JPS61266306A - Fine spherical particle of crystalline aluminosilicate and its preparation - Google Patents

Fine spherical particle of crystalline aluminosilicate and its preparation

Info

Publication number
JPS61266306A
JPS61266306A JP10671685A JP10671685A JPS61266306A JP S61266306 A JPS61266306 A JP S61266306A JP 10671685 A JP10671685 A JP 10671685A JP 10671685 A JP10671685 A JP 10671685A JP S61266306 A JPS61266306 A JP S61266306A
Authority
JP
Japan
Prior art keywords
crystalline aluminosilicate
slurry
powder
binder
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10671685A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hagiwara
萩原 弘之
Yoshiro Yasumoto
安本 義郎
Yasushi Shiomi
塩見 康
Hideo Okado
岡戸 秀夫
Yoshinari Kawamura
川村 吉成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10671685A priority Critical patent/JPS61266306A/en
Publication of JPS61266306A publication Critical patent/JPS61266306A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:To prepare the titled fine spherical particles having high fluidity and strength and being useful as adsorbent and catalyst by granulating slurry comprising powdery crystalline aluminosilicate and specified binder. CONSTITUTION:Slurry of crystalline aluminosilicate and a binder obtd. by mixing slurry comprising 100pts.wt. powdery crystalline aluminosilicate and slurry medium (e.g. ethanol), with slurry comprising 2-50pts.wt. at least one binder selected from silicon alkoxide and alkali silicate, inorg. fine powder (e.g. silica), and the slurry medium (e.g. water) is spray-dried to obtain fine spherical particles of crystalline aluminosilicate having 10-500mu particle size.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は吸着剤あるいは触媒として利用され、流動性と
強度に優れた結晶性アルミノシリケート微小球状粒子及
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to crystalline aluminosilicate microspherical particles that are used as adsorbents or catalysts and have excellent fluidity and strength, and a method for producing the same.

(従来の技術) キシレン等の吸着分離、メタノールからのガソリン製造
ないしオレフィンガス製造などに、従来、種々の結晶性
アルミノケイ酸塩(例えばゼオライト)が吸着剤ないし
触媒として使用され、また開発されつつある。アルミノ
ケイ酸塩は多くの場合、数μm前後の大きさをもつ結晶
粉末であり、工業用資材として使用するには使用目的に
より、適当な形状に成形しなければならない。
(Prior art) Various crystalline aluminosilicates (e.g., zeolites) have been used as adsorbents or catalysts in the adsorption separation of xylene, etc., production of gasoline or olefin gas from methanol, etc., and are being developed. . Aluminosilicate is often a crystalline powder with a size of around several μm, and in order to be used as an industrial material, it must be molded into an appropriate shape depending on the purpose of use.

例えば、各種化学プロセスにおいてゼオライトが流動粒
子として使用される場合、特に流動層において、十分な
流動状況を呈し、かつ、流動時における摩耗などに対す
る強度を有し、目的に合った化学性能を十分に発揮する
ものでなければならない、これらの物理的および化学的
性能はゼオライトの流動粒子を触媒として使用する際に
は、特に、強く要求される性能であり、これらを触媒と
して使用する流動層プロセスの有用性を一義的に制する
という重要な性能となる。そのため粒子は流動性に富む
ものとするには球状であることが望ましい。
For example, when zeolite is used as fluidized particles in various chemical processes, it exhibits sufficient fluidity, especially in a fluidized bed, has strength against wear during fluidization, and has sufficient chemical performance to meet the purpose. These physical and chemical properties are particularly required when fluidized zeolite particles are used as catalysts, and are particularly important for fluidized bed processes that use them as catalysts. This is an important performance that uniquely controls usability. Therefore, it is desirable that the particles be spherical in order to have good fluidity.

(発明が解決しようとする問題点) このようにゼオライトの微小球粒子は球状であることが
、流動性に富み、流動吸着層ないし、流動触媒層におい
て使用するために最も理想的である。しかしゼオライト
粉末に対する球状の成形は従来できていない。
(Problems to be Solved by the Invention) As described above, spherical zeolite particles have high fluidity and are most ideal for use in fluidized adsorption beds or fluidized catalyst beds. However, it has not been possible to mold zeolite powder into a spherical shape.

