JPS61266508A - Raw material charging method to blast furnace - Google Patents
Raw material charging method to blast furnaceInfo
- Publication number
- JPS61266508A JPS61266508A JP10969585A JP10969585A JPS61266508A JP S61266508 A JPS61266508 A JP S61266508A JP 10969585 A JP10969585 A JP 10969585A JP 10969585 A JP10969585 A JP 10969585A JP S61266508 A JPS61266508 A JP S61266508A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- particle size
- size pattern
- furnace
- grain size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/18—Bell-and-hopper arrangements
- C21B7/20—Bell-and-hopper arrangements with appliances for distributing the burden
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Iron (AREA)
- Blast Furnaces (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は高炉の原料を装入する際の特に装入物分布の調
整方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates in particular to a method for adjusting the charge distribution when charging raw materials for a blast furnace.
(従来の技術)
高炉の原料装入に際して、装入物の粒度を調整しながら
好適な揉業状態を得ようとする試みは従米カら数多く提
案されている。(Prior Art) When charging raw materials into a blast furnace, many attempts have been made by countries in the United States and the United States to try to obtain suitable rolling conditions while adjusting the particle size of the charged materials.
たとえば、特開昭58−136704号公報には炉内状
況に応じた炉半径方向の最適粒度分布を得る装入方法と
して、炉頂バンカー内の原料堆積状態を積極的に調節す
る技術手段が示されている。即ち、この場合は炉況に応
じて装入原料の粒度パターンを積極的に変化させること
によって炉況を好適に維持しようとする技術的思想にも
とづくものである。For example, Japanese Patent Application Laid-Open No. 58-136704 discloses a technical means of actively adjusting the material accumulation state in the furnace top bunker as a charging method to obtain the optimum particle size distribution in the radial direction of the furnace depending on the inside situation of the furnace. has been done. That is, this case is based on the technical idea of maintaining favorable furnace conditions by actively changing the particle size pattern of the charged material according to the furnace conditions.
また、特開昭56−108808号公報にも前記公報と
同様に粒度分布を積極的に変えるという技術が開示され
ている。Furthermore, Japanese Patent Laid-Open No. 56-108808 also discloses a technique of actively changing the particle size distribution, similar to the above-mentioned publication.
(発明が解決しようとする問題点)
しかし、これらはいずれも理論的には有効な技術である
が、実操業上の制御手段としては余りにも複雑過ぎて、
理論通りには制御しきれないという難点がある。*た、
それのみならず、操業者にとっては取扱い項目がふえ、
操業負荷が増大するという欠点もある。(Problems to be solved by the invention) However, although these are all theoretically effective techniques, they are too complicated as control means in actual operation.
The problem is that it cannot be controlled according to theory. *Ta,
Not only that, there are more items to handle for operators,
Another disadvantage is that the operational load increases.
そこで、本発明では前記各手段の如き難点を避け、実操
業上容易で、かつ精度、効果ともに優れた粒度パターン
調整による原料装入の制御手段を提供する。Therefore, the present invention provides a means for controlling raw material charging by particle size pattern adjustment, which avoids the difficulties of the above-mentioned means, is easy in actual operation, and has excellent accuracy and effectiveness.
(問題点を解決するための手段)
本発明の要旨とするところは、装入ベルトコンベヤーか
ら炉頂ホッパーを経て炉内旋回シュートによって炉内に
装入される原料の経時的粒度パターンを計測し、あらか
じめ定められた前記計測位置における目標粒度パターン
との偏差を求め、該偏差情報にもとづいて次回バッチの
原料粒度パターンが前記目標粒度パターンとなるように
調整することにより原料を炉内に装入する際の時系列粒
度パターンをバッチ間で一定にすることを特徴とする高
炉の原料装入方法である。(Means for Solving the Problems) The gist of the present invention is to measure the particle size pattern over time of the raw material charged into the furnace from the charging belt conveyor via the furnace top hopper and into the furnace by the furnace rotating chute. , find the deviation from the target particle size pattern at the predetermined measurement position, and charge the raw material into the furnace by adjusting the raw material particle size pattern of the next batch to match the target particle size pattern based on the deviation information. This is a method for charging raw materials into a blast furnace, which is characterized by keeping the time-series particle size pattern constant from batch to batch.
