JPS61266544A - Alloy for surface layers used as surface layers of sliding parts, plane bearing or the like - Google Patents

Alloy for surface layers used as surface layers of sliding parts, plane bearing or the like

Info

Publication number
JPS61266544A
JPS61266544A JP10962785A JP10962785A JPS61266544A JP S61266544 A JPS61266544 A JP S61266544A JP 10962785 A JP10962785 A JP 10962785A JP 10962785 A JP10962785 A JP 10962785A JP S61266544 A JPS61266544 A JP S61266544A
Authority
JP
Japan
Prior art keywords
alloy
surface layer
surface layers
test
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10962785A
Other languages
Japanese (ja)
Other versions
JPH0413565B2 (en
Inventor
Sanae Mori
森 早苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP10962785A priority Critical patent/JPS61266544A/en
Priority to GB8602101A priority patent/GB2175603B/en
Publication of JPS61266544A publication Critical patent/JPS61266544A/en
Priority to US07/224,262 priority patent/US4832801A/en
Priority to US07/332,407 priority patent/US4927715A/en
Priority to US07/357,932 priority patent/US4937149A/en
Publication of JPH0413565B2 publication Critical patent/JPH0413565B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the wear and corrosion resistances by adding prescribed percentages of Cu, In and Sn to Pb. CONSTITUTION:This alloy for surface layers used as the surface layers of sliding parts, a plane bearing, etc., consists of 0.1-6wt% Cu, 1-10wt% In and the balance Pb or further contains <=8wt% Sn. The alloy has superior wear, fatigue and corrosion resistances and a prolonged life.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は自動車、船舶、各糧亀気機械、OA機器、農
業機械、工作機械、食品機械、その他一般産業機械の摺
動部品及び平軸受などの表面層として使用される表面層
用合金(オーバレイ合金)に関する。
Detailed Description of the Invention (a) Industrial Application Field This invention is applicable to sliding parts and flat parts of automobiles, ships, food processing machines, OA equipment, agricultural machinery, machine tools, food machinery, and other general industrial machinery. It relates to a surface layer alloy (overlay alloy) used as a surface layer of bearings, etc.

伸)従来の技術 従来この種の表面層用合金として、以下の文献即ち「す
べり軸受材料」森田和行著、エンジニア、1967年9
月、第44頁; 「最近のすべり軸受材料の趨勢」森田
和行着、エンジニア、1970年4月第90頁;特公昭
52−42128及び米国特許第2605149号明細
書などに示されているような、Pb−an合金、′Pb
−In合金、’pb−Eln −Ou金合金びPb −
an−In合金が使用されている。
(Extension) Conventional technology Conventionally, as this type of surface layer alloy, the following literature is available: "Sliding Bearing Materials" by Kazuyuki Morita, Engineer, 1967.9
"Recent Trends in Sliding Bearing Materials," Kazuyuki Morita, Engineer, April 1970, p. 90; As shown in Japanese Patent Publication No. 52-42128 and US Pat. , Pb-an alloy, 'Pb
-In alloy, 'pb-Eln -Ou gold alloy and Pb -
An-In alloy is used.

(ハ)発明が解決しようとする問題点 最近、自動車用内燃機関や他の一般産業機械は急速な進
歩を遂げつつあり、より高速で高荷重化される傾向にあ
って、それに使用されるすべり軸受や摺動材は、前記従
来の表面層用合金では、特に高速高荷重下では潤滑油膜
の減少で、耐磨耗性や、耐疲労性、耐食性などからその
軸受寿命が短くなって来たという問題点があった。
(c) Problems to be solved by the invention In recent years, internal combustion engines for automobiles and other general industrial machinery have been making rapid progress, and there is a trend toward higher speeds and heavier loads, and the sliding With the conventional surface layer alloys for bearings and sliding materials, the life of the bearings has been shortened due to lack of abrasion resistance, fatigue resistance, corrosion resistance, etc. due to a decrease in the lubricating oil film, especially under high speed and high load conditions. There was a problem.