粘土質ないしゲル質等の粘着性に富んだ物質については
、このような球状に造粒する技術はすでにある。しかし
一般の天然産および合成ゼオライトのような結晶性アル
ミノケイ酸基は、結晶質であるため、粉末粒子側々の粘
着性が極めて小さい、そのため円柱状成形においてもか
なりの外力を加えて圧縮するなどの方法をとる必要があ
る。
Techniques for granulating highly sticky substances such as clay or gel into spherical shapes already exist. However, since crystalline aluminosilicate groups such as general natural and synthetic zeolites are crystalline, the adhesion of the powder particle sides is extremely low, so even when forming into a cylinder, it is difficult to compress it by applying a considerable external force. It is necessary to take this method.

一方、球状に造粒するため噴霧乾燥を行ってもゼオライ
ト粉末集合体自身の凝縮力によっては十分な強度のある
微小球の成形はできていなかった。
On the other hand, even if spray drying was performed to form spherical granules, microspheres with sufficient strength could not be formed due to the condensation force of the zeolite powder aggregate itself.

すなわち、原料ゼオライト粉末スラリーのみについて噴
霧乾燥をした場合には一応の球状を呈するものにするこ
とはできるが集取、輸送等の弱い動作および振動によっ
て容易に破壊され、粉化する。
That is, when only the raw material zeolite powder slurry is spray-dried, it can be formed into a ball with a certain degree of spherical shape, but it is easily broken and powdered by weak operations such as collection and transportation, and by vibration.

そのため多くのゼオライト製品は一般には径数mmの円
柱状ないしペレット状に外力を加えて成形され、使用に
供されているのが実情である。
Therefore, the reality is that many zeolite products are generally formed into cylinders or pellets with a diameter of several millimeters by applying an external force, and then used.

(問題点を解決するための手段) 本発明者らはこのような従来の結晶性アルミノケイ酸塩
の微小球状粒子の製造に当っての難点を克服するため鋭
意研究を重ねた結果、一般の粉末状アルミノケイ酸塩結
晶を用いこれに適当な結合剤を用いることにより、流動
層に使用することのできるような十分な強度のある微小
球状の粒子を作成できることを見い出しこの知−見に基
づき本発明を完成するに至った。
(Means for Solving the Problems) The present inventors have conducted extensive research to overcome the difficulties in producing conventional microspherical particles of crystalline aluminosilicate, and as a result, we have developed It has been discovered that by using aluminosilicate crystals with a suitable binder, it is possible to create microspherical particles with sufficient strength to be used in fluidized beds.Based on this knowledge, the present invention has been made. I was able to complete it.

すなわち本発明は、結晶性アルミノケイ酸塩粉末と結合
剤としてのシリコンアルコキシド及びアルカリケイ酸塩
から選ばれた少なくとも1種とからなることを特徴とす
る微小球状粒子及び結晶性アルミノケイ酸塩粉末とシリ
コンアルコキシド及びアルカリケイ酸塩から選ばれた少
なくとも1種の結合剤とからなるスタリーを調製し、こ
れを造粒することを特徴とする微小球状粒子の製造方法
を提供するものである。
That is, the present invention provides microspherical particles characterized by comprising crystalline aluminosilicate powder and at least one selected from silicon alkoxide and alkali silicate as a binder, and crystalline aluminosilicate powder and silicon. The present invention provides a method for producing microspherical particles, which comprises preparing a starry made of at least one binder selected from alkoxides and alkali silicates, and granulating the starry.

本発明を第1図に示す実施態様に従い説明すると結晶性
アルミノケイ酸塩粉末を適当な媒体と混合して、まず結
晶性アルミノケイ酸塩スラリーとし、これを結合剤のス
ラリーと混合して、結晶性アルミノケイ酸塩−結合剤ス
ラリーとし、これを噴霧乾燥処理などによって造粒して
実施することができる。以下図示のフローシートに従っ
てさらに詳細に説明する。
The present invention will be described in accordance with the embodiment shown in FIG. This can be carried out by preparing an aluminosilicate-binder slurry and granulating it by spray drying or the like. A more detailed explanation will be given below according to the illustrated flow sheet.