原料の経時的粒度パターンの計測は、コンベヤーのヘッ
ド部、および/または炉頂ホッパーと炉内旋回シェード
との中間位置で打なうことができる。Measurements of the particle size pattern of the feedstock over time can be made at the head of the conveyor and/or at a location intermediate the furnace top hopper and the furnace rotating shade.
また、原料の粒度パターンの調整はサーノホッパー内に
設けた可動式邪魔板の操作、および/または炉頂ホッパ
ーより上部に設けられた上部旋回シュートの可動式衝突
板の角度もしくは該旋回シュートの傾動角度の操作によ
り行なうことができる。In addition, the particle size pattern of the raw material can be adjusted by operating the movable baffle plate installed in the Sarno hopper, and/or by adjusting the angle of the movable collision plate of the upper rotating chute installed above the top hopper or the tilting of the rotating chute. This can be done by manipulating the angle.
一般に高炉の操業成績と装入物分布とは関連が深いとさ
れており、それはゾンデで観測される高炉半径方向の温
度分布またはガス利用率分布のパターン認識で判定され
ていた。しかしながら、本発明者らがさらに深い研究を
行なった結果、高炉操業成績はこれらのパターンそのも
のよりもバッチ間のがス流分布のばらつきの程度と非常
に大きな相開があることが判明した。It is generally believed that there is a close relationship between the operational performance of a blast furnace and the charge distribution, and this has been determined by pattern recognition of the temperature distribution or gas utilization rate distribution in the blast furnace radial direction observed with a sonde. However, as a result of more in-depth research conducted by the present inventors, it was found that the operating performance of a blast furnace has a very large phase difference due to the degree of variation in the soot flow distribution between batches, rather than these patterns themselves.
第2図はある期間の高炉のがス利用率のゾンデ測定結果
を幅で示したものである。イは順調時で燃料比= 47
0kg/lと低いが、口は操業不調時で燃料比= 50
0kg/lとなっている。順調時イと不調時口とを比較
すると、順調時イのガス利用率のばらつき1.9%に対
し、不調時口のばらつきは3.4%と大である。8らに
この点を別の観点からとらえると、ガス利用率のばらつ
きが大きくなると第3図(a)に示すように銑中[Si
l量が増加したり、第3図(b)に示すようにシャフト
効率が悪化することになる。Figure 2 shows the sonde measurement results of the blast furnace gas utilization rate over a certain period of time. A is fuel ratio when running smoothly = 47
Although it is low at 0 kg/l, the fuel ratio is 50 during poor operation.
It is 0 kg/l. Comparing the good times (A) and the bad times (A), the dispersion in the gas utilization rate during the good times (A) was 1.9%, while the dispersion in the bad times (A) was as large as 3.4%. 8. If we look at this point from another perspective, as shown in Figure 3(a), when the dispersion of the gas utilization rate increases, the
1 amount increases, or the shaft efficiency deteriorates as shown in FIG. 3(b).
したがって、これらのデータから、がス流分布、ガス利
用率のばらつきを減少させるためにバッチ間の装入物分
布のばらつきを小さくすることが重要であるという知見
が得られた。Therefore, from these data, it was found that it is important to reduce the variation in the charge distribution between batches in order to reduce the variation in gas flow distribution and gas utilization rate.
操業条件をいかに一定に保持したとしても、装入ベルト
コンベヤー上の原料はベルト進行方向に、即ち該ベルト
から炉頂ホッパーに装入される際の経時的な粒度パター
ンはバッチ毎に大きく変動しており、その結果、炉内分
布にばらつきが発生する。たとえば、第4図(a)に示
すような装入ベルトコンベヤー上の装入物の時系列的な
7〜才のサンプリングを連続3バッチ分行なった粒度の
測定結果の第4図(b)に見られる通りである。No matter how constant the operating conditions are, the particle size pattern of the raw material on the charging belt conveyor over time in the direction of belt movement, that is, when it is charged from the belt to the top hopper, varies greatly from batch to batch. As a result, variations occur in the distribution within the furnace. For example, Fig. 4(b) shows the particle size measurement results obtained by sampling the charges on the charging belt conveyor in chronological order for three consecutive batches of 7- to 7-year-olds as shown in Fig. 4(a). As you can see.
そこで本発明では、上記の知見にもとづいて、炉内分布
させる装入物粒度パターンを各バッチ間で一定となるよ
うに制御すればよいことに着目した。Therefore, in the present invention, based on the above knowledge, we focused on the fact that it is sufficient to control the particle size pattern of the charge particles distributed in the furnace to be constant between each batch.
