (en) 3D position measuring device
TW202236213A (en) Unmanned aerial vehicle examination field scoring device capable of using the electronic photographic image processing technologies, image corrections, and splicing algorithm to complete an objective scoring task so as to reduce examination disputes