本方法において、まず、原料の結晶性アルミノケイ酸塩
粉末を好ましくはスラリー媒体に混合し、結晶性アルミ
ノケイ酸塩スラリーを調製する。原料の結晶性アルミノ
ケイ酸塩粉末は一般に目的の製品が結晶性アルミノケイ
酸塩触媒用の場合は単味で、または、添加剤を加えて、
加圧成形されタブレット状等のものとなりえるが、末法
に示すように、噴霧造粒を行う際には1粒子間の凝縮力
によって造粒を行うため、結晶性アルミノケイ酸塩粉末
の調製工程の履歴に、特に結合剤との反応性により1粒
子形状および強度が違ってくるものである。
In this method, first, crystalline aluminosilicate powder as a raw material is preferably mixed into a slurry medium to prepare a crystalline aluminosilicate slurry. The raw material crystalline aluminosilicate powder is generally used alone or with additives added if the target product is a crystalline aluminosilicate catalyst.
It can be pressure-molded into a tablet-like product, but as shown in the powder method, when spray granulation is performed, granulation is performed by the condensation force between particles, so the preparation process of crystalline aluminosilicate powder is difficult. The particle shape and strength vary depending on the history, especially the reactivity with the binder.

結晶性アルミノケイ酸塩スラリーの調製に用いられるス
ラリー媒体は結晶性アルミノケイ酸塩粉末にあらかじめ
含浸し、含液粉体ないしスラリーとすることにより、結
合剤の作用を安定にすることができるようにするために
添加するものであり、添加しない場合には作業温度にも
よるが、数分間でスラリーの固化がはじまり、作業過程
での取扱い、特に1手作業の習熟が影響し、噴霧造粒等
による造粒成形が安定しない0本発明方法において用い
られるスラリー媒体としてはアルコール類、好ましくは
エタノールないしプロパツールが有効であり、その添加
量は原料の結晶性アルミノケイ酸塩粉末に対して重量比
にして1/10から10倍程度がよい。
The slurry medium used for preparing the crystalline aluminosilicate slurry is pre-impregnated with the crystalline aluminosilicate powder to form a liquid-containing powder or slurry, so that the action of the binder can be stabilized. If it is not added, the slurry will begin to solidify in a few minutes, depending on the working temperature, and handling during the work process, especially the skill of manual labor, will affect the slurry, and if it is not added, the slurry will solidify in a few minutes. Granulation is not stable0 Alcohols, preferably ethanol or propatool, are effective as the slurry medium used in the method of the present invention, and the amount added is based on the weight ratio to the crystalline aluminosilicate powder used as the raw material. Approximately 1/10 to 10 times is preferable.

本発明においては、このスラリー媒体と混合する結晶性
アルミノケイ酸塩は、酸ないしはアルカリで前処理する
ことにより表面の被覆形状を制御することができる。こ
の前処理のpHを6〜8とすると、結合剤を微小球粒子
表面に析出させ、結晶性アルミノケイ酸塩の被覆を完全
にすることができる。この場合前処理の酸性もしくはア
ルカリ性が強いと結晶性アルミノケイ酸塩の被覆がおさ
えられ、結晶性アルミノケイ酸塩結晶粉末が露出した形
状となる。結晶性アルミノケイ酸塩粉末表面と結合剤と
の結合性を向上することを考慮し、目的とする形状にあ
わせて、結晶性アルミノケイ酸塩粉末の固体表面酸性度
ないし塩基性度を調整するのが好ましい。
In the present invention, the surface coating shape of the crystalline aluminosilicate to be mixed with the slurry medium can be controlled by pre-treating it with acid or alkali. When the pH of this pretreatment is set to 6 to 8, the binder can be precipitated on the surface of the microsphere particles to completely cover the crystalline aluminosilicate. In this case, if the pretreatment is highly acidic or alkaline, the coating of the crystalline aluminosilicate is suppressed, leaving the crystalline aluminosilicate crystal powder exposed. In order to improve the bond between the crystalline aluminosilicate powder surface and the binder, it is recommended to adjust the solid surface acidity or basicity of the crystalline aluminosilicate powder according to the desired shape. preferable.

結晶性アルミノケイ酸塩スラリーは常温にて好ましくは
密封状態で十分に攪拌し、好ましくは。
The crystalline aluminosilicate slurry is thoroughly stirred at room temperature, preferably in a sealed state.

その状態で次の工程に使用するのがよい。It is best to use it in that state for the next step.

本発明において結合剤としてシリコンアルコキシド及び
アルカリケイ酸塩の少なくとも1種を用いる0本発明に
おいて結合剤を結晶性アルミノケイ酸塩100重量部に
対し2〜50重量部の範囲で用いる。結合剤は、そのま
ま用いてもよいが、これに酸又はアルカリ水溶液を加え
て用いるのが好ましい、この処理により、結合剤は一部
加水分解する。
In the present invention, at least one of silicon alkoxide and alkali silicate is used as a binder.In the present invention, the binder is used in an amount of 2 to 50 parts by weight per 100 parts by weight of the crystalline aluminosilicate. Although the binder may be used as it is, it is preferable to add an acid or alkaline aqueous solution to the binder. Through this treatment, the binder is partially hydrolyzed.