(作用、実施例)
以下、本発明の作用について実施例にもとづいて具体的
に説明する。(Function, Examples) Hereinafter, the function of the present invention will be specifically explained based on Examples.
第1図は本発明の実施状況を示す全体概念図である。FIG. 1 is an overall conceptual diagram showing the implementation status of the present invention.
移動シュート1から分配された装入原料2−1はサージ
ホッパー3内に貯留される。この際、サージホッパー3
内に配設された可動式邪魔板4の角度θを変えることに
よって装入ベルトコンベヤー5上に経時的に配列されて
ゆく1バッチ分の装入原料2−2の粒度パターンを調節
することがで終る。The charged raw material 2-1 distributed from the moving chute 1 is stored in the surge hopper 3. At this time, surge hopper 3
By changing the angle θ of the movable baffle plate 4 disposed inside, it is possible to adjust the particle size pattern of one batch of charging raw materials 2-2 arranged over time on the charging belt conveyor 5. It ends with
この1バッチ分の装入原料2−2は装入ベルトコンベヤ
ー5のヘッド部5′から上部ホッパー9より上部に設け
た上部旋回シェード7に投入され、2−3の状態で1バ
ッチ分が堆積され、下部ホッパー12および垂直シュー
ト16を通じて炉内旋回シュート17により炉内装入原
料2−4として装入分布される。This one-batch raw material 2-2 is charged from the head 5' of the charging belt conveyor 5 to the upper revolving shade 7 provided above the upper hopper 9, and one batch is deposited in the state 2-3. The raw material 2-4 is charged and distributed through the lower hopper 12 and the vertical chute 16 by the in-furnace rotating chute 17.
また、他の粒度パターン調節方法としては、上部旋回シ
ュート7の可動式衝突板8の角度φを調節するか、また
は上部旋回シュート7の傾動角度を調節する操作を行な
うことにより、上部ホッパー9内の装入原料2−3の堆
積状態を変化させ、所望の粒度パターンを形成させるこ
とができる。In addition, as another method for adjusting the particle size pattern, the inside of the upper hopper 9 can be adjusted by adjusting the angle φ of the movable collision plate 8 of the upper rotating chute 7 or by adjusting the tilting angle of the upper rotating chute 7. A desired particle size pattern can be formed by changing the deposition state of the charged raw material 2-3.
上記の両者手段の選択または併用により、最終的に炉内
旋回シュート17によって装入された装入原料2−4の
堆積粒度分布状態を各バッチ間で相対的に一定とする。By selecting or combining both of the above means, the accumulated particle size distribution state of the charged raw material 2-4 finally charged by the in-furnace rotating chute 17 is made relatively constant between each batch.
各バッチの粒度パターンを計測するための手段としては
、装入ベルトコンベヤー5のへッtrs5′近傍に配設
されたたとえば画像処理機能をもつ炉頂部原料粒度測定
装置6、または上部ホッパー9から炉内旋回シュート1
7に至る中間位置の適当筒所、たとえば垂直シュート1
6に設けた音響や振動、もしくはマイクロ波方式の原料
粒度計15により計測することも可能である。As a means for measuring the particle size pattern of each batch, for example, a furnace top raw material particle size measuring device 6 with an image processing function installed near the bottom trs5' of the charging belt conveyor 5, or Inner rotation chute 1
7, for example, vertical chute 1.
It is also possible to measure using the acoustic, vibration, or microwave type raw material particle size meter 15 provided at 6.
これらの計測情報により、計測位置に於ける経時的粒度
変化、即ち粒度パターンをオンラインで検出する。Based on this measurement information, a change in particle size over time at a measurement position, that is, a particle size pattern is detected online.
