JPS61266166A - Method for changing ingot width - Google Patents

Method for changing ingot width

Info

Publication number
JPS61266166A
JPS61266166A JP10950885A JP10950885A JPS61266166A JP S61266166 A JPS61266166 A JP S61266166A JP 10950885 A JP10950885 A JP 10950885A JP 10950885 A JP10950885 A JP 10950885A JP S61266166 A JPS61266166 A JP S61266166A
Authority
JP
Japan
Prior art keywords
width
short side
speed
period
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10950885A
Other languages
Japanese (ja)
Other versions
JPH0557066B2 (en
Inventor
Masami Tenma
天満 雅美
Wataru Ohashi
渡 大橋
Takeyoshi Ninomiya
二宮 健嘉
Kazuhiko Tsutsumi
一彦 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10950885A priority Critical patent/JPS61266166A/en
Priority to AU47023/85A priority patent/AU554019B2/en
Priority to CA000490523A priority patent/CA1233011A/en
Priority to EP85306509A priority patent/EP0182468B1/en
Priority to DE8585306509T priority patent/DE3578554D1/en
Priority to ES547211A priority patent/ES8702811A1/en
Priority to BR8504644A priority patent/BR8504644A/en
Priority to US06/783,589 priority patent/US4660617A/en
Priority to ES554807A priority patent/ES8704368A1/en
Priority to US06/883,395 priority patent/US4727926A/en
Publication of JPS61266166A publication Critical patent/JPS61266166A/en
Publication of JPH0557066B2 publication Critical patent/JPH0557066B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/168Controlling or regulating processes or operations for adjusting the mould size or mould taper

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To make possible the change of a billet width in the shortest time by determining the speed up rate of the horizontal moving speed on the short sides of a casting mold and the angular speed of a swiveling device by a prescribed method and maintaining constant these speeds during the former and latter periods of the movement of the short sides thereby changing the width. CONSTITUTION:The speed up rate alphas of the horizontal moving speed of the short sides is preliminarily determined with the permissible deformation resistance of a shell as a parameter in the stage of changing the width of the steel ingot by a short side driving device. The angular speed omega of the short side swiveling device is determined by the equation omega=alphas/Uc (where Uc: casting speed). The horizontal moving speed Vh is increased or decreased at the specified speed up rate alphas and the angular speed omega is maintained constant, then the width is reduced (a) or expanded (b) to the desired size in the former tilting period and latter tilting period of the short sides in the stage of changing the billet width. The change of the ingot width in the shortest time during continuous casting is thus made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鋼の連続鋳造法に関し、詳しくは連続鋳造中に
鋳型短辺を移動せしめて鋳片幅を拡大もしくは縮小する
幅変更方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for continuous casting of steel, and more particularly to a method for changing the width of a slab by moving the short side of the mold during continuous casting.

〔従来の技術〕[Conventional technology]

近年、連続鋳造、特に鋼の連続鋳造においては、稼働率
の向上および鋳片歩留の向上等の要請から、鋳型への鋳
込を停止することなく鋳片幅の変更を行なう連続鋳造法
が実施されるようになってきた。
In recent years, in continuous casting, especially continuous casting of steel, continuous casting methods, which change the slab width without stopping pouring into the mold, have been developed due to demands for improved operating efficiency and slab yield. It is starting to be implemented.

特に最近、連続鋳造工程と圧延工程を11結化する方法
が実用化され、製品板幅に応じて連続鋳造中の鋳片幅を
変更する技術はますます重要さを増している。連続鋳造
機の運転を+hめずに鋳片幅を変更する場合においては
幅が変化する部分の長さを出来るかぎり短かくシ、要求
される幅に直ちに変更することが重要である。このため
に幅変更速度を上昇させることが必要となってきた。
In particular, recently, a method of combining the continuous casting process and the rolling process into 11 blocks has been put into practical use, and the technology of changing the width of the slab during continuous casting according to the width of the product sheet is becoming increasingly important. When changing the slab width without interrupting the operation of the continuous casting machine, it is important to keep the length of the portion where the width changes as short as possible and to immediately change the width to the required width. For this reason, it has become necessary to increase the width change speed.

連続鋳造における鋳片幅の変更においては、鋳型短辺を
何らかの方法で鋳型の中心側または反中心側へ移動させ
る操作がおこなわれる。第2図は鋳型長辺を固定し短辺
を移動させる幅変更装置の一例を概念的に示したもので
ある。す々わち一対の短辺1a、lbが(図示していな
い)鋳型振動テーブルに固定された長辺2a 、2bに
挾持されており、駆動装置(図示せず)により水平方向
に駆動され、鋳片4の幅を鋳造を止めることなく変更す
る装置である。かかる装置において幅変更速度を高速化
する場合、短辺を駆動する力の増大並   □びに鋳片
欠陥の危険性の増大があり、このことが幅変更の高速化
を阻んでいた。
To change the width of a slab in continuous casting, the short side of the mold is moved toward the center or away from the center of the mold by some method. FIG. 2 conceptually shows an example of a width changing device that fixes the long sides of the mold and moves the short sides. A pair of short sides 1a and lb are held between long sides 2a and 2b fixed to a mold vibration table (not shown), and are driven horizontally by a drive device (not shown). This device changes the width of the slab 4 without stopping casting. When increasing the speed of width change in such equipment, there is an increase in the force driving the short side and an increased risk of slab defects, which has hindered the speed of width change.

従来の幅変更方法としては、例えば特公昭56−491
73号公報に示されるように短辺背面に連接された水平
方向に移動自在で、かつ球面座を支点としてカム機構の
回転駆動によって揺動可能に構成された一本のスピンド
ルによって行われていた。即ち前記スピンドルは水平方
向の移動と旋回動作を同時に行うことは可能であるが、
実際の幅変更にあたってはカム機構によシ短辺を所定の
傾斜角に傾斜せしめた後、その状態を維持して短辺を平
行移動せしめることが一般的であり、幅変更速度は極め
て遅いものであった。
As a conventional width changing method, for example, Japanese Patent Publication No. 56-491
As shown in Publication No. 73, this was done by a single spindle connected to the back of the short side and movable in the horizontal direction, and swingable by the rotation of a cam mechanism using a spherical seat as a fulcrum. . That is, although the spindle can perform horizontal movement and rotational movement at the same time,
When actually changing the width, it is common to use a cam mechanism to tilt the short side to a predetermined angle, then maintain that state and move the short side in parallel, and the width change speed is extremely slow. Met.

一方、例えば特開昭53−60326号公報および特公
昭54−33772号公報で開示されているように、短
辺の上下方向に2本の電動、あるいは油圧式の駆動装置
を、取りつけ、この上下2本の駆動装置をそれぞれ制御
して高速で幅変更を実施しようとする試みも積極的に採
用されている。
On the other hand, as disclosed in, for example, Japanese Unexamined Patent Publication No. 53-60326 and Japanese Patent Publication No. 54-33772, two electric or hydraulic drive devices are installed in the vertical direction of the short side, and Attempts to change the width at high speed by controlling each of the two drive devices are also being actively adopted.