例えば結合剤にシリコンエトキシド(ケイ酸エチル)を
用いた場合には酸ないし塩基との反応によって結合剤の
結合機能が変動する。
For example, when silicon ethoxide (ethyl silicate) is used as a binder, the binding function of the binder changes depending on the reaction with an acid or base.

ケイ酸エチルは、水の添加により、また、酸ないしアル
カリの触媒作用によって加水分解を起こし、重合し、ケ
イ酸ポリマーとなる。そのため、水の添加量、酸ないし
アルカリの濃度、処理温度および処理時間により、この
ケイ酸ポリマーの重合化率1重合度が変動する。さらに
結晶性アルミノケイ酸塩結晶粉末の表面に酸ないしアル
カリが存在する場合には、これらの表面において加水分
解し、重合が進む、このため1表面の酸ないしアルカリ
の量は結晶性フルミノケイ酸塩表面とその周囲に成長す
るけい酸ポリマーないし、終局的には結合剤として三次
元構造をもつゲル部分との親和性についても影響し、結
晶性アルミノケイ酸塩粉末に対する結合剤の析出の状況
を変化させる要因となる。
Ethyl silicate is hydrolyzed and polymerized by the addition of water or by the catalytic action of an acid or alkali to form a silicic acid polymer. Therefore, the degree of polymerization per degree of polymerization of this silicic acid polymer varies depending on the amount of water added, the concentration of acid or alkali, treatment temperature and treatment time. Furthermore, if an acid or alkali exists on the surface of the crystalline aluminosilicate crystal powder, hydrolysis occurs on these surfaces and polymerization proceeds. Therefore, the amount of acid or alkali on one surface depends on the surface of the crystalline fluminosilicate. It also affects the affinity with the silicic acid polymer that grows around it, and ultimately with the gel part that has a three-dimensional structure as a binder, changing the state of precipitation of the binder against the crystalline aluminosilicate powder. It becomes a factor.

また、このケイ酸ポリマーは結晶剤調製時に一部生成す
るが、さらに、スラリー調製過程、噴霧乾燥造粒過程に
おいて進行し、造粒法により造粒後の焼成過程において
完了するものと推定できる。
In addition, this silicic acid polymer is partially generated during the preparation of the crystallizing agent, but it is also assumed to proceed during the slurry preparation process and the spray drying granulation process, and to be completed during the calcination process after granulation by the granulation method.

本発明において結合剤は、微粉体を混合して用いるのが
好ましい、このようにして微粉体を用いると粒子表面の
結晶性アルミノケイ酸塩粉末の摩砕を防ぐことができる
。この微粉体の量は結合剤に対し2/3までの範囲であ
る。このように微粉体としては結晶性アルミノケイ酸塩
粉末より大きさが原料アルミノケイ酸塩粉末の大きさの
l/3以下と小さく、結合剤に安定に分散するシリカ系
、シリカアルミナ系、粘土系、チタニア系及びこれらの
成分の混合した系等の無機質系微粉体などがあげられる
。微粉体は粒子表面に分布し、結合剤の一部を粒子表面
に層状に析出させ、結晶性アルミノケイ酸塩粉末を被覆
することがでる。
In the present invention, it is preferable to use the binder as a mixture of fine powder. When fine powder is used in this way, it is possible to prevent the crystalline aluminosilicate powder on the particle surface from being crushed. The amount of fine powder is in the range of up to 2/3 of the binder. In this way, fine powders are smaller than crystalline aluminosilicate powders, at less than 1/3 of the size of the raw aluminosilicate powder, and are stably dispersed in binders such as silica-based, silica-alumina-based, clay-based, etc. Examples include inorganic fine powders such as titania and mixtures of these components. The fine powder is distributed on the particle surface, and a part of the binder is precipitated on the particle surface in a layered manner to coat the crystalline aluminosilicate powder.

微粉体は結晶性アルミノケイ酸塩を被覆した形状の微小
球をうるために添加することが有効であり、添加するこ
とにより原料の結晶性アルミノケイ酸塩粉末の酸および
塩基性処理の必要がなくなる。
It is effective to add the fine powder to obtain microspheres coated with crystalline aluminosilicate, and by adding the fine powder, there is no need for acid and base treatment of the crystalline aluminosilicate powder as a raw material.