一方、あらかじめオンライン計測に先立って目標粒度パ
ターンを定めておく、たとえば、装入ベルトコンベヤー
5から炉頂へ装入する際の粒度パターンをバッチ間で一
定にする方法としては、過去数バッチ分の時系列粒度パ
ターンを第5図に示した右上がり特性の角度αとサージ
ホッパー3内の可動式邪魔板4の角度θとの関係であら
かじめ演算器18に記憶させておき、目標の粒度パター
ンとの偏差Δαから次バッチでのサージホッパー3内の
可動式邪魔板4の角度θの必要制御量Δθ(=a1・Δ
α)を演算制御することができる。その結果、装入ベル
トコンベヤー5から炉頂へ装入する原料の粒度パターン
は各バッチ毎に一定となり、これにより上部ホッパー9
から下部ホッパー12゜さらに炉内旋回シュート17を
通して排出される原料粒度パターンもバッチ毎に一定と
なる。On the other hand, as a method of determining a target particle size pattern in advance before online measurement, for example, to make the particle size pattern constant between batches when charging from the charging belt conveyor 5 to the top of the furnace, it is possible to A time-series particle size pattern is stored in advance in the calculator 18 based on the relationship between the angle α of the upward-sloping characteristic shown in FIG. 5 and the angle θ of the movable baffle plate 4 in the surge hopper 3, and the target particle size pattern is The required control amount Δθ (=a1・Δ
α) can be computationally controlled. As a result, the particle size pattern of the raw material charged from the charging belt conveyor 5 to the top of the furnace is constant for each batch, which causes the upper hopper 9
The particle size pattern of the raw material discharged from the lower hopper 12° through the in-furnace rotating chute 17 is also constant for each batch.
また、炉内旋回シュート17からの原料粒度パターンを
一定にする別の方法としては、原料粒度計15で検出さ
れた粒度パターンを前述と同様第7図に示す右上がり特
性角度βと可動式衝突板8の角度φとの関係で過去数バ
ッチ分あらかじめ演算器18に記憶させておき、@標の
粒度パターンとの偏差Δβから次バッチでの可動式衝突
板8の角度φの必要制御量Δφ(=l)、・Δβ)を演
算し、制御することによっても炉内旋回シュート17か
ら排出する原料粒度パターンをバッチ毎に一定にするこ
とができる。Another method for making the raw material particle size pattern from the in-furnace rotating chute 17 constant is to change the particle size pattern detected by the raw material particle size meter 15 to the right-sloping characteristic angle β shown in FIG. In relation to the angle φ of the plate 8, past several batches are stored in advance in the calculator 18, and the necessary control amount Δφ of the angle φ of the movable collision plate 8 in the next batch is determined from the deviation Δβ from the particle size pattern of the @ mark. By calculating and controlling (=l), ·Δβ), the particle size pattern of the raw material discharged from the in-furnace rotating chute 17 can be made constant for each batch.
粒度をオンラインで計測するための炉頂部原料粒度測定
装置6としては画像解析による方法、音響または振動に
よる方法、マイクロ波センサーによる方法による装置が
適しており、下部ホッパー12と炉内旋回シュート1フ
との中間に設置する原料粒度計15としては音響または
振動による方法による装置とマイクロ波センサーによる
方法による。装置が適している。As the furnace top raw material particle size measuring device 6 for online measurement of particle size, it is suitable to use a method using image analysis, a method using sound or vibration, or a method using a microwave sensor. The raw material particle size meter 15 installed between the two is a device using an acoustic or vibration method, or a method using a microwave sensor. The equipment is suitable.
第9図に本発明者らが行なった粒度計測結果の一例を示
す。第9図(a)は実炉の装入ベルトコンベヤーヘッド
部にて音響測定を実施し、ベルト上のサンプリング結果
との相関をとったものであり、第9図(b)は実験室に
おいてアルミナボールを試料としてマイクロ波強度から
推定される原料粒度と供給試料粒度との相関をとったも
のである。どちらも±211mの誤差内で良い相関があ
り、オンフィン粒度計として実用可能である。FIG. 9 shows an example of the results of particle size measurement conducted by the present inventors. Figure 9(a) shows the acoustic measurements taken at the charging belt conveyor head of an actual furnace and the correlation with the sampling results on the belt. The correlation between the particle size of the raw material estimated from the microwave intensity and the particle size of the supplied sample was taken using a ball as a sample. Both have good correlation within an error of ±211 m, and can be put to practical use as an on-fin particle size meter.
本発明の効果を確認するため、原料粒度構成を変化させ
、サークホッパー内に装入して試験を行なった。その結
果、第10図(、)に示すように邪魔板角度を一定角度
(=0°)で排出した場合には3種類の原料の粒度パタ
ーンは大きくばらつくが、邪魔板角度を過当に選択すれ
ば第10図(b)に示すようにばらつきが低下するデー
タが得られた。In order to confirm the effects of the present invention, a test was conducted by changing the particle size structure of the raw material and charging it into a circ hopper. As a result, as shown in Figure 10 (,), when the baffle plate angle is set to a constant angle (=0°), the particle size patterns of the three types of raw materials vary greatly, but if the baffle plate angle is selected excessively, For example, data with reduced variation was obtained as shown in FIG. 10(b).