に)問題点を解決するための手段 この発明の目的は、上記の高速高荷重下での平軸受や摺
動材の表面層として使用されても、摩耗、疲労及び潤滑
油による腐食によく耐えて使用できる表面層用合金を得
ることである。
2) Means for Solving the Problems The object of the present invention is to provide a surface layer that can withstand wear, fatigue, and corrosion caused by lubricating oil even when used as a surface layer of plain bearings and sliding materials under the above-mentioned high-speed and high-load conditions. The objective is to obtain an alloy for surface layer that can be used as a surface layer.

本発明の表面層用合金は、重量でOuQ、1〜6To。The alloy for the surface layer of the present invention has a weight of OuQ, 1 to 6To.

In1〜10%及び残部がPt+と不可避的不純物から
成る。本発明の他の表面層用合金は、重量でCuO01
〜6%、In1〜10tlI%  8n13%以下及び
残部pbと不可避的不純物から成る。
It consists of 1 to 10% In and the remainder Pt+ and unavoidable impurities. Another surface layer alloy of the present invention is CuO01 by weight.
~6%, In1~10tlI%, 8n13% or less, and the remainder consists of PB and inevitable impurities.

(ホ)作用 次にこの発明の表面層用合金の各成分組成を前記合金成
分の如く限定する理由について以下に記載する。
(E) Function Next, the reasons for limiting the composition of each component of the alloy for the surface layer of the present invention as described above will be described below.

(A) Ou :重量で0.1 %から6Lsまで。C
u量が0.1チ未満であると耐荷重性が劣り、Cu量が
0.1チ以上で組織を微細化する効果がある。Quが6
qlIを越えるともろくなる。より好ましい成分範囲は
C!u1.596〜5チである。このCuの効果は表面
層合金を微細化する効果があり、これが耐荷重性を向上
し、更に下地合金へのInの拡散を遅くする効果がある
。この効果は耐食性寿命を長くし、引いては耐疲労性も
向上する。
(A) Ou: 0.1% to 6Ls by weight. C
If the amount of U is less than 0.1 inch, the load bearing capacity will be poor, and if the amount of Cu is 0.1 inch or more, there will be an effect of making the structure finer. Qu is 6
If it exceeds qlI, it becomes brittle. A more preferable range of ingredients is C! u1.596~5chi. This effect of Cu has the effect of making the surface layer alloy finer, which improves the load resistance and further has the effect of slowing down the diffusion of In into the base alloy. This effect extends the corrosion resistance life and, in turn, improves the fatigue resistance.

(B)In:重量で1%から10%まで。In量が1%
未満であると耐食性が低下し、10チを越えると耐荷重
性が低下する。より好ましい成分範囲はIn2〜9チで
ある。Inは表面層合金の耐食性及び耐磨耗性を良くす
る。
(B) In: 1% to 10% by weight. In amount is 1%
If it is less than 10 inches, the corrosion resistance will decrease, and if it exceeds 10 inches, the load bearing capacity will decrease. A more preferable range of ingredients is In2-9. In improves the corrosion resistance and wear resistance of the surface layer alloy.