この微粉体は好ましくはスラリー触媒を混合したのち結
合剤液に添加される。
This fine powder is preferably added to the binder liquid after mixing with the slurry catalyst.

本発明において結晶性アルミノケイ酸塩と結合剤スラリ
ーは、好ましくは常温にて密封状態で十分に攪拌し、好
ましくはその状態で次の工程に使用するのがよい。
In the present invention, the crystalline aluminosilicate and binder slurry are preferably sufficiently stirred in a sealed state at room temperature, and preferably used in the next step in that state.

こうして調製された結晶性アルミノケイ酸塩と結合剤の
混合スラリーを噴霧乾燥して球状で、かつ、流動層にて
使用できる十分な強度をもつ粒子となる0本発明におい
て、噴霧乾燥方法は常法に準じて行うことができる。
The mixed slurry of crystalline aluminosilicate and binder thus prepared is spray-dried to form particles that are spherical and have sufficient strength to be used in a fluidized bed.In the present invention, the spray-drying method is a conventional method. This can be done in accordance with.

本発明において噴霧乾燥の熱風の温度によっても1粒子
の外見が制御できる0本法によっても噴霧乾燥条件の選
択により粒径1粒子表面の凹凸、割れ目、クレータ−を
制御することが可能である。
In the present invention, the appearance of each particle can also be controlled by the temperature of the hot air during spray drying.Also by the zero method, it is possible to control irregularities, cracks, and craters on the surface of particles of a particle size by selecting spray drying conditions.

噴霧乾燥では一般にスラリー液滴(噴霧)を作り、熱風
中で乾燥造粒するが、この際のスラリー液滴の大きさに
より、微中球粒子の大きさを変えることができる。
In spray drying, slurry droplets (spray) are generally created and dried and granulated in hot air, but the size of the microsphere particles can be changed depending on the size of the slurry droplets at this time.

(発明の効果) 本発明によれば1強度の高い約10gから約500、の
径をもつ結晶性アルミノケイ酸塩の微小球状粒子を得る
ことができる。これは流動層方式で用いる工業用資材、
例えば吸着剤、触媒などとして好適である。
(Effects of the Invention) According to the present invention, microspherical particles of crystalline aluminosilicate having high strength and a diameter of about 10 g to about 500 g can be obtained. This is an industrial material used in the fluidized bed method.
For example, it is suitable as an adsorbent, a catalyst, etc.

(実施例) 次に本発明を実施例に基づきさらに詳細に説明する。(Example) Next, the present invention will be explained in more detail based on examples.

実施例1 特開昭59−97523号公報に記載の方法よって作成
して得た原料ゼオライ)(Ca含含有Na星型ゼオライ
ト粉末50gをpH7の水でよく洗浄したあと乾燥し、
水ガラス4号35gを加えて、またはシリコンエトキシ
ド55gを加えてスラリーとして120℃で噴霧乾燥し
て造粒してそれぞれ試料l−1試料1−2を得た。電子
顕微鏡観察で粒径的20〜200pmの微細粒子が得ら
れたことが確認されたが、試料1−1では原料ゼオライ
ト粉末が露出し、試料1−2ではゼオライト粉末が被覆
されていた。
Example 1 Raw material zeolite prepared by the method described in JP-A-59-97523 (50 g of Ca-containing Na star-shaped zeolite powder was thoroughly washed with water at pH 7 and then dried.
35 g of water glass No. 4 or 55 g of silicon ethoxide was added to form a slurry, which was spray-dried at 120 DEG C. and granulated to obtain sample 1-1 and sample 1-2, respectively. It was confirmed by electron microscopy that fine particles with a particle size of 20 to 200 pm were obtained, but the raw material zeolite powder was exposed in sample 1-1, and the zeolite powder was coated in sample 1-2.

この試料1−1の強度は荷重5gのナイフェツジによっ
て全く破壊されない程度であったのに対し、試料1−2
は荷重5gのナイフェツジによって10〜20%が破壊
された。
The strength of sample 1-1 was such that it was not destroyed at all by a knife with a load of 5 g, whereas sample 1-2
10-20% was destroyed by a knife with a load of 5 g.