(発明の効果)
以上の如く、所定の位置でオンライン計測された各バッ
チの粒度パターンがあらかじめ定めた目標粒度パターン
と毎バッチ一致するように制御することは制御方法とし
て容易であるのみならず、操業者にとっても原料条件の
変動の影響を考慮する必要がないことから、実際上極め
て有効な高炉の原料装入方法である1本発明に従い高炉
の操業を行なえば、原料粒度の変化による炉内ブス流分
布の変化が極めて小さくなり、高炉の操業成績が向上す
る。(Effects of the Invention) As described above, controlling so that the particle size pattern of each batch measured online at a predetermined position matches a predetermined target particle size pattern for each batch is not only easy as a control method, but also Since there is no need for operators to consider the effects of fluctuations in raw material conditions, this method is actually extremely effective for charging raw materials into a blast furnace. Changes in the bus flow distribution become extremely small, improving the operational performance of the blast furnace.
第1図は本発明法を実施する概念を示す図、第2図は高
炉のシャフトゾンデで測定された半径方向のガス利用率
分布を示す図、
第3図b)はシャフトゾンデで測定された半径方向のガ
ス利用率分布のばらつきと高炉の銑中[Silの関係、
同図(b)は同じくガス利用率分布のばらつきと高炉の
還元効率を表すシャフト効率の関係を示す図、
第4図は実炉における装入ベルトコンベヤー上の経時的
原料粒度分布を示す図、
第5図は装入ベルトより原料が炉頂へ供給される際の経
時的原料粒度パターンを示す図、第6図は同上原料粒度
パターン角度とサージホッパー内可動式邪魔板角度との
関係を示す図、第7図は炉内シュートから炉内へ装入さ
れる際の経時的原料排出パターンを示す図、
第8図は同上原料粒度パターン角度と上部旋回シュート
衝突板角度との関係を示す図、第9図は本発明者らが実
施したオンライン粒度測定試験の結果を示す図、
第10図はサージホッパーに異なる原料を装入した際の
原料排出パターンを示し、同図(a)はサーノホッパー
内可動式邪魔板を調整しないとき、同図(b)は可動式
邪魔板を調整したときを示す図である。Figure 1 is a diagram showing the concept of implementing the method of the present invention, Figure 2 is a diagram showing the radial gas utilization rate distribution measured with a shaft sonde of a blast furnace, and Figure 3 b) is a diagram showing the distribution of gas utilization rate in the radial direction measured with a shaft sonde of a blast furnace. Relationship between variation in radial gas utilization rate distribution and blast furnace pig iron [Sil,
Figure 4 (b) is a diagram showing the relationship between variations in the gas utilization rate distribution and shaft efficiency, which represents the reduction efficiency of the blast furnace. Figure 4 is a diagram showing the raw material particle size distribution over time on the charging belt conveyor in an actual furnace. Figure 5 shows the raw material particle size pattern over time when the raw material is supplied from the charging belt to the furnace top, and Figure 6 shows the relationship between the raw material particle size pattern angle and the angle of the movable baffle plate in the surge hopper. Figure 7 is a diagram showing the discharge pattern over time of the raw material when it is charged into the furnace from the furnace chute, and Figure 8 is a diagram showing the relationship between the raw material particle size pattern angle and the upper rotating chute collision plate angle. , Figure 9 is a diagram showing the results of an online particle size measurement test conducted by the present inventors, Figure 10 is a diagram showing raw material discharge patterns when different raw materials are charged into the surge hopper, and (a) of the same figure is a diagram showing the results of an online particle size measurement test conducted by the present inventors. When the movable baffle plate in the hopper is not adjusted, FIG. 6B is a diagram showing the case where the movable baffle plate is adjusted.