(0)8n:重量で8%以下(零を含まず)好ましくは
0.51から81まで。In量が3チ以下の場合には上
述の合金に日n1%以上含有させることにより、Snと
Inの相互作用で極めて耐食性が向上し、激しい腐食性
の油でも耐える。しかしSn8チ以上では下地合金が銅
合金の場合はこれに拡散し厚いもろいcu −1!In
反応層(化合物層)を作る。この反応層の厚さが6ミク
ロンを越えるともろくなり、害(トップ/L−)を生ず
るが、6ばクロン以下であれば障害のないことを実験に
より確認している。またN1バリヤーで拡散防止および
反応層の形成を防止しても、融点が下がるので結局疲労
寿命を長くできない。より好ましい成分範囲は8n1チ
〜7チである。
(0) 8n: 8% or less by weight (not including zero), preferably from 0.51 to 81. When the amount of In is 3 or less, the above-mentioned alloy contains 1% or more of n, and the interaction between Sn and In greatly improves corrosion resistance, and it can withstand even severely corrosive oil. However, if Sn is 8 or more and the base alloy is a copper alloy, it will diffuse into the copper alloy and become thick and brittle. In
Create a reaction layer (compound layer). It has been confirmed through experiments that if the thickness of this reaction layer exceeds 6 microns, it becomes brittle and causes damage (top/L-), but if it is less than 6 microns, there is no problem. Further, even if the N1 barrier is used to prevent diffusion and the formation of a reaction layer, the fatigue life cannot be extended because the melting point is lowered. A more preferable range of ingredients is 8n1 to 7n.

(D)Pb−Ou−In及びPb−0u−In−8nの
組合せ効果:PbとCUで結晶粒が微細化した組織中に
Inを添加するとその相互作用で機械的強度が向上する
(D) Combination effect of Pb-Ou-In and Pb-0u-In-8n: When In is added to a structure in which crystal grains are refined by Pb and CU, mechanical strength is improved by their interaction.

この合金は機械的に最も強い表面層合金となり、また耐
食性にもすぐれている。更にこの合金に8nを数チ添加
すると、8nとInの相互作用で極めて激しい腐食性の
油(劣化油など)でも耐える効果が生まれる。N1バリ
ヤーは一般には不用となって来るがN1バリヤーを表面
層と主体部との間に設げると苛酷な使用条件でも長寿命
で良く腐食、疲労に耐える。
This alloy is the mechanically strongest surface layer alloy and also has excellent corrosion resistance. Furthermore, when several inches of 8n are added to this alloy, the interaction between 8n and In creates the effect of withstanding even extremely corrosive oil (such as degraded oil). Although the N1 barrier is generally not needed, if the N1 barrier is provided between the surface layer and the main body, it will have a long life and resist corrosion and fatigue even under severe usage conditions.

(均 不可避的不純物について製造上、どうしても避け
られない不純物、例えば8b、Ni、?θなどがあげら
れ、それらの単独または総量は0.5%未満である。
(Unavoidable impurities include impurities that cannot be avoided during manufacturing, such as 8b, Ni, ?θ, etc., and their individual or total amount is less than 0.5%.

(へ)実施例 以下本発明の実施例について説明する。(f) Example Examples of the present invention will be described below.

鋼裏金付銅−鉛合金上に直接またはN1メッキした上に
1次表のPb −Ou合金メッキ液組成と、メッキ条件
でpbとOuのメッキを施し、次にInメツ印またはI
n及び8nメツキ(従来公知公用のメッキ液、例えば「
軸受潤滑便覧」日刊工業新聞社、昭和66年6月60日
発行第367頁〜第668頁、第462頁〜第468頁
でよX、S)を施いしかる後、熱処理によって拡散させ
て合金としてなる6層または4層からなる半円筒形の平
軸受を製造した。
Pb and Ou are plated directly on the copper-lead alloy with steel backing or on top of the N1 plating using the Pb-Ou alloy plating solution composition and plating conditions shown in the first table, and then the In mark or I plating is applied.
n and 8n plating (conventionally known and publicly used plating solutions, e.g.
Bearing Lubrication Handbook, Nikkan Kogyo Shimbun, June 60, 1986, pages 367 to 668, pages 462 to 468. A semi-cylindrical plain bearing consisting of 6 or 4 layers was manufactured.