実施例2 実施例1と同様の原料ゼオライト粉末50gをpH4の
水溶液でよく洗浄したあと乾燥し、水ガラス1号、2号
、3号、4号を各々35gを加えてスラリーとして12
0℃で噴霧乾燥してそれぞれ順に微小球粒子の試料2−
1〜2−4を得た。
Example 2 50 g of the same raw material zeolite powder as in Example 1 was thoroughly washed with an aqueous solution of pH 4 and then dried, and 35 g each of water glass No. 1, No. 2, No. 3, and No. 4 was added to make a slurry of 12.
Sample 2- of microsphere particles were spray-dried at 0°C.
1 to 2-4 were obtained.

これらは皆、試料1−1と同等の形状および強度を示す
All of these exhibit shapes and strengths equivalent to Sample 1-1.

実施例3 実施例1と同様の原料ゼオライト粉末50gをpH7の
水でよく洗浄したあと乾燥し、シリコンエトキシド55
gとエタノール25gの混合溶液に、(イ)10’Nの
硝酸水溶液10gを加えて得たシリコンエトキシド酸性
水和物溶液をまたは(ロ)10−4Nのアンモニア水溶
液10gを加えて得たシリコンエトキシド塩基性水和物
溶液を加えてスラリーとして120℃で噴霧乾燥してそ
れぞれ微小球粒子試料3−1.3−2を得た。これらは
試料1−1と同等の強度を示した。
Example 3 50 g of the same raw material zeolite powder as in Example 1 was thoroughly washed with water of pH 7 and then dried, and silicon ethoxide 55
A silicon ethoxide acidic hydrate solution obtained by adding (a) 10 g of a 10'N nitric acid aqueous solution to a mixed solution of g and 25 g of ethanol, or (b) silicon obtained by adding 10 g of a 10-4 N ammonia aqueous solution. An ethoxide basic hydrate solution was added to form a slurry, which was spray-dried at 120°C to obtain microsphere particle samples 3-1 and 3-2, respectively. These exhibited strength equivalent to that of sample 1-1.

実施例4 実施例1と同様の原料ゼオライト粉末50gをPHIO
又はpH4の水溶液でよく洗浄したあと乾燥し、シリコ
ンエトキシド55gとエタノール25gの混合溶液に1
0−’Nの硝酸水溶液10gを加えて得たシリコンエト
キシド酸性水和物溶液を加えてスラリーとして、120
℃で噴霧乾燥して2種類の微小球粒子を得た。これらは
みな試料1−1と同等の形状および強度を示す。
Example 4 50g of raw material zeolite powder similar to Example 1 was added to PHIO
Or, after thoroughly washing with an aqueous solution of pH 4, dry it, and add 1 ml to a mixed solution of 55 g of silicon ethoxide and 25 g of ethanol.
A silicon ethoxide acidic hydrate solution obtained by adding 10 g of a 0-'N nitric acid aqueous solution was added to form a slurry.
Two types of microsphere particles were obtained by spray drying at °C. All of these exhibit the same shape and strength as Sample 1-1.

実施例5 実施例1と同様の原料ゼオライト粉末45gをpH4の
水溶液でよく洗浄したあと乾燥し、シリコンエトキシド
55gとエタノール25gの混合溶液に10’Nの硝酸
水溶液Logを加えで得たシリコンエトキシド酸性水和
物溶液にさらに、シリカゲル又はシリカアルミナ、チタ
ニア、ゼオライト(モルデナイト)、粘土(カリオン)
のtg以下の微粉体5gを加えてスラリーとして120
℃で噴霧乾燥して微小球粒子試料5−1〜5−5を得た
。これらはいずれも試料1−2と同様の形状を呈し、試
料1−1と同等の強度を示した。
Example 5 45 g of the same raw material zeolite powder as in Example 1 was thoroughly washed with an aqueous solution of pH 4 and then dried, and a 10'N nitric acid aqueous solution Log was added to a mixed solution of 55 g of silicon ethoxide and 25 g of ethanol to obtain silicon ethoxy. In addition, silica gel or silica alumina, titania, zeolite (mordenite), clay (karion) are added to the acidic hydrate solution.
Add 5g of fine powder with a tg or less to make a slurry of 120
Microsphere particle samples 5-1 to 5-5 were obtained by spray drying at ℃. All of these had the same shape as Sample 1-2 and exhibited strength equivalent to Sample 1-1.

