JPS61266355A - Manufacture of sic sintered body - Google Patents

Manufacture of sic sintered body

Info

Publication number
JPS61266355A
JPS61266355A JP60109815A JP10981585A JPS61266355A JP S61266355 A JPS61266355 A JP S61266355A JP 60109815 A JP60109815 A JP 60109815A JP 10981585 A JP10981585 A JP 10981585A JP S61266355 A JPS61266355 A JP S61266355A
Authority
JP
Japan
Prior art keywords
sintered body
sic
molded body
sic sintered
graphite layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60109815A
Other languages
Japanese (ja)
Inventor
博史 中條
良和 内海
井戸 猛夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60109815A priority Critical patent/JPS61266355A/en
Publication of JPS61266355A publication Critical patent/JPS61266355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、81C焼結体の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing an 81C sintered body.

〔従来の技術〕[Conventional technology]

SiC焼結体は、耐熱性、高強度、耐食性、高熱伝導性
、耐摩耗性等を何し、エンジニアリングセラミックスと
して注目されている。SiC焼結体のち密化を得るため
、各種添加剤の使用、加圧焼結法の採用等が検討され、
近年、常圧雰囲気焼結法においても、高密度SiC焼結
体が得られている。このような日IC焼結体は、通常、
サブミクロンのSiC粉末に、B、Aj%Be%Cやそ
れらの化合物から成る焼結助剤とバインダー等の添加剤
を加えた成形体を不活性雰囲気中、真空中で、1900
−2200℃で焼成して得られる。
SiC sintered bodies are attracting attention as engineering ceramics due to their heat resistance, high strength, corrosion resistance, high thermal conductivity, and wear resistance. In order to increase the density of SiC sintered bodies, the use of various additives and the adoption of pressure sintering methods have been considered.
In recent years, high-density SiC sintered bodies have been obtained also by atmospheric pressure atmosphere sintering methods. Such a Japanese IC sintered body is usually
A compact made by adding additives such as a sintering aid and a binder made of B, Aj%Be%C, and their compounds to submicron SiC powder is heated in an inert atmosphere in a vacuum for 1900 min.
Obtained by firing at -2200°C.

従来、SiC12を形体の焼成は、前記のように高温で
あるため焼成炉の高温部には、黒鉛材料が用いられ、こ
の成形体は黒希製台上に載せて焼成される。この焼結体
は、高温、  200G −2100℃で焼成されるた
め、 SiCの分解が生じ、又他の物質との反応性も高
い。特に、ち密化が進行する上記温度領域では、成形体
同辺部材との接帥都からの影響は無視できず、成形体の
焼結性のバラツキ、収縮率の差に因る変形をもたらし、
ち密化を妨げることになる。このような敷材用いること
で解決を図ってきた。しかし、高温800G−ggoo
℃の焼成にお−ては、同一材質の散材と焼き付き、成形
体を損うことが見られるという問題点があった。
Conventionally, since SiC12 shaped bodies are fired at high temperatures as mentioned above, graphite material is used in the high temperature part of the firing furnace, and this shaped body is placed on a black metal stand and fired. Since this sintered body is fired at a high temperature of 200G to 2100°C, SiC decomposes and is highly reactive with other substances. In particular, in the above temperature range where densification progresses, the influence of contact between the molded body and the adjacent members cannot be ignored, resulting in variations in the sinterability of the molded body and deformation due to differences in shrinkage rate.
This will hinder compaction. We have tried to solve this problem by using such bedding materials. However, high temperature 800G-ggoo
When firing at 0.degree. C., there are problems in that the powder sticks to the powder of the same material and damages the molded product.

この発明は、かかる問題点を解決するためになされたも
ので、散材との反応がないため均一で変形のなめ、ち密
なSiC焼結体の製造方法を得ることを目的とする〇 〔問題点を解決するための手段〕 この発明のSiC焼結体の製造方法は、黒鉛層にSiC
層を設け、不活性雰囲気中で高温処理し、黒鉛層上に5
ial!:炭素の複合体の多孔性層を形成して得た基台
上に、SiCおよび焼結助剤を含む成形体をのせて焼結
してSiC焼結体を得るものである。
This invention was made to solve these problems, and aims to provide a method for manufacturing a SiC sintered body that is uniform, deformable, and dense because there is no reaction with the powder. Means for Solving the Problems] The method for manufacturing a SiC sintered body of the present invention includes a method for producing a SiC sintered body in a graphite layer.
A layer is formed, treated at high temperature in an inert atmosphere, and 5
ial! : A molded body containing SiC and a sintering aid is placed on a base obtained by forming a porous layer of carbon composite and sintered to obtain a SiC sintered body.