メッキ条件 本実施例でのメッキ処理では、メッキ液が極めて安定な
pbとCUの合金メッキ液のため、従来のPI) −s
nメッキや’Pb−Bn−Ouメッキに比較して、連続
使用が可能であった。また活性炭濾過をしつつ連続メッ
キが可能であった。更に本実施例のメッキ処理では、鏡
面光沢で緻密なメッキ(表面層)が得られた。例えばA
7合金のように1エツチングなして荒れた表面6〜5μ
上の場合でもレベリングが良く、メッキ完了後0.1〜
0.8μ程度の表面が得られた。
Plating conditions In the plating process in this example, the plating solution is an extremely stable alloy plating solution of PB and CU, so it is different from conventional PI)-s.
Continuous use was possible compared to n plating and 'Pb-Bn-Ou plating. Continuous plating was also possible while performing activated carbon filtration. Furthermore, in the plating treatment of this example, a dense plating (surface layer) with specular luster was obtained. For example, A
Rough surface 6~5μ without etching like 7 alloy
Even in the above case, leveling is good, and after plating is completed, the leveling is 0.1~
A surface of about 0.8μ was obtained.

第1表に本発明の実施例である各種の軸受表面層合金の
組成及び機械的性負、腐食減量、下地合金との反応層の
厚さを従来技術による軸受表面層合金と比較して示した
。第1表から明らかなように従来の表面1合金より本発
明の表面層合金は、硬度、引張強度が高く高負荷属耐え
得る。Ou5%までになると伸びが低下して来る。従っ
てC!u(5%以上は脆くなる。なお劣化油での腐食減
量を見るとN1バリヤーのない場合のPb−an−In
合金を除き、従来合金は下地にan又はInが拡散し、
そのため165℃に1000 Hr熱処理後試料の劣化
油による腐食性が看しい。これに対し本発明表面層合金
は従来合金の約4〜/6で極めて副食性がある。特にP
b−Cu−In−日nは極めて良い。下地合金の銅と本
発明合金のIn及びsnの反応層の厚さは薄く良好だが
、an量が過剰では反応層が厚くなる。  。
Table 1 shows the composition, mechanical properties, corrosion loss, and thickness of the reaction layer with the base alloy of various bearing surface layer alloys according to the present invention in comparison with bearing surface layer alloys according to the prior art. Ta. As is clear from Table 1, the surface layer alloy of the present invention has higher hardness and tensile strength than the conventional surface 1 alloy, and can withstand high loads. When Ou reaches 5%, elongation decreases. Therefore C! u (more than 5% becomes brittle. Looking at the corrosion loss with degraded oil, Pb-an-In without N1 barrier
Except for alloys, conventional alloys have an or In diffused into the base,
Therefore, the corrosivity of the sample after heat treatment at 165° C. for 1000 hours due to deteriorated oil is remarkable. On the other hand, the surface layer alloy of the present invention has extremely high side-corrosion properties with a ratio of about 4 to 6 times that of conventional alloys. Especially P
b-Cu-In-day n is extremely good. The thickness of the reaction layer between the copper of the base alloy and the In and sn of the alloy of the present invention is thin and good, but if the amount of an is excessive, the reaction layer becomes thick. .

この反応層の厚さが3ミクロンを越えると、次第にもろ
くなり疲労しやすくなる欠点を有する。なお耐食性が上
がる理由は、第1図から判明するようにCuの添加によ
り下地合金へのInの拡散が減少するためと考えられる
。N1バリヤーを表面層合金と下地合金との間に設けた
場合には腐食減量は極めて小さく耐食性良好である。N
1バリヤーがない場合でも Cuを所定量含有させることでInの表面層内への残存
率が高まり実用上使用可能な耐腐食性を得ることができ
ることが第1図及び第1表から明らかである。
If the thickness of this reaction layer exceeds 3 microns, it has the disadvantage of becoming gradually brittle and prone to fatigue. The reason for the increase in corrosion resistance is thought to be that the addition of Cu reduces the diffusion of In into the base alloy, as is clear from FIG. When the N1 barrier is provided between the surface layer alloy and the base alloy, corrosion loss is extremely small and corrosion resistance is good. N
1. It is clear from FIG. 1 and Table 1 that even in the absence of a barrier, by containing a predetermined amount of Cu, the residual rate of In in the surface layer increases and corrosion resistance that can be practically used can be obtained. .