実施例6 実施例1と同様の原料ゼオライト粉末45gをPH4の
水溶液でよく洗浄したあと乾燥し、シリコンエトキシド
55gとエタノール25gの混合溶液に10’Nの硝酸
水溶液10gを加えて得たシリコンエトキシド酸性水和
物溶液にシリカゲルのIIL以下の微粉体5gをエタノ
ール9gまたはプロパツール12gを加えた含液粉体を
混合して得たスラリーに加えたあと、120℃で噴霧乾
燥して微小球粒子を得た。これらはともに、試料l−2
と同様の形状を呈し、試料1−1と同等の強度を示す。
Example 6 45 g of the same raw material zeolite powder as in Example 1 was thoroughly washed with an aqueous solution of PH4 and then dried, and 10 g of a 10'N nitric acid aqueous solution was added to a mixed solution of 55 g of silicon ethoxide and 25 g of ethanol to obtain silicon ethoxy. After adding 5 g of fine powder of silica gel below IIL to an acidic hydrate solution and adding liquid-containing powder to which 9 g of ethanol or 12 g of propatool was added, the mixture was spray-dried at 120°C to form microspheres. Particles were obtained. Both of these are sample l-2
It has the same shape as Sample 1-1 and the same strength as Sample 1-1.

実施例7 実施例1と同様の原料ゼオライト粉末45gをpH4の
水溶液でよく洗浄したあと乾燥し、エタノール90gま
たはプロパツール120gに加えて、含液粉体とし、こ
れをシリコンエトキシド55gとエタノール25gの混
合溶液にto−’Nの硝酸水溶液10gを加えたシリコ
ンエトキシド酸性水和物溶液にシリカゲルのip以下の
微粉体5gとエタノール9gとを混合して得た含液粉体
を加えたスラリーに加えて混合したあと、120℃で噴
霧乾燥して微小球粒子を得た。これらはともに試料1−
2と同様の形状を呈し、試料1−1と同等の強度を示す
Example 7 45 g of the same raw material zeolite powder as in Example 1 was thoroughly washed with an aqueous solution of pH 4, dried, and added to 90 g of ethanol or 120 g of propatool to form a liquid-containing powder, which was mixed with 55 g of silicon ethoxide and 25 g of ethanol. Slurry made by adding liquid-containing powder obtained by mixing 5 g of silica gel fine powder below IP and 9 g of ethanol to a silicon ethoxide acidic hydrate solution, which is obtained by adding 10 g of to-'N nitric acid aqueous solution to the mixed solution of After mixing, the mixture was spray-dried at 120° C. to obtain microsphere particles. These are both sample 1-
It exhibits the same shape as Sample 2 and shows the same strength as Sample 1-1.

実施例8 モルデナイト粉末またはゼオライトA粉末45gをpH
4の水溶液でよく洗浄したあと乾燥し。
Example 8 45g of mordenite powder or zeolite A powder was adjusted to pH
After washing thoroughly with the aqueous solution in step 4, dry it.

それぞれにエタノール90gを加えて含液粉体とし、こ
れを、シリコンエトキシド55gとエタノール25gの
混合溶液にio’Nの硝酸水溶液10gを加えて得たシ
リコンエトキシド酸性水和物溶液にシリカゲルの1ル以
下の微粉体5gとエタノール9gとを混合して得た含液
粉体を加えたスラリーに加えて混合した0次いでそれぞ
れの混合物を120℃で噴霧乾燥し、微小球粒子を得た
。これらはともに試料1−2と同様の形状を呈し、試料
1−1と同等の強度を示す。
Add 90 g of ethanol to each to form a liquid-containing powder, and add silica gel to a silicon ethoxide acid hydrate solution obtained by adding 10 g of io'N nitric acid aqueous solution to a mixed solution of 55 g of silicon ethoxide and 25 g of ethanol. A liquid-containing powder obtained by mixing 5 g of fine powder of 1 liter or less and 9 g of ethanol was added to a slurry and mixed.Then, each mixture was spray-dried at 120°C to obtain microsphere particles. Both of these exhibit the same shape as Sample 1-2 and exhibit the same strength as Sample 1-1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の結晶性アルミノケイ酸塩の微小球状粒
子の製造工程図である。
FIG. 1 is a process diagram for producing microspherical particles of crystalline aluminosilicate according to the present invention.