〔作用〕[Effect]

この発明における基台は、黒鉛層とも焼き付いており、
かつ表面も適度な起伏を形成している。多少分解した炭
素粉末も混じり、成形体の焼き収縮に対する抵抗を軽減
し、かつ成形体との反応もなく高温焼成における収縮率
を大きくしている。
The base in this invention is also baked with a graphite layer,
The surface also has moderate undulations. Some decomposed carbon powder is also mixed in, which reduces the resistance to shrinkage of the molded body and increases the shrinkage rate during high-temperature firing without any reaction with the molded body.

〔実施例〕〔Example〕

この発明の実施例に係わる基台は、黒鉛台上にIEIi
C粉末七散き、真空中高温3000〜ggoo℃で加熱
し、分解させ、SiCと炭素の複合体の多孔性板状層を
形成させることにより得られる。
The base according to the embodiment of this invention is an IEIi base on a graphite base.
It is obtained by scattering C powder and heating it in vacuum at a high temperature of 3000 to ggoo C to decompose it to form a porous plate-like layer of a composite of SiC and carbon.

又、この基台は、繰り返し使用可能で、経済性が良h0 第1図は、この発明の一実施例に係わる焼結時の状態を
示す断面図である。図において、+11は黒鉛層、I!
l tI′i吠形体、(31は基台である。即ち、成形
体fil ij、平均粒径0.8.unの ff−EI
iO粒末に、平均粒径2声mの炭化硼jI(B10)粉
末2− Oit%、アモルファスカーボン粉末1.5重
量%およびオレイン酸4.0重量%にアルコールを加え
たもの全混合し乾燥後造粒し、金型プレスおよび静水圧
加圧(B ton A−d)で外径80a1厚さ5Uと
することにより得た。次にこの成形体(2)ヲ黒鉛層I
nの上に基台+S+を介してのせ、2100℃で1時開
焼成してこの発明の一実施例によるS1C焼結体を得た
。このようにして得た焼結体の焼結e命命密度は8.1
5 f /artであり、又、外径の寸法変化から測定
した収縮率を表に示す。
Moreover, this base can be used repeatedly and is economically efficient. FIG. 1 is a sectional view showing a state during sintering according to an embodiment of the present invention. In the figure, +11 is a graphite layer, I!
l tI′i barb-shaped body, (31 is the base; that is, the molded body fil ij, ff-EI with an average grain size of 0.8.un
IO powder, 2-Oit% of boron carbide jI (B10) powder with an average particle size of 2 m, 1.5% by weight of amorphous carbon powder, and 4.0% by weight of oleic acid with alcohol added were all mixed together and dried. It was obtained by post-granulation and mold pressing and isostatic pressing (B ton A-d) to obtain an outer diameter of 80a1 and a thickness of 5U. Next, this molded body (2) has a graphite layer I.
The S1C sintered body according to an embodiment of the present invention was obtained by placing the S1C sintered body on top of N via the base +S+ and firing at 2100° C. for one hour. The sintered life density of the sintered body thus obtained was 8.1
5 f /art, and the shrinkage percentage measured from the dimensional change in the outer diameter is shown in the table.