次に銘木式試験機による焼付試験と磨耗量について調べ
た。試験条件は以下のとうりであり、試験片(1)の形
状及び試料状態は第2図〜第4図に示すどうりである。
Next, we conducted a seizure test using a precious wood testing machine and investigated the amount of wear. The test conditions were as follows, and the shape and sample condition of the test piece (1) were as shown in FIGS. 2 to 4.

軸(2)の材質:545Q # 潤滑油:SA1!i3Q、組付時に0.02―塗付軸回
転数: 78Q R,P6M。
Shaft (2) material: 545Q # Lubricating oil: SA1! i3Q, 0.02-application shaft rotation speed when assembled: 78Q R, P6M.

試験片:外径27.2iiへ内径22IlllIφ、深
さ1顛のリング#(3)を有し、下地材は鋼裏金付(3
u 75%−P’b 25俤銅合金で、鋼裏金と銅合金
層の合計厚さは1.5mmで電気メッキにより厚さ10
μmの表面層用合金?設けた。
Test piece: outer diameter 27.2ii to inner diameter 22IllIφ, depth 1 ring # (3), base material with steel backing (3
u 75%-P'b 25 copper alloy, the total thickness of the steel backing and copper alloy layer is 1.5 mm, and the thickness is 10 mm by electroplating.
Alloy for μm surface layer? Established.

試験時間’ 70 min。Test time’70 min.

組付時のみ1滴(0,02d)塗布した油の潤滑状態で
焼付荷重と磨耗厚さの平均値を表2に示した。本発明の
表面層合金は焼付荷重も高く、磨耗厚さも小さく良好で
ある。
Table 2 shows the average values of the seizure load and wear thickness under the condition of lubrication with one drop (0.02 d) of oil applied only during assembly. The surface layer alloy of the present invention has a high seizure load and a small wear thickness.

次にサファイヤ式試験機による軸受疲労試験により本発
明の表面層合金の耐疲労性について調べた。試験条件は
以下のとうり。
Next, the fatigue resistance of the surface layer alloy of the present invention was investigated by a bearing fatigue test using a sapphire tester. The test conditions are as follows.

軸材質 :5ssa、  軸径53龍φ供試軸受:鋼裏
金付焼結銅−鉛合金(cu 75%−41)25%)上
に第6表に示す各 種表面層合金を15μm厚さメッキ したコンロッド軸受、供試軸受外径 = 56’、011%供試軸受肉厚=1.5關、供試軸
受幅= 26.0 vx0 # 潤滑油種類と温度:sAg20 .90°C回転数 :
 3250 r、p、m・ 試験時間=20時間、 試験荷重:、1330 kg/am” 第6表から明らかな様に本発明合金は疲労亀裂の発生が
なく良好、Pb−5チOu −(5チェn−1チanに
微少面積見られた原因は下地合金の破壊の一部により見
られたものである。
Shaft material: 5ssa, shaft diameter: 53mm φ Test bearing: Sintered copper-lead alloy with steel backing (CU 75%-41) 25%) was plated with various surface layer alloys shown in Table 6 to a thickness of 15 μm. Connecting rod bearing, test bearing outer diameter = 56', test bearing wall thickness = 1.5 cm, test bearing width = 26.0 vx0 # Lubricating oil type and temperature: sAg20. 90°C rotation speed:
3250 r, p, m・Test time = 20 hours, Test load: 1330 kg/am” As is clear from Table 6, the alloy of the present invention did not cause fatigue cracks, and the Pb-5 The reason why a small area was observed in the chain n-1 chain was due to part of the destruction of the base alloy.

次に本発明の表面層用合金についてエンーンテストな繰
返数6回で、おこなった。その試験条件は以下のとうり
Next, the surface layer alloy of the present invention was subjected to a repeated test of 6 times. The test conditions are as follows.