Claims (1)

【特許請求の範囲】 1、結晶性アルミノケイ酸塩粉末と結合剤としてのシリ
コンアルコキシド及びアルカリケイ酸塩から選ばれた少
なくとも1種とからなることを特徴とする微小球状粒子
。 2、結晶性アルミノケイ酸塩粉末とシリコンアルコキシ
ド及びアルカリケイ酸塩から選ばれた少なくとも1種の
結合剤とからなるスラリーを調製し、これを造粒するこ
とを特徴とする微小球状粒子の製造方法。
[Scope of Claims] 1. Microspherical particles comprising crystalline aluminosilicate powder and at least one selected from silicon alkoxide and alkali silicate as a binder. 2. A method for producing microspherical particles, which comprises preparing a slurry consisting of crystalline aluminosilicate powder and at least one binder selected from silicon alkoxides and alkali silicates, and granulating the slurry. .
JP10671685A 1985-05-18 1985-05-18 Fine spherical particle of crystalline aluminosilicate and its preparation Pending JPS61266306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10671685A JPS61266306A (en) 1985-05-18 1985-05-18 Fine spherical particle of crystalline aluminosilicate and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10671685A JPS61266306A (en) 1985-05-18 1985-05-18 Fine spherical particle of crystalline aluminosilicate and its preparation

Publications (1)

Publication Number Publication Date
JPS61266306A true JPS61266306A (en) 1986-11-26

Family

ID=14440679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10671685A Pending JPS61266306A (en) 1985-05-18 1985-05-18 Fine spherical particle of crystalline aluminosilicate and its preparation

Country Status (1)

Country Link
JP (1) JPS61266306A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118484A (en) * 1990-08-17 1992-06-02 Alcan International Limited Desilication of bayer process solutions
EP0839761A1 (en) * 1996-10-31 1998-05-06 Degussa Aktiengesellschaft Process for improving the abrasion resistance of zeolite shaped bodies
US6680271B1 (en) 1997-12-17 2004-01-20 Grace Gmbh & Co. Kg Solid zeolite granulates having improved abrasion resistance, and methods of making them
JP2009274061A (en) * 2008-04-18 2009-11-26 Meidensha Corp Catalyst and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3445184A (en) * 1967-09-18 1969-05-20 Norton Co Process for producing shaped mordenite bodies

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3445184A (en) * 1967-09-18 1969-05-20 Norton Co Process for producing shaped mordenite bodies

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118484A (en) * 1990-08-17 1992-06-02 Alcan International Limited Desilication of bayer process solutions
EP0839761A1 (en) * 1996-10-31 1998-05-06 Degussa Aktiengesellschaft Process for improving the abrasion resistance of zeolite shaped bodies
US6680271B1 (en) 1997-12-17 2004-01-20 Grace Gmbh & Co. Kg Solid zeolite granulates having improved abrasion resistance, and methods of making them
JP2009274061A (en) * 2008-04-18 2009-11-26 Meidensha Corp Catalyst and its manufacturing method
US9052139B2 (en) 2008-04-18 2015-06-09 Meidensha Corporation Catalyst and process for producing the same

Similar Documents

Publication Publication Date Title
JP5361006B2 (en) Zeolite-based spherical agglomerates, processes for the production and adsorption of these agglomerates and the use of these agglomerates in catalysts
JPS6291410A (en) Calcium phosphate hydroxyapatite for chromatographic separation and its production
CN102070148B (en) Synthesis method and application of mono-disperse micron-scale spherical mesoporous silicon oxide MCM-41
JP2001523162A (en) Aerogel granulation method
CN102861551B (en) Bax type zeolite granule and process for preparing the same
US3795631A (en) Glass-fiber-reinforced zeolite granulates
US5085705A (en) Alumina-silica-sulfates, method of preparation and compositions
JPS62503097A (en) silica structure
KR880007124A (en) Shaped Zeolite Catalyst for Liquid Organic Reaction
US4692423A (en) Method for preparing structured catalytic solids
US3375205A (en) Synthetic zeolite
JPS61266306A (en) Fine spherical particle of crystalline aluminosilicate and its preparation
CA1299124C (en) Biological support
US20020018853A1 (en) Sulfur sorbent composition and sorption process
JPH0535090B2 (en)
JPH0615427B2 (en) Inorganic porous body and method for producing the same
CN1326618C (en) Process for the preparation of catalyst microspheres
JPH111318A (en) Production of zeolite granule with controlled pore size
RU2677870C1 (en) Granulated cracking catalyst and method for its preparation
US3641095A (en) Bonded low-alumina mordenite
JPS63157973A (en) Liquid chromatography
KR101644310B1 (en) Aluminosilicates structure, manufacturing method thereof and use using the same
US5030284A (en) Alumina-silica-sulfate compositions
CN1393399A (en) Antiwear spherical NaY molecular sieve and its synthesizing process
JPS62143818A (en) Production of spherical silica gel