Claims (6)
内旋回シュートによつて炉内に装入される原料の経時的
粒度パターンを計測し、 あらかじめ定められた前記計測位置における目標粒度パ
ターンとの偏差を求め、 該偏差情報にもとづいて次回バッチの原料粒度パターン
が前記目標粒度パターンとなるように調整する ことにより原料を炉内に装入する際の時系列粒度パター
ンをバッチ間で一定にすることを特徴とする高炉の原料
装入方法。(1) Measure the particle size pattern over time of the raw material charged into the furnace from the charging belt conveyor via the furnace top hopper and into the furnace by the in-furnace rotating chute, and compare it with the target particle size pattern at the predetermined measurement position. By determining the deviation and adjusting the raw material particle size pattern of the next batch to match the target particle size pattern based on the deviation information, the time-series particle size pattern when charging the raw material into the furnace is made constant between batches. A method for charging raw materials into a blast furnace characterized by the following.
部で計測する特許請求の範囲第1項記載の方法。(2) The method according to claim 1, wherein the particle size pattern of the raw material over time is measured at the head of a conveyor.
旋回シュートとの中間位置で計測する特許請求の範囲第
1項または第2項記載の方法。(3) The method according to claim 1 or 2, wherein the particle size pattern of the raw material over time is measured at an intermediate position between the furnace top hopper and the furnace rotating chute.
設けた可動式邪魔板の操作により行なわれる特許請求の
範囲第1項〜第3項のいずれかに記載の方法。(4) The method according to any one of claims 1 to 3, wherein the particle size pattern of the raw material is adjusted by operating a movable baffle plate provided in a surge hopper.
部に設けられた上部旋回シュートの可動式衝突板の角度
の操作により行なわれる特許請求の範囲第1項〜第4項
のいずれかに記載の方法。(5) The particle size pattern of the raw material is adjusted by manipulating the angle of a movable collision plate of an upper rotating chute provided above the furnace top hopper. the method of.
部に設けられた上部旋回シュートの傾動角度の操作によ
り行なわれる特許請求の範囲第1項〜第4項のいずれか
に記載の方法。(6) The method according to any one of claims 1 to 4, wherein the particle size pattern of the raw material is adjusted by manipulating the tilt angle of an upper rotating chute provided above the furnace top hopper.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10969585A JPS61266508A (en) | 1985-05-22 | 1985-05-22 | Raw material charging method to blast furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10969585A JPS61266508A (en) | 1985-05-22 | 1985-05-22 | Raw material charging method to blast furnace |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15758988A Division JPH01119612A (en) | 1988-06-25 | 1988-06-25 | Method for charging raw material into blast furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61266508A true JPS61266508A (en) | 1986-11-26 |
JPH048482B2 JPH048482B2 (en) | 1992-02-17 |
Family
ID=14516854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10969585A Granted JPS61266508A (en) | 1985-05-22 | 1985-05-22 | Raw material charging method to blast furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61266508A (en) |
-
1985
- 1985-05-22 JP JP10969585A patent/JPS61266508A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH048482B2 (en) | 1992-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61266508A (en) | Raw material charging method to blast furnace | |
JPH0377843B2 (en) | ||
JP2996803B2 (en) | Blast furnace operation method by bellless blast furnace | |
JPS6096706A (en) | Charging method of raw material to blast furnace | |
JPH0225507A (en) | Method and apparatus for charging raw material in bell-less type blast furnace | |
JP2730751B2 (en) | Blast furnace operation method | |
RU2022025C1 (en) | Method of charging blast furnace | |
SU1788017A1 (en) | Method for charging blast furnace | |
JPH07113108A (en) | Operation of blast furnace | |
JPH01191751A (en) | Operating method of sintering machine | |
JP3646361B2 (en) | Blast furnace charge distribution control method | |
JPH0354388Y2 (en) | ||
JP3750148B2 (en) | Raw material charging method and apparatus for blast furnace | |
JPH0811805B2 (en) | Belleless blast furnace raw material charging method | |
JP2001049312A (en) | Method for charging raw material in bell-less blast furnace | |
JPH06271907A (en) | Method for furnace raw material in bell-less blast furnace | |
JPH0694367A (en) | Estimating method for depositing shape of material to be chaged in vertical furnace | |
RU2015169C1 (en) | Method of controlling distribution of stocks along mouth periphery in blast furnace | |
JP2969250B2 (en) | Blast furnace operation method | |
SU530075A1 (en) | Method of controlling the pelletizing process | |
SU1423595A1 (en) | Method of charging blast furnace | |
JPS63186813A (en) | Method for operating blast furnace | |
JPH02205606A (en) | Method for controlling blast furnace operation | |
SU1186638A1 (en) | Method of regulating charge distribution of blast furnace top | |
JP2725318B2 (en) | Blast furnace raw material charging method |