使用試験機;2輪車用エンジン35馬力軸回転数 :1
3000r、p、m 軸径 :33sot 軸  材   :5soc 試験時間 :10時間 潤滑油:8Affi2Q$ 潤滑油温度=145〜150°C 試験荷重 =フル荷重 供試軸受 :外径36.0m、肉厚1.5sow、幅1
3.8m、第4表に示されている 表面層用合金を軸受(鋼裏金付鋼 一鉛焼結合金(Cu −75チーPb 25チ))にN1バリヤーをメツ キした後、メッキにより15μm の厚さ設けた。
Test machine used: Motorcycle engine 35 horsepower Shaft rotation speed: 1
3000r, p, m Shaft diameter: 33sot Shaft material: 5soc Test time: 10 hours Lubricating oil: 8Affi2Q$ Lubricating oil temperature = 145-150°C Test load = full load Test bearing: Outer diameter 36.0m, wall thickness 1 .5sow, width 1
3.8m, after plating the N1 barrier on the bearing (Steel-lead sintered alloy with steel backing (Cu-75-Pb 25-chi)) using the alloy for the surface layer shown in Table 4, a 15 μm thick layer was formed by plating. The thickness was set.

第4表に見るように本発明表面層合金は亀裂が見られず
疲労に極めて強い事が判明した。
As shown in Table 4, the surface layer alloy of the present invention showed no cracks and was found to be extremely resistant to fatigue.

(ト)発明の効果 実施例に示すように、従来の表面層のいずれよりもこの
発明した合金はすぐれており、発明の所期の目的を満足
し達成することができた。なお表面層合金の外観も極め
て良好であった。
(g) Effects of the Invention As shown in the Examples, the invented alloy is superior to any of the conventional surface layers and was able to satisfy and achieve the intended purpose of the invention. The appearance of the surface layer alloy was also extremely good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は表面層合金内のOu量と熱処理後の表面層合金
内に残存するInのIn残存率との関係を示すグラフで
あり、第2図は焼付試験に使用された試験片の正面図で
あり、第3図は第2図のi−1線に沿った断面図であり
、第4図は焼付試験の試験状況な示す断面図である。 1は焼付試験用試験片を示す。
Figure 1 is a graph showing the relationship between the amount of O in the surface layer alloy and the In residual rate in the surface layer alloy after heat treatment, and Figure 2 is a graph showing the front view of the test piece used in the seizure test. FIG. 3 is a sectional view taken along line i-1 in FIG. 2, and FIG. 4 is a sectional view showing the state of the seizure test. 1 shows a test piece for the seizure test.

Claims (2)

【特許請求の範囲】[Claims] (1)摺動部品及び平軸受などの表面層として使用され
、重量でCu0.1〜6%、In1〜10%および残部
がPbと不可避的不純物とから成る表面層用合金。
(1) An alloy for a surface layer, which is used as a surface layer of sliding parts, plain bearings, etc., and consists of 0.1 to 6% Cu, 1 to 10% In, and the balance Pb and inevitable impurities.
(2)摺動部品及び平軸受などの表面層として使用され
、重量でCu0.1〜6%、In1〜10%、Sn8%
以下及び残部がPbと不可避的不純物から成る表面層用
合金。
(2) Used as a surface layer for sliding parts and plain bearings, Cu 0.1-6%, In 1-10%, Sn 8% by weight
An alloy for surface layer consisting of Pb and unavoidable impurities.
JP10962785A 1985-05-22 1985-05-22 Alloy for surface layers used as surface layers of sliding parts, plane bearing or the like Granted JPS61266544A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10962785A JPS61266544A (en) 1985-05-22 1985-05-22 Alloy for surface layers used as surface layers of sliding parts, plane bearing or the like
GB8602101A GB2175603B (en) 1985-05-22 1986-01-29 Overlay alloy used for a surface layer of sliding material, sliding material having a surface layer comprising said alloy and manufacturing method
US07/224,262 US4832801A (en) 1985-05-22 1988-07-26 Method of making overlay alloy used for a surface layer of sliding material
US07/332,407 US4927715A (en) 1985-05-22 1989-03-31 Overlay alloy used for a surface layer of sliding material
US07/357,932 US4937149A (en) 1985-05-22 1989-05-26 Overlay alloy used for a surface layer of sliding material, sliding material having a surface layer comprising said alloy and the manufacturing method of the sliding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10962785A JPS61266544A (en) 1985-05-22 1985-05-22 Alloy for surface layers used as surface layers of sliding parts, plane bearing or the like