第3図および第4図は、前記上下2本の駆動装置を制御
して幅変更を実施する具体的方法の一例を示すものであ
って、第3図は幅縮小の場合を説明するものでIJ)、
(a)で示す第1ステツプでは短辺1を点線aの如く傾
斜させ、第2ステツプで(b)の如く平行移動した後、
ついで第3ステツプで(C)の如く傾斜をもとに戻す方
法を示し、又第4図は幅拡大の場合を説明するものであ
って、(a)で示す第1ステツプで短片1を点線aの如
く傾斜させ、第2ステツプで(b)の如く平行移動した
のち、第3ステツプで(c)の如く傾斜を少なくする方
法を示している。
3 and 4 show an example of a specific method of controlling the two upper and lower drive devices to change the width, and FIG. 3 explains the case of width reduction. IJ),
In the first step shown in (a), the short side 1 is tilted as shown by the dotted line a, and in the second step, after being translated in parallel as shown in (b),
Next, in the third step, as shown in (C), a method of returning the slope to its original state is shown, and in Fig. 4, the case of widening the width is explained. This figure shows a method of tilting as shown in (a), moving in parallel as shown in (b) in the second step, and then reducing the inclination as shown in (c) in the third step.

つまり、前記従来はいずれもテーパー変更動作と平行移
動動作とは完全に分離して行なわれていた。
In other words, in all of the above-mentioned conventional art, the taper change operation and the parallel movement operation were performed completely separately.

ところで前記従来方法において幅変更速度を高めるため
には平行移動速度Vm’z高速化する必要がある。、と
ころが鋳型内で凝固したシェル(凝固殻)を破断するこ
となく、かつ、このシェルの変形抵抗力に打ち勝って平
行移動速度Vm’z高めるためには、傾斜変更角Δφを
大きくしなければならないと言う問題〃iある。
However, in the conventional method, in order to increase the width change speed, it is necessary to increase the parallel movement speed Vm'z. However, in order to increase the parallel movement speed Vm'z without breaking the shell solidified in the mold and by overcoming the deformation resistance of this shell, the angle of change in inclination Δφ must be increased. There is a problem.

一方、前記傾斜変更角△φを大きくすると、短辺1と鋳
片4との間に隙間、即ちエアーギャップが生じ、このエ
アーギャップが大きくなると鋳片4に割れが生じたり、
ブレークアウトが発生する等の問題がある。
On the other hand, when the inclination change angle Δφ is increased, a gap, that is, an air gap, is created between the short side 1 and the slab 4, and when this air gap becomes large, cracks may occur in the slab 4,
There are problems such as breakouts occurring.

このため前記従来方法では平行移動速度Vmを高めるこ
とに限界があり、而して幅変更時間全短縮することには
制限があった。係る問題全解決するために本出願人は前
記第1ステツプ及び第3ステツプにおいて短辺の−に下
端を同時に移動させ、該期間の所要時間を短縮させる方
法を開発し、先に特開昭59−73155号及び特開昭
60−33855号として出願した。しかしながらこの
方法においても平行移動の実施を基本的思想としたもの
であり、平行移動に達するまでの時間を出来るだけ速く
することはaJ能とがったがそれでもなお幅変更の全所
要時間を短縮するには限界があった。
For this reason, in the conventional method, there is a limit to increasing the parallel movement speed Vm, and there is a limit to reducing the width changing time completely. In order to solve all of these problems, the present applicant developed a method in which the lower end of the short side is simultaneously moved to the - side in the first and third steps to shorten the time required for this period. -73155 and JP-A-60-33855. However, even in this method, the basic idea is to perform parallel movement, and although it is advisable to make the time to reach parallel movement as fast as possible, it is still possible to shorten the total time required to change the width. had its limits.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は前述した従来方法における問題点を抜本的に解
決すると共に前記特開昭59−73155号及び特開昭
60−33855号の更に改良を図るもので、水平方向
駆動装置と、該駆動装置と独立して作動する旋回駆動装
置な・備えた鋳型において、連続鋳造中に鋳片幅を拡大
も1〜くけ縮小する幅変更を最小時間で行わせることに
より、幅変更部分を少なくして歩留りを向上させると共
にブレークアウト(以下BOと言う)や鋳片割れ等の鋳
造欠陥の発生がない安定した操業を可能ならしめる方法
を提供するものである。
The present invention fundamentally solves the problems in the conventional methods described above, and further improves the above-mentioned Japanese Patent Application Laid-Open Nos. 59-73155 and 60-33855. In a mold equipped with a swing drive device that operates independently from the cast iron, the width can be changed by increasing or decreasing the slab width by 1 to 10 degrees in the minimum amount of time during continuous casting, thereby reducing the number of width changes and increasing yield. The purpose of the present invention is to provide a method that improves the casting process and enables stable operation without occurrence of casting defects such as breakout (hereinafter referred to as BO) and cracking of slabs.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点を解決するだめの本発明の構成を以下、説明
する。
The structure of the present invention intended to solve the above problems will be explained below.

先ず、本発明に適用される短辺の駆動装置の一例を第5
図に基づいて説明する。第5図において1は鋳型の短辺
を示し、この短辺1の背部には鋳造方向X及び短辺1の
水平移動方向yに直交する回動軸11を軸支する軸受部
12が固着されている。前記回動軸11には水平方向駆
動装置w(以下、駆動装置と言う)13が連接されてい
る。軸受部12には回動アーム120が突設されてお9
、この回動アーム120には、前記水平駆動装置13上
に載置され、かつ水平駆動装置13とは独立して作動す
る旋回駆動装ft(以下、旋回装置と言う)14が連接
されている。
First, an example of the short side drive device applied to the present invention will be described in the fifth section.
This will be explained based on the diagram. In FIG. 5, 1 indicates the short side of the mold, and a bearing part 12 is fixed to the back of this short side 1, which supports a rotating shaft 11 perpendicular to the casting direction X and the horizontal movement direction y of the short side 1. ing. A horizontal drive device w (hereinafter referred to as a drive device) 13 is connected to the rotation shaft 11 . A rotating arm 120 is provided protruding from the bearing portion 12.
A swing drive device ft (hereinafter referred to as a swing device) 14 that is placed on the horizontal drive device 13 and operates independently of the horizontal drive device 13 is connected to this swing arm 120. .

従って駆動装置13を前後進、駆動することによって短
辺1は水平方向に移動する。又、旋回装置14を駆動す
ることによって短辺1は回動軸11を支点として回動す
る。而して回動軸11は幅変更時、短辺1に作用する総
反力の重心点近傍に位置せしめることが旋回装置14の
旋回力が少なくてすみ効果的である。一般的に前記重心
点の位置は、後述する第8図に丞ずようにメニスカス相
当レベルから回動軸11までの距離t1と回動軸11か
ら短辺下端せでの距離t2の比C11/12)が、2〜
5の範囲にある。勿論、旋回装置14の旋回力に余裕の
有る場合や、短辺近傍の機器配列状況等に応じては、前
記回動軸11の位置を、短辺1の略中心にすること、あ
るいは鋳造方向における任慧の位置に設定することも可
能である。前N[4回動縁作は、短辺lの水平方向の移
動(以下、水平移動と君う)とけ独立し7て行うことが
できる。
Therefore, by driving the drive device 13 back and forth, the short side 1 is moved in the horizontal direction. Further, by driving the turning device 14, the short side 1 turns around the turning shaft 11 as a fulcrum. Therefore, when changing the width, it is effective to position the rotating shaft 11 near the center of gravity of the total reaction force acting on the short side 1, since the turning force of the turning device 14 can be reduced. Generally, the position of the center of gravity is determined by the ratio C11/ of the distance t1 from the level equivalent to the meniscus to the rotation axis 11 and the distance t2 from the rotation axis 11 to the lower end of the short side, as shown in FIG. 8, which will be described later. 12) but 2~
It is in the range of 5. Of course, if there is sufficient turning force of the turning device 14 or depending on the arrangement of equipment near the short side, the position of the rotating shaft 11 may be approximately at the center of the short side 1, or the position of the rotating shaft 11 may be adjusted to the casting direction. It is also possible to set it to the position of Renhui in . The front N[4-time movement edge movement can be performed independently by moving the short side l in the horizontal direction (hereinafter referred to as horizontal movement).

つまり、短辺を水平移動させながら回転操作も同時に行
うことができ、又当然のことながら水平移動を停止1.
た状態でも回転操作は行なえる。
In other words, it is possible to perform a rotation operation while horizontally moving the short side, and of course stopping the horizontal movement.
Rotation operations can be performed even in the closed state.

尚、本発明においてAf、I Rピ水平駆動装置13と
旋回駆動装置14を総称して甘う時は、以下短辺駆動装
置と言う。
In the present invention, the Af, IR horizontal drive device 13 and the swing drive device 14 will be collectively referred to as the short side drive device hereinafter.

さて、前記短辺駆動装置を備えた鋳型を用いて連続鋳造
中に鋳片幅を変更するに際し、本発明においては前記短
辺の移動(前記短辺の水平移動と回動とを総称して言う
ときは拳に移動と言う)を該短辺を鋳型中心側へ順次傾
ける前傾期と、鋳型反中心側へハI次傾ける後傾期に区
分し、各期間における短辺の水平移動方向の増速率αs
を、予め計容シェル変形抵抗力をパラメータとして求め
ると共に、前記旋回装置の角速度ωを下Aid(11式
で定め、当該期間中、前記増速率αs及び角速度ωを一
定に維持して幅変更ケ行うことを特徴とするものである
Now, when changing the slab width during continuous casting using a mold equipped with the short side drive device, in the present invention, the movement of the short side (horizontal movement and rotation of the short side are collectively referred to as The horizontal movement direction of the short side in each period is divided into a forward tilting period in which the short side is sequentially tilted toward the center of the mold, and a backward tilting period in which the short side is tilted toward the center of the mold. The speed increase rate αs
is determined in advance using the measured shell deformation resistance force as a parameter, and the angular velocity ω of the swing device is determined by the equation 11 below. It is characterized by the fact that

ω=αs / U c       ・・・・・・ (
1)但し ω;旋回装置の角速度(rad/min)α
s;短辺の水平方向移動速度の増速率(皿の悄n2) LJc:鋳造速13j  (mm/min)尚、前記幅
変更方法において、圧延条件及び、もしくは短辺駆動装
置の制約条件より前記短辺の最大許容水平移動速度Vm
axを設定し、幅変更前半部の前傾期、もしくは後頬部
における前記短辺の水平移動速度が前記Vmaxを超え
る際に、幅変更前半部と後半部の間に下記(2)及び(
3)式で4見られる範囲内の平行移動速度Vpで短辺の
平行移動を行わしめ、鋳造欠陥の発生を防止しつつ最短
時間で幅変更を実施することが可能となる。
ω=αs/Uc・・・・・・(
1) However, ω: Angular velocity of the turning device (rad/min) α
s: Acceleration rate of the horizontal movement speed of the short side (dish speed n2) LJc: Casting speed 13j (mm/min) In the width changing method, the rolling conditions and/or the constraints of the short side drive device Maximum allowable horizontal movement speed of short side Vm
ax is set, and when the horizontal movement speed of the short side in the forward tilt period of the first half of the width change or the rear cheek exceeds the above Vmax, the following (2) and (
The short side is translated in parallel at a translation speed Vp within the range expressed by equation 3), making it possible to change the width in the shortest possible time while preventing casting defects.

l Vmax I≧IVpl    ・・・・・・ (
2)’Vp≧αsl ・Tri    =  (3)但
し Vmax”、最大許容水平移動速度(mm/min
)vp;平行移動速度 (mm/m i n )asH
幅変更前半の前傾期又は後頬部の短辺の水平方向移動速
度の増速率 (mm/1nln2) Trl:幅変更前半の前傾期又は稜頬部の所要時間 更に前記幅変更方法において、幅変更開始時のテーパー
量と幅変更終了時の目標テーパー量の差から生じる目標
幅変更量に対する誤差を、前傾期から後頬部、もしくは
後頬部から前傾期へ移行する間に平行移動期間を設ける
ことにより吸収することが好ましい。
l Vmax I≧IVpl ・・・・・・ (
2) 'Vp≧αsl ・Tri = (3) However, Vmax", maximum allowable horizontal movement speed (mm/min
) vp; parallel movement speed (mm/min) asH
Acceleration rate (mm/1nln2) of the horizontal movement speed of the short side of the anteversion phase or rear cheek area in the first half of width change Trl: Required time for the anteversion phase or ridge cheek area in the first half of width change Further, in the width change method, The error in the target width change amount resulting from the difference between the taper amount at the start of the width change and the target taper amount at the end of the width change is calculated by adjusting the error between the anteversion phase and the rear cheek area, or the transition from the rear cheek area to the anteversion phase. It is preferable to absorb it by providing a moving period.

〔作 用〕[For production]

第1図は本発明に基づく基本的な幅変更方法を説明する
もので、幅変更時における短辺の水平移動速度と、回動
速度を説明する線図である。第1図(、)は幅縮小を、
第1図(b)は幅拡大を示すもので、水平移動速度は鋳
型中心側への移動速度を正(プラス)、鋳型反中心側へ
の移動速度を負(マイナス)として表した。又、回動速
度は旋回装置の角速度ωで表し、後述する第6図に示す
傾斜角βが大きくなる方向、即ち短辺が鋳型中心側に傾
いていく方向を正(プラス)、逆に前記傾斜角βが小 
  □さくなる方向、即ち短辺が鋳型反中心側に傾いて
いく方向を負(マイナス)として表した。
FIG. 1 explains the basic width changing method based on the present invention, and is a diagram illustrating the horizontal movement speed and rotation speed of the short side when changing the width. Figure 1 (,) shows the width reduction,
FIG. 1(b) shows the width expansion, and the horizontal movement speed is expressed as positive (plus) when moving toward the center of the mold, and negative (minus) when moving toward the side away from the center of the mold. The rotation speed is expressed by the angular velocity ω of the rotation device, and the direction in which the inclination angle β increases as shown in FIG. Tilt angle β is small
□The direction in which it becomes thinner, that is, the direction in which the short side is tilted away from the center of the mold, is expressed as a negative (minus).

而してまず第1図(3)に基づき幅縮小の場合について
説明する。
First, the case of width reduction will be explained based on FIG. 1(3).

図において実線aは短辺の水平移動速度vhを、実線す
は旋回装置の角速度ωである。幅縮小にあたっては短辺
を鋳型中心方向に移動させるが、その前半では短辺を鋳
型中心側へ傾ける前傾操作を行い、目標とする幅変更量
の略半量に達したら平行移動を行うことなく直ちに短辺
を鋳型反中心側へ傾ける後傾操作を行わしめ一連の幅変
更操作を終わる。第6図はこの幅縮小時の短辺の移動状
況を示す模式図である。
In the figure, the solid line a represents the horizontal movement speed vh of the short side, and the solid line a represents the angular velocity ω of the turning device. To reduce the width, the short side is moved toward the center of the mold, but in the first half, the short side is tilted forward toward the center of the mold, and when approximately half of the target width change amount is reached, no parallel movement is performed. Immediately perform a backward tilting operation to tilt the short side away from the center of the mold to complete a series of width changing operations. FIG. 6 is a schematic diagram showing the movement of the short side when the width is reduced.

前記幅変更操作中における短辺の水平移動速度vhは、
前後頬部(1記前傾操作を行う期間を前傾期、後傾操作
を行う期間を後頬部と言い、それを総称して前後頬部と
言う)において一定の増速率αs1即ち前傾期において
は正方向、つまり鋳型中心側への移動速度が増加する増
速率αlを、又、後頬部においては負方向、つまり鋳型
中心側への移動速度が減少する増速率α−〔正方向を基
準とすれば減速率となるが本発明では増速率に統一して
用い、それを区別して表す必要があるときはその符合で
増速を(+)、減速ヲ(−)で表すことにする。またこ
れを総称して言うときは以下増速率α−と言う。〕を有
し、それぞれ時間と共に増加もしくは減少する。増速率
αsは後述するように、予め許容シェル変形抵抗力をパ
ラメータとして求められる。
The horizontal movement speed vh of the short side during the width changing operation is:
A constant acceleration rate αs1, that is, forward tilt, in the front and rear cheeks (the period in which the forward tilting operation is performed in 1 is called the forward tilt period, and the period in which the backward tilting operation is performed is called the rear cheek region, and these are collectively referred to as the front and rear cheeks). In the period, the speed increasing rate αl increases in the positive direction, that is, toward the center of the mold, and in the rear cheek region, the speed increasing rate α−[positive direction decreases the moving speed toward the center of the mold. If this is used as a standard, it will be the deceleration rate, but in the present invention, it will be used uniformly as the speed increase rate, and if it is necessary to express it separately, the sign will be used to express the speed increase with (+) and the deceleration with (-). do. In addition, when this is referred to generically, it will be referred to as the acceleration rate α- below. ], each of which increases or decreases over time. As will be described later, the speed increase rate αs is determined in advance using the allowable shell deformation resistance as a parameter.

一万、前傾期における短辺は、当該操業時の鋳造速度及
び前記増速率α$とより前記(1)式で求められる正方
向の一定の角速度ωに制御されて回動せしめられ、第6
図の1点鎖線で示す水平線2に対する短辺1の傾斜角β
が順次大きくなって、前傾ltけ順次増していく。逆に
後頬部には、負方向の一定の角速贋ωで短辺は回動し、
前記傾斜角Iは順次小さくなり前傾量が減っていく。
10,000, the short side in the forward tilting phase is controlled to rotate at a constant angular velocity ω in the positive direction determined by the equation (1) above based on the casting speed during the operation and the speed increase rate α$, and 6
Inclination angle β of short side 1 with respect to horizontal line 2 shown by the dashed line in the figure
gradually increases, and the forward tilt gradually increases. On the other hand, in the rear cheek, the short side rotates at a constant angular velocity ω in the negative direction.
The inclination angle I gradually decreases, and the amount of forward inclination decreases.

而して第1図においては前傾期における増速率をαml
、角速度をω1で、父、後頬部における増速率をαm2
、角速度をω2で弄し、前傾期から後頬部への折返し時
間をTr、幅変更に要する全時間をTwで示した。
Therefore, in Fig. 1, the acceleration rate in the forward tilt phase is αml
, the angular velocity is ω1, and the acceleration rate at the rear cheek is αm2
, the angular velocity was manipulated by ω2, the time to turn from the anteversion period to the rear cheek area was shown as Tr, and the total time required to change the width was shown as Tw.

次に幅拡大の場合′1に前記第1図(b)及び第7図の
模式図に基づいて説明する。幅拡大を実施するに当たっ
ては前記幅縮小とは逆に短辺を鋳型及中心方向に移動さ
せていくが、まずその前半では負方向の一定の角速度ω
で短辺を回動せしめつつ、前述I〜たように一定の増速
率αs+f有する水平移動速度で後傾、移動を行わしめ
、所足景の移動を行わせた後直ちに正方向の角速度に切
り替え前傾操作を行う。この幅拡大の前後傾操作におい
ても短辺の水平移動速度は増速率αbf有し、それぞれ
時間と共に増速もしくは減速される。尚、前記第1図に
おいて、幅変更の前半部(幅縮小時は前傾期、幅拡大時
は稜知期)から拶半部(幅縮小時は後頬部、幅拡大時は
前傾期)へ移行する際の水平移動速度V 11にずれが
生じているのは、短辺の回動支点が後述する紀8図に示
すようにその中心位置からずれるC11>12)ことに
よるもので、短辺の略中心位置に回動支点が有る場合に
は(11=12 )、前記ずれが生じることは無く、前
半部終了時の水平移動速度V bが倖半部の仔頬部、も
(7くけ前傾期開始時の水平移動速度vhとなる。
Next, the case of width expansion '1 will be explained based on the schematic diagrams of FIG. 1(b) and FIG. 7. In carrying out width expansion, the short side is moved toward the mold and center direction, contrary to the aforementioned width reduction, but first, in the first half, a constant angular velocity ω in the negative direction is applied.
While rotating the short side with , tilt backward and move at a horizontal movement speed with a constant acceleration rate αs + f as described in I ~ above, and after moving the foot scene, immediately switch to the angular velocity in the positive direction. Perform forward leaning maneuver. Even in this forward/backward tilting operation for widening the width, the horizontal movement speed of the short side has an acceleration rate αbf, and is accelerated or decelerated with time. In addition, in Fig. 1 above, the first half of the width change (the anteversion period when the width is reduced, the ridge period when the width is expanded) to the half part (the rear cheek part when the width is reduced, the anteversion period when the width is expanded) ) The reason for the deviation in the horizontal movement speed V 11 when shifting to ) is that the rotation fulcrum on the short side deviates from its center position as shown in Fig. 8 (C11>12), which will be described later. When the pivot point is located approximately at the center of the short side (11=12), the above-mentioned deviation does not occur, and the horizontal movement speed Vb at the end of the first half is equal to This is the horizontal movement speed vh at the start of the 7-keke forward leaning phase.

以上のように本発明では前記増速率αsを後述するよう
に計容シェル変形抵抗をパラメータとして鋼種や鋳片ザ
イズ、@造速度、等に応じて予め求めて設定すると共に
旋回装置の角速度ωを前記(1)式に基づいて定め、前
傾期及び後頬部のそれぞれの期間中それを一定に維持し
て幅変更を実施することにより後述する釉々の多大な効
果を挙げることに成功したものである。。
As described above, in the present invention, the speed increase rate αs is determined and set in advance according to the steel type, slab size, manufacturing speed, etc. using the metering shell deformation resistance as a parameter, as will be described later, and the angular velocity ω of the turning device is By determining the width based on the above formula (1) and changing the width while keeping it constant during each period of the forward leaning period and the rear cheek area, we succeeded in achieving the great effect of the glaze as described below. It is something. .

さて次に前述した増速率α畠及び角速度ωを制御因子と
することにより本発明の幅変更が効率的に実施出来る理
由について説明する。
Now, the reason why the width change of the present invention can be efficiently implemented by using the above-mentioned speed increase rate α and angular velocity ω as control factors will be explained.

前述したように幅変更時の速度を高速化するには、幅変
更中にBO゛や鋳片に欠陥等を生じさせないための配慮
が必要である。このためには幅変更実施の全期間中にお
いて鋳片と短辺との間にエアーギャップを生じさせず、
かつ短片によって過度に鋳片を押し込むことがないよう
に常に適正々押し込みを確保することが肝要である。
As mentioned above, in order to increase the speed when changing the width, it is necessary to take care not to cause defects in the BO' or slab during the width change. For this purpose, it is necessary to avoid creating an air gap between the slab and the short side during the entire width change implementation period.
In addition, it is important to always ensure proper pushing so that the slab is not pushed in excessively by the short pieces.

第8図は前記第5図の短辺駆動装置を用いて、連続鋳造
中に短辺を移動させる際の鋳片と短辺の相射的動きを説
明する構成図である。而l〜てこの第8図に基づいて幅
変更時、鋳片に生じる歪について先ず説明する。尚、第
8図において1uけ短辺のメニスカス相当部であり、1
tは短辺下端部であって、βは短辺と水平線2との傾斜
角を、又、垂直線に対する傾斜角をθ(θ=β−90’
)として表すものである。
FIG. 8 is a configuration diagram illustrating the relative movement of the slab and the short side when the short side is moved during continuous casting using the short side drive device shown in FIG. 5. First, the strain that occurs in the slab when changing the width will be explained based on FIG. 8. In addition, in Fig. 8, this is the part corresponding to the meniscus on the short side by 1u, and 1
t is the lower end of the short side, β is the inclination angle between the short side and horizontal line 2, and θ is the inclination angle with respect to the vertical line (θ = β - 90'
).

成る時刻tにおいて短辺1がB1の位置にあり、微小時
間dt経過する間にB2の位置まで移動すると仮足する
。この微小時間diO間の水平移動速度1vh、角速度
をωとする。又、微小時間diO間に短辺のメニスカス
相当部1uはdYu、短辺下端部1tiI−j:dYt
、移動する。この時、時刻tにおいてメニスカス相当部
1uにあった鋳片4uはdi時間後に4ulに、短辺下
端部1tにあった鋳片4tは411に移動する。この移
動距離は[Uc・at]となる。
At time t, short side 1 is at position B1, and when it moves to position B2 during the elapse of minute time dt, it is tentatively added. The horizontal movement speed during this minute time diO is 1vh, and the angular velocity is ω. Also, during the minute time diO, the short side meniscus equivalent part 1u is dYu, and the short side lower end 1tiI-j: dYt.
,Moving. At this time, the slab 4u that was in the meniscus equivalent portion 1u at time t moves to 4ul after a time di, and the slab 4t that was in the lower end 1t of the short side moves to 411. This moving distance is [Uc·at].

短辺がB1からB2へ移動することによって鋳片は見掛
は上、メニスカス相当蔀でdYu、短辺下端部でdYL
押し込まれるが、実際には前述のように鋳片が[Ucs
dt)、下方に移動することから、この移動による水平
方向変位[Uc@dLefanθ〕分の変形は緩和され
る。従って実際に鋳片が受ける変形量を、メニスカス相
当部でηu1短辺下端部でηtとすれば、ηU及びηt
は下記(4)及び(5)式で与えられる。
As the short side moves from B1 to B2, the appearance of the slab is upward, dYu at the meniscus equivalent, and dYL at the lower end of the short side.
However, as mentioned above, the slab is actually pushed in [Ucs
dt) and downward, the deformation by the horizontal displacement [Uc@dLefanθ] due to this movement is alleviated. Therefore, if the amount of deformation that the slab actually undergoes is ηu1 at the meniscus equivalent part, and ηt at the lower end of the short side, then ηU and ηt
is given by the following equations (4) and (5).

dηu=dYu−Uc * d t @ tanθ  
・・・・・・(4)dηL=dYL−Uc * d t
 @ tanθ  ・・・・・・(5)一方、短辺の水
平方向の変位量をXとし、短辺の傾斜角がdi間にdθ
変位するものとすれば、dYu、dYLは下記(6)及
び(7)式で表せる。
dηu=dYu−Uc * dt @tanθ
......(4) dηL=dYL-Uc*dt
@tanθ ・・・・・・(5) On the other hand, let the horizontal displacement of the short side be X, and let the inclination angle of the short side be dθ between di
If it is assumed to be displaced, dYu and dYL can be expressed by the following equations (6) and (7).

dYu=tl ・tan(θ+dθ)+ctx−tl 
11tanθ・(6)dYL−−12IIjan(a+
d)+dX −(−22・tanθ)・(7)但し t
l;メニスカス相当部1uから駆動装置(第5図の回動
軸11)までの距離 t2;短辺下端部1tから駆動装置(第5図の回動軸1
1)までの距離 前記θは小さいことから実質上は下記のように近似式が
成立する。
dYu=tl ・tan(θ+dθ)+ctx−tl
11tanθ・(6)dYL−−12IIjan(a+
d) + dX −(-22・tanθ)・(7) However, t
l; Distance t2 from the meniscus equivalent part 1u to the drive device (rotation shaft 11 in FIG. 5); Distance from the lower end 1t of the short side to the drive device (rotation shaft 1 in FIG. 5)
Since the distance θ to 1) is small, the following approximate equation holds true.

電anθ均θ   ・・・・・・(8)前記(8)式を
前記(6)、(7)に代入すれば下記(9)、(1o)
式が得られ、更に(8)〜(10)式を前記(4)、(
51式に代入することによって下記(1す、 (12)
式が求められる。
Electric anθ equal θ (8) Substituting the above equation (8) into the above (6) and (7), the following (9) and (1o) are obtained.
Formulas are obtained, and formulas (8) to (10) are further converted to formulas (4) and (
By substituting into formula 51, we get the following (1s, (12)
A formula is required.

dYu=t1sdθ十dx      ・・−−−−(
9)dYt=−12・dθ+dX      ・・・・
・・(10)dηu=tl・dθ+dX−Uc*dt・
θ−(11)dηt=−12”dθ+dX−Uc@dt
sθ・(12)(11)、(12)式をdiで割れば下
記(13) 、(14)式が求まる。
dYu=t1sdθ+dx ・・---(
9) dYt=-12・dθ+dX...
...(10) dηu=tl・dθ+dX−Uc*dt・
θ−(11)dηt=−12”dθ+dX−Uc@dt
sθ・(12) By dividing the equations (11) and (12) by di, the following equations (13) and (14) can be obtained.

dηu/d t=l u=tI IIdθ/dt+dX
/a t−Uceθ・<13)dvt/dt=iL=−
12@dθ/dt+dX/dt−Uc ・θ=(14)
此処で、d Ij u / d t−’7 u %dη
t/dt=;yLは単位時間当たりの実変形量、即ち変
形速度を表す。又、dθ/atは短辺の傾斜角度の時間
変化、即ち角速度ωを表す。更にdX/dtは短辺の水
平方向変位の時間変化、即ち水平移動速度vhを表す。
dηu/d t=l u=tI IIdθ/dt+dX
/a t-Uceθ・<13) dvt/dt=iL=-
12@dθ/dt+dX/dt-Uc ・θ=(14)
Here, d Ij u / d t-'7 u %dη
t/dt=;yL represents the actual amount of deformation per unit time, that is, the deformation speed. Further, dθ/at represents the time change in the inclination angle of the short side, that is, the angular velocity ω. Furthermore, dX/dt represents the temporal change in the horizontal displacement of the short side, that is, the horizontal movement speed vh.

次に鋳片の変形量を、変形を生じる長さ、つまり鋳片幅
の半量で割れば鋳片の歪が求められる。
Next, the strain in the slab can be determined by dividing the amount of deformation of the slab by the length at which deformation occurs, that is, half the width of the slab.

即ち前記(13)、(14)式を鋳片幅2Wの半波Wで
割ると、歪速度りが下記(15)、(16)で求められ
る。
That is, when the above equations (13) and (14) are divided by the half wave W of the slab width 2W, the strain rate is obtained by the following equations (15) and (16).

111−tl・ω/W+V h /W−U c ・θ/
W ・・・・・・(15)ご1=−12・07w + 
V h /W −U c串θ/W・・・・・・(16)
前記歪速度を時間的に変化させない、即ち鋳片の変形を
常に適正に保つためには、[d 2 u/d t=o 
:)、[aAt/at=o]であれば良い。従って下記
(17)、(18)式の条件が成立すれば良い。
111-tl・ω/W+V h /W−U c・θ/
W ・・・・・・(15)Go1=-12・07w +
V h /W −U c skewer θ/W (16)
In order not to change the strain rate over time, that is, to keep the deformation of the slab always appropriate, [d 2 u/d t=o
:), [aAt/at=o] is sufficient. Therefore, it is only necessary that the following conditions (17) and (18) be satisfied.

aiu/dt=(tl/W)φdω/dt+(1/W)
 ・dvh、/dt−(Uc/W)−ωミ0   ・・
・・・・(17)a Qt/d t=(−t2/W) 
・aω/a t+(1/W) 11dVh/a t−(
U c/W) ・ω=O・・・・・・(18)(17)
、(18)式より下記(19)式が求まる。
aiu/dt=(tl/W)φdω/dt+(1/W)
・dvh, /dt-(Uc/W)-ωmi0...
...(17) a Qt/d t=(-t2/W)
・aω/a t+(1/W) 11dVh/a t-(
U c/W) ・ω=O・・・(18)(17)
, the following equation (19) can be found from equation (18).

dω/dt=o         ・・・・・・(19
)(19)式を解くと下記(20)式となり、又(19
)式を前記(17) 、(18)式に代入すると、下記
(21)式と々る。
dω/dt=o (19
) (19) gives the following equation (20), and (19)
) is substituted into the above equations (17) and (18), the following equation (21) is obtained.

ω=β    ・・・・・・(20) 但し β;積分定数 dVh/dt=Uc”ω  ・・・・・・(21)前記
(20式の右辺は時間に対して定数であるのでこれを人
とおくと、(22)式のように表される。
ω=β ・・・・・・(20) However, β: Integral constant dVh/dt=Uc”ω ・・・・・・(21) Since the right side of the above equation (20) is constant with respect to time, In the case of a person, it is expressed as equation (22).

dVh/dt=Uc”ωミA・・・・・・(22)この
(22)式を解けば、その一般解が下記(23)のよう
に求′まる。
dVh/dt=Uc''ωmiA (22) By solving equation (22), the general solution can be found as shown in (23) below.

Vh=A−1+r      −=・ (23)但し 
γ;積分定数 又、前記(22)式より下記(す′が求まる。
Vh=A-1+r -=・ (23) However
γ: Integral constant Also, from the above equation (22), the following (s') can be found.

ω= A / U c   ・・・・・・(1)′  
  □つまり(23)及び(1)1式よシ、前述した時
間的に歪速度を変化させず、鋳片の変形を常に適正に保
つためには、短辺の水平移動速度vhを幅変更開始から
の経過時間tとの1次関数で設定すれば良く、又角速度
ωをAと鋳片速度Ucから求まる一定の値に常に保てば
良いと言う新知見が得られた。
ω=A/Uc...(1)'
□In other words, according to equations (23) and (1) 1, in order to keep the deformation of the slab always appropriate without changing the strain rate over time as described above, start changing the width of the horizontal movement speed vh of the short side. New knowledge has been obtained that it is sufficient to set the angular velocity ω as a linear function of the elapsed time t from the time t and that the angular velocity ω is always kept at a constant value determined from A and the slab velocity Uc.

本発明者等は該知見に基づき実操業の連続鋳造中におけ
る幅変更においてさらに研究を重ねた結果、ml記(2
3)及び(])′式の定数Aを許容変形抵抗力をパラメ
ーターとして求めた値に設定することにより、前記知見
を工業的規模で適用することが可能であることを確認し
た。
Based on this knowledge, the present inventors conducted further research on width changes during continuous casting in actual operations, and found that ml (2
It was confirmed that the above knowledge could be applied on an industrial scale by setting the constant A in formulas 3) and (])' to a value determined using the allowable deformation resistance as a parameter.

而して本発明における前記定数人は零以外の値であって
、このため水平移動速度yhけ時間と共に増速もしくは
減速される。この幅変更期間中vhを増速もしくは減速
させる定数Aを本発明では増速率α龜とじて用いた。又
前記(23)及び(1)′式における積分定数rは水平
移動速度vhO幅変更開始時の初期速度であり、幅変更
やその時の操業条件によって予め適宜決定すればよい。
In the present invention, the constant value has a value other than zero, and therefore the horizontal movement speed yh is increased or decelerated with time. In the present invention, a constant A for accelerating or decelerating vh during this width change period is used as the accelerating rate α. Further, the integral constant r in the above equations (23) and (1)' is the initial speed at the start of the horizontal movement speed vhO width change, and may be appropriately determined in advance depending on the width change and the operating conditions at that time.

前記増速率αsが設定されると角速度ωは当該操業時の
鋳造速度Ucから ω=αs / U c    ・・・・・・(1)と求
められ、前述した(1)式が得られる。
When the speed increase rate αs is set, the angular velocity ω is determined from the casting speed Uc during the operation as ω=αs/Uc (1), and the above-mentioned equation (1) is obtained.

さて次に、本発明に基づく具体的な幅変更方法について
説明する。
Next, a specific width changing method based on the present invention will be explained.

前述したように幅変更中に鋳片に生じる歪を一定に保持
するためには、水平移動速度vhの増速率αsと角速度
ωを一定に保持して行えば良いことが判り、その際の角
速度ωは増速率αsと鋳片速度Ucから前記(1)式で
求めらる。従ってα畠が正の場合はωも正となり、短辺
は前傾する。逆にα$が負の場合はωも負となり、短辺
は後傾する。
As mentioned above, in order to keep the strain generated in the slab constant during width change, it is found that it is sufficient to keep the acceleration rate αs of the horizontal movement speed vh and the angular velocity ω constant, and the angular velocity at that time is ω is determined from the speed increase rate αs and slab speed Uc using the above equation (1). Therefore, if α field is positive, ω will also be positive, and the short side will tilt forward. Conversely, if α$ is negative, ω will also be negative, and the short side will tilt backward.

幅変更の終了時には幅変更開始時とほぼ同程度まで短辺
の傾斜角を復帰させる必要があるため、一連の幅変更を
行うためにはαsが正負の期間を各々、最低1以−ヒ、
必要とする。αsの正負の期間の組合せによって種々の
幅変更が可能となるが、その中で最も嚇純でかつ高速度
の得られるのは第1図に示すようにαsが正負それぞれ
1つづつで構成された場合である。つ1り幅変更の全期
間を前傾期と後頬部とに区分した場合である。
At the end of the width change, it is necessary to restore the inclination angle of the short side to almost the same level as at the beginning of the width change, so in order to perform a series of width changes, the period in which αs is positive or negative must be set at least 1 or more, respectively.
I need. Various width changes are possible by combining the positive and negative periods of αs, but the simplest and fastest speed is when αs is configured with one positive and one negative period, as shown in Figure 1. This is the case. This is a case where the entire period of hip width change is divided into the anteversion period and the rear cheek area.

そこで幅変更の前半部と後半部の水平移動速度vh及び
角速度ωをそれぞれ添字(1は前半部、2は後半部)を
付して表すと以下のように置くことができる。
Therefore, if the horizontal movement speed vh and angular velocity ω of the first half and the second half of the width change are expressed with subscripts (1 means the first half, 2 means the second half), they can be placed as follows.

前半部 Vhl−αs1・t+γ1  ・・・・・・(24)ω
1−αm l / IJ c      −−(25)
後半部 V h 2 = αs2 ・t + r’2   ”=
= (26)ω2−αs 2 / U c      
−−<27)(24)械27)式を前記(15) 、(
16)式に代入すると各期間の歪速度が下記(28)〜
(31)式のように求まる。
First half Vhl-αs1・t+γ1...(24)ω
1-αml/IJc --(25)
Second half V h 2 = αs2 ・t + r'2 ”=
= (26)ω2-αs2/Uc
--<27) (24) Machine 27) is converted into the above (15), (
Substituting into equation 16), the strain rate for each period is as follows (28) ~
It can be found as in equation (31).

前半部 k u 1 =(11/W) −(α82/UC)+r
l/W   ・−・・−・(2s>2t]=(−t2/
W)・(α82/UC)+γ1/W ・・・(29)後
半部 i u 2−(tl/W)の(αm2/Uc)+γ2/
/w−αsl ・Tr/W・−・(30)tt2=(−
t2/W戸(αs 2/Uc )+γ2/%’l’−C
1m 1 ・T rlfJ”< 31 )ところで前記
歪速度にはそれが負となるとエアーギャップが生じ、成
る値以上となると、短辺1ife動装置の駆動力が著し
く増大したり、鋳片75(座屈現象を起こし安定した鋳
造ができなくなる。而して前記(28)−(31)式の
歪速度二は次の条件を満たす必要がある。
First half k u 1 = (11/W) - (α82/UC) + r
l/W ・−・・−・(2s>2t]=(−t2/
W)・(α82/UC)+γ1/W...(29) (αm2/Uc)+γ2/ of the second half i u 2-(tl/W)
/w−αsl ・Tr/W・−・(30)tt2=(−
t2/W door (αs 2/Uc) + γ2/%'l'-C
1 m 1 ・T rlfJ"< 31) However, if the strain rate becomes negative, an air gap will be created, and if it exceeds this value, the driving force of the short side 1ife moving device will increase significantly, and the slab 75 (seating A bending phenomenon occurs, making stable casting impossible.The strain rate 2 in equations (28) to (31) above must satisfy the following conditions.

0≦二目≦2maxi   ・・・・・・(32)但し
 i;短辺のメニスカス相当部u1又は下端部t j;幅変更の前半部、又は後半部 従って前記(28)〜(30式に(32)式を代入する
と°下記(33)〜(36)が成立する。
0≦Second eye≦2maxi (32) However, i: Short side meniscus equivalent part u1 or lower end tj; First half of width change, or second half Therefore, according to formulas (28) to (30) When formula (32) is substituted, the following (33) to (36) hold true.

O≦(tllW) ’ (αml/Uc)+H/W≦i
max u −= (33)0≦(−12/W) ” 
(α82/UC)+rl/W≦imax L・・・(3
4)0≦(tlzろ一/)−(α82/UC)+γ2/
’W−αml@Tr/へ■≦imaxu”(3r)0≦
(−t2/W)・(αm2/Uc)+γ2/w−αs1
・Tr/′W≦imax L 、−<36)以上の各式
を満足する、即ち幅変更中において安定鋳造を維持する
だめの相関を整理すると下記(、)〜(h)の各式が求
まる。
O≦(tllW) ' (αml/Uc)+H/W≦i
max u −= (33) 0≦(-12/W)”
(α82/UC)+rl/W≦imax L...(3
4) 0≦(tlzroichi/)-(α82/UC)+γ2/
'W-αml@Tr/■≦imaxu'' (3r)0≦
(-t2/W)・(αm2/Uc)+γ2/w−αs1
・Tr/'W≦imax L, -<36) The following formulas (,) to (h) can be found by arranging the correlations to satisfy the above formulas, that is, to maintain stable casting during width change. .

r1≧−11−Cαs 1 / Uc )      
”・”・(a)γ1≦W(2max u−(t1/W)
 ・(αsl/Uc))=−41−(αsl/Uc)+
W112maxu    +−+−(1))r1≧12
−(αs 1 /U c )       ・” =・
(c)γ1≦12−Cαs 1/Uc ) +W・6 
max L−・” (d)γ2〉α5lsTr−61・
(αs2/Uc)−−−−”(e)γ2≦−t1 ” 
(αs 2/U c )十αsl・Tr+W’2max
u  ”  (f)γ2〉αs1・Tr+t2・(6m
 2/U c )   −・” (g)r2≦12−C
αs 2/U c )+αa 1 ・Tr+W @ i
 max L ・=(h)第9図はこの(a)〜(h)
の関係を前述した前半部と後半部とに区別して表したも
ので第9図aが前半部の、また第9図すが後半部を示す
。更に横軸は増速率αsl、αs2を、縦軸は初期速度
γ1、γ2である。該第9図におけるハツチング部りが
鋳造欠陥の発生することのない、つまり安定した鋳造を
継続しつつ幅変更が可能な範囲を示している。従って増
速率αsl、αs2及び初期速度γ1、γ2を前記ハツ
チング部りの範囲内の任怠の値を選択し設定することに
より前述した本発明の幅変更が実施できる。
r1≧−11−Cαs1/Uc)
"・"・(a) γ1≦W(2max u-(t1/W)
・(αsl/Uc))=−41−(αsl/Uc)+
W112maxu +-+-(1)) r1≧12
−(αs 1 /U c )・”=・
(c) γ1≦12−Cαs 1/Uc ) +W・6
max L-・” (d) γ2〉α5lsTr-61・
(αs2/Uc)----"(e) γ2≦-t1"
(αs 2/U c ) 10αsl・Tr+W'2max
u ” (f) γ2〉αs1・Tr+t2・(6m
2/U c ) −・” (g) r2≦12−C
αs 2/U c )+αa 1 ・Tr+W @i
max L ・=(h) Figure 9 shows these (a) to (h)
9A shows the first half and FIG. 9 shows the second half. Further, the horizontal axis shows the speed increase rates αsl and αs2, and the vertical axis shows the initial speeds γ1 and γ2. The hatched portion in FIG. 9 indicates a range in which no casting defects occur, that is, a range in which the width can be changed while stable casting is continued. Therefore, by selecting and setting the speed increase rates αsl, αs2 and the initial speeds γ1, γ2 to arbitrary values within the ranges of the hatched portions, the above-mentioned width change of the present invention can be implemented.

ところで幅変更は前述したように可能な限りにおいて短
時間で実施することが要求されており、係る要求を満足
すべき増速率αsを前記/%ラッチングl)の範囲内よ
り求めることが必要である。而して幅縮小の前半部では
増速率αsが正で、その絶対値が大きい程よい。このこ
とより第9図aに示した点P1が最適条件となる。又、
幅拡大の前半期では増速率αsが負で、しかもその絶対
値が太きい程よい。従って点P3が最適である。
By the way, as mentioned above, the width change is required to be carried out as quickly as possible, and it is necessary to find the speed increase rate αs that satisfies this requirement from within the range of /% latching l). . In the first half of the width reduction, the speed increase rate αs is positive, and the larger its absolute value, the better. From this, the point P1 shown in FIG. 9a becomes the optimal condition. or,
In the first half of width expansion, the speed increase rate αs is negative, and the larger its absolute value, the better. Therefore, point P3 is optimal.

次に、幅変更の後半部においては前半期で通常操業時よ
り傾斜せしめた傾斜角を元に戻さねば表らないことから ω1eTr==−ω2・(TW−Tr)  ・・・・・
・(37)ω1=αs l / U c sω2=αs
2/UCであるからTw−Tr=−(αsl/αm2)
−Tr  ・・・・” (:う8)となり、幅変更時間
を小さくするためにはαs2の絶対値は大きい程よいこ
とになり、幅縮小の場合は第9図すに示した点P2が、
又、幅拡大の場合は第9図1に示した点P4が最適点と
なる。
Next, in the second half of the width change, the inclination angle that was tilted more than during normal operation in the first half must be returned to its original value, so ω1eTr==-ω2・(TW-Tr)...
・(37) ω1=αs l / U c sω2=αs
Since 2/UC, Tw-Tr=-(αsl/αm2)
-Tr...'' (: U8), and in order to reduce the width change time, the larger the absolute value of αs2 is, the better. In the case of width reduction, the point P2 shown in Figure 9 is
In addition, in the case of width expansion, point P4 shown in FIG. 91 becomes the optimum point.

以上のように幅変更時間を最短にするための増速率α易
が求められるが下記第1表はそれを一覧として表したも
のである。
As described above, the speed increase rate α is determined in order to minimize the width change time, and Table 1 below shows it as a list.

第  1  表 面して仙記第1表の条件下のおける水平移動速塵vh及
び角速変ωは下記第2表(幅縮小)及び第3表(幅拡大
)のようになる。
1. On the surface, the horizontal movement velocity vh and angular velocity change ω under the conditions shown in Table 1 of Senki are as shown in Table 2 (width reduction) and Table 3 (width expansion) below.

第  2  表 第  3  表 又、本発明者等の経験では、短辺の上方は下方に比しシ
ェル厚が薄いことから一般に 2max u )  2max t   ・・・・・・
(39)であり、□幅縮小の場合は 1αall、>lα@21  ・・・・・・(40)幅
拡大の場合は l αil l < I (Xs21   ・・・・・
・(41)とすることがシェル変形抵抗力から可能であ
って幅変更速度の高速化の点からは効果的である。
Table 2 Table 3 In addition, in the experience of the present inventors, the shell thickness is thinner above the short side than below, so generally 2max u) 2max t...
(39), □In the case of width reduction, 1αall, >lα@21...(40) In the case of width expansion, l αil l < I (Xs21...
- (41) is possible from the shell deformation resistance and is effective from the viewpoint of increasing the width change speed.

一方、αs井α2となると前傾期から彼頬部への移行、
つまり折返し点の制御が複雑になる。従って制御性の容
易さを重視する時はαsl=αs2とするこ、とが好ま
しい。いずれにしてもαs1及びαs2は設備条件やそ
の時の操業条件等に応じて前記範囲のなかから任意に設
定することが可能である。
On the other hand, when it comes to αs well α2, there is a transition from the anteversion phase to the cheek area,
In other words, control of the turning point becomes complicated. Therefore, when ease of controllability is important, it is preferable to set αsl=αs2. In any case, αs1 and αs2 can be arbitrarily set within the above range depending on equipment conditions, operating conditions at that time, etc.

さて、次に増速率αsの具体的な求め方について説明す
る。
Next, a specific method for determining the speed increase rate αs will be explained.

増速率α$は前述のようにシェルの変形に許容される歪
から求めることができるが、例えば既設の短辺駆動装置
を利用して本発明を実施する場合や設置場所或いは設備
費等の制約から短辺駆動装置の能力を大きくすることに
制限がある場合等には、前述のシェルに許容される歪か
ら求めたαsでは駆動力が不足し幅変更を実施できない
可能性がある。
As mentioned above, the speed increase rate α$ can be determined from the strain allowed for deformation of the shell, but for example, if the present invention is implemented using an existing short side drive device, or if there are restrictions such as the installation location or equipment cost. If there is a limit to increasing the capability of the short-side drive device, the width αs determined from the above-mentioned allowable strain of the shell may not be sufficient to change the width.

このような時には前記シェル強度内で、かつ短辺駆動装
置の能力を効率的に発揮できる増速率αsを求めること
ができる。
In such a case, it is possible to find a speed increase rate αs that is within the above-mentioned shell strength and that allows the short side drive device to efficiently demonstrate its capabilities.

ところで本発明者らは増速率α易及び初期速度rを種々
に変えて試験を行った結果、短辺を水平移動させる丸め
に必要な総駆動力Fは下記(42)式で計算出来る事を
確認した。
By the way, the inventors conducted tests with various acceleration rates α and initial speed r, and found that the total driving force F required for rounding the short side horizontally can be calculated using the following equation (42). confirmed.

F = 2 S LH+ LHn 511nH、;、、
(匂”dsdE    ・・・・・・(42)ここでE
は短辺のメニスカス相当部を「0」とし、鋳造方向を正
とする座標上の距離を表すものである。又、i<w>は
、下記(43)式で求められる。
F = 2 S LH + LHn 511nH,;,,
(smell) dsdE ・・・・・・(42) Here E
represents the distance on coordinates where the meniscus equivalent part on the short side is set to "0" and the casting direction is set as positive. Moreover, i<w> is determined by the following equation (43).

2(Fi)−((LL−iu )/ (L1+t2 )
 ) ・Fl+ Au・・(43)みU%ilは前記(
28)〜(30式で求められ、αml、α$2及びrl
、r2を決定すれば求められる。
2(Fi)-((LL-iu)/(L1+t2)
) ・Fl+ Au... (43) U%il is the above (
28) ~ (calculated by formula 30, αml, α$2 and rl
, r2 can be determined.

更にHはシェル厚であり下記(44)式で計算し求めれ
ばよ<SOはクリープ定数であり下記(45)式で与え
られる。
Furthermore, H is the shell thickness, which can be calculated using the following equation (44).<SO is the creep constant, which is given by the following equation (45).

H= Ho の(E / U c ) 1/2・” −
(44)G=Go @e x p (q/ Re ) 
 −(45)尚、(44)式中においてHoは凝固係数
であり、通常普通鋼の場合18〜25mm/r111n
1/2の範囲内にあり、厳格には対象鋼種毎にシェル厚
を測定することによって求まる。(42) 、 (45
)式中のGo、 n。
H= Ho’s (E/U c ) 1/2・” −
(44) G=Go @e x p (q/Re)
-(45) In the formula (44), Ho is the solidification coefficient, which is usually 18 to 25 mm/r111n in the case of ordinary steel.
It is within the range of 1/2, and strictly speaking, it is determined by measuring the shell thickness for each steel type. (42), (45
) Go, n in the formula.

qは対象鋼種の物性から定まる係数であって、鋼種毎に
引張試験を行うことにより求めることができる。neは
温度(0K)である。
q is a coefficient determined from the physical properties of the target steel type, and can be determined by conducting a tensile test for each steel type. ne is the temperature (0K).

以上のように増速率αs及び初期速度γを逐次変化させ
て、前記(28)〜(31)式により、E(1,λtを
求め、それe (43)式に代入することによって総組
動力Fが計算される。
By sequentially changing the speed increase rate αs and the initial speed γ as described above, E(1, λt is obtained from the above equations (28) to (31), and by substituting it into e (43) equation, the total assembly force is calculated. F is calculated.

一方、短辺駆動装置が短辺を介して鋳片の変形に有効に
作用しつる能力Favは、下記(46)式に示すように
その発生能力Faから溶鋼静圧Pgと摺動摩擦力Fμを
減じた値となる。
On the other hand, the ability Fav of the short side drive device to effectively act on the deformation of the slab through the short side is calculated by calculating the static pressure Pg of the molten steel and the sliding friction force Fμ from the generation ability Fa as shown in equation (46) below. The value will be reduced.

Fav=Fa−Fg−Fμ    −・・・(46)従
って Fav)F を満足させるように増速率αs及び初期速度rを設定し
、それに基づいて角速度ωを定めることにより、幅変更
パターンは決定される。
Fav = Fa - Fg - Fμ - (46) Therefore, the width change pattern is determined by setting the speed increase rate αs and initial velocity r so as to satisfy Fav)