第2図は比較例の焼結時の断面図であり、成形体+21
および焼成温度、時間は上記実施例と同様にして、焼成
時の状態を種々変えたものである。即ち第2図(&1は
、黒鉛層111に直接成形体(21t−置いた場合、第
8図(blは黒鉛層+11と成形体(2)の間に、81
G粉末(41を置いた場合、第2図i01は黒鉛層Il
+と成形体(2)の間に炭素粉末(5)全量いた場合で
ある。これらの場合もそれによると、黒鉛層に直接成形
体を置いた場合は、黒鉛層に接帥する側の収縮率が低く
なり、変形をもたらし、反応して焼き付くことが生じる
・ 又、B1C粉宋を置いた場合(第8図(b;)反応が著
るしく、ち密化が妨げられ、炭素粉末を置いた場合(第
8図10))も、ち密化は低−0以下4行余白 以上のことから、この発明の一実施例によるSiC焼結
体は、収縮率が大きく、ち密であることが解り、この傾
向は、他の実施例にも見られたO 〔発明の効果〕 この発明は以上説明したとおり、黒鉛層に5i(3層を
設け、不活性雰囲気中で高温処理し、黒鉛層上にSiO
と炭素の複合体の多孔性層を形成して得た基台上に、S
iCおよび焼結助剤を含む成形体をのせて焼成すること
により、敷材との反応がないため均一で変形のない、ち
密なSiC焼結体の製造方法を得ることができる。
Figure 2 is a cross-sectional view of a comparative example during sintering, and the molded body +21
The firing temperature and time were the same as in the above examples, but the firing conditions were varied. That is, in Fig. 2 (&1 is when the molded body (21t-) is placed directly on the graphite layer 111, in Fig. 8 (bl is 81
When G powder (41) is placed, Fig. 2 i01 is the graphite layer Il.
This is the case where the entire amount of carbon powder (5) was present between + and the molded body (2). According to the report, in these cases, if the molded body is placed directly on the graphite layer, the shrinkage rate on the side in contact with the graphite layer will be low, resulting in deformation, reaction and seizure. Even when Song is placed (Figure 8 (b;) reaction is significant, densification is hindered, and carbon powder is placed (Figure 8 10)), densification is low - 0 or less with 4 line margins. From the above, it can be seen that the SiC sintered body according to one embodiment of the present invention has a large shrinkage rate and is dense, and this tendency was also observed in other embodiments. As explained above, the invention is based on the graphite layer provided with 5i (3 layers), treated at high temperature in an inert atmosphere, and formed with SiO on the graphite layer.
On the base obtained by forming a porous layer of a composite of S and carbon,
By placing a molded body containing iC and a sintering aid on the molded body and firing it, it is possible to obtain a method for producing a uniform, undeformed, and dense SiC sintered body since there is no reaction with the bedding material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係わる断面図第2図は比
較例に係わる断面図である。 図において、fil tfi黒鉛層、12:は成形体、
(3)は基台である。 なお、図中同一符号は同−又は相当部分を示すO
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a sectional view of a comparative example. In the figure, fil tfi graphite layer, 12: molded body,
(3) is the base. In addition, the same symbols in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  黒鉛層にSiC層を設け、不活性雰囲気中で高温処理
し、黒鉛層上にSiCと炭素の複合体の多孔性層を形成
して得た基台上に、SiCおよび焼結助剤を含む成形体
をのせて焼成してSiC焼結体を得るSiC焼結体の製
造方法。
A SiC layer is provided on the graphite layer, and a porous layer of a composite of SiC and carbon is formed on the graphite layer by high temperature treatment in an inert atmosphere. A method for producing a SiC sintered body, in which a molded body is placed and fired to obtain a SiC sintered body.
JP60109815A 1985-05-21 1985-05-21 Manufacture of sic sintered body Pending JPS61266355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60109815A JPS61266355A (en) 1985-05-21 1985-05-21 Manufacture of sic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60109815A JPS61266355A (en) 1985-05-21 1985-05-21 Manufacture of sic sintered body

Publications (1)

Publication Number Publication Date
JPS61266355A true JPS61266355A (en) 1986-11-26

Family

ID=14519908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60109815A Pending JPS61266355A (en) 1985-05-21 1985-05-21 Manufacture of sic sintered body

Country Status (1)

Country Link
JP (1) JPS61266355A (en)

Similar Documents

Publication Publication Date Title
US4004934A (en) Sintered dense silicon carbide
US4692418A (en) Sintered silicon carbide/carbon composite ceramic body having fine microstructure
JPS5817145B2 (en) graphite refractories
US4019913A (en) Process for fabricating silicon carbide articles
JPS61227966A (en) Silicon carbide base sintered body and manufacture
JPS61266355A (en) Manufacture of sic sintered body
JP2016204255A (en) Container for firing and manufacturing method of container for firing
JPS632913B2 (en)
JPH0662348B2 (en) Porous ceramic composite material and method for producing the same
JPH027907B2 (en)
JPS6256368A (en) Manufacture of silicon carbide sintered body
JPS60155572A (en) Manufacture of high heat conductivity silicon carbide sintered body
JPS61291461A (en) Method of burning silicon carbide sintered body
JPH034514B2 (en)
JPS59232969A (en) Manufacture of sic sintered body
JPS59107980A (en) Manufacture of thin plate ceramic sintered body
JPS6124359B2 (en)
JPS63182259A (en) Manufacture of homogeneous silicon nitride sintered body
JPS61236651A (en) Manufacture of sic sintered body
JPS62132787A (en) Silicon carbide base composite material and manufacture
JPS63100074A (en) Method of burning ceramic injection formed article
JPS6197166A (en) Manufacture of silicon carbide sintered body
JPS62113764A (en) Manufacture of high heat conductivity silicon carbide sintered body
JPS6138143B2 (en)
BABA MITSUHIKO FURUKAWA &