Publications (2)

Publication Number Publication Date
JPS61266544A true JPS61266544A (en) 1986-11-26
JPH0413565B2 JPH0413565B2 (en) 1992-03-10

Family

ID=14515075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10962785A Granted JPS61266544A (en) 1985-05-22 1985-05-22 Alloy for surface layers used as surface layers of sliding parts, plane bearing or the like

Country Status (1)

Country Link
JP (1) JPS61266544A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149140A (en) * 1986-12-15 1988-06-21 大同メタル工業株式会社 Composite sliding body
US5882587A (en) * 1993-03-04 1999-03-16 Taiho Kogyo Co., Ltd. Lead alloy used for sliding bearing
US6800377B2 (en) 2001-09-19 2004-10-05 Daido Metal Company Ltd. Multilayer sliding material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684435A (en) * 1979-12-14 1981-07-09 Taiho Kogyo Co Ltd Bearing for internal combustion engine and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684435A (en) * 1979-12-14 1981-07-09 Taiho Kogyo Co Ltd Bearing for internal combustion engine and production thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149140A (en) * 1986-12-15 1988-06-21 大同メタル工業株式会社 Composite sliding body
JPH049665B2 (en) * 1986-12-15 1992-02-20
US5882587A (en) * 1993-03-04 1999-03-16 Taiho Kogyo Co., Ltd. Lead alloy used for sliding bearing
WO2004076702A1 (en) * 1993-03-04 2004-09-10 Shinichi Okamoto Lead alloy for plain bearing
US6800377B2 (en) 2001-09-19 2004-10-05 Daido Metal Company Ltd. Multilayer sliding material

Also Published As

Publication number Publication date
JPH0413565B2 (en) 1992-03-10

Similar Documents

Publication Publication Date Title
US4927715A (en) Overlay alloy used for a surface layer of sliding material
JP5292279B2 (en) Plain bearing
JP3249774B2 (en) Sliding member
GB2356026A (en) Multi-layer sliding bearing
JPH0539811A (en) Multilayer sliding material for high speed and manufacture thereof
US20040177902A1 (en) Aluminium wrought alloy
JPH036345A (en) Aluminum-base alloy for sliding use excellent in fatigue resistance and seizure resistance
JP2532790B2 (en) Copper-lead alloy bearing with overlay
JPH11257355A (en) Sliding member
JPH01316514A (en) Multilayer sliding material
GB2264336A (en) Bearings.
JP3754315B2 (en) Multi-layer sliding material
GB2403780A (en) Sliding member
JPH06322462A (en) Copper-lead bearing alloy material excellent in corrosion resistance and its production
US5512242A (en) Tin-base white metal bearing alloy excellent in heat resistance and fatigue resistance
JPS6096741A (en) Sliding bearing and manufacture
WO2008003965A1 (en) Aluminium bearing alloy aluminiumlagerlegierung
JP2020516818A (en) Three-piece bonded-rolled plain bearing with two aluminum layers
JPS61266544A (en) Alloy for surface layers used as surface layers of sliding parts, plane bearing or the like
JP5017521B2 (en) Bearing material
GB2271780A (en) Process for producing sliding bearing
JPH10330871A (en) Sliding member
JP3754353B2 (en) Sliding member with composite plating film
US5766777A (en) Composite copper alloy bearing
US5770323A (en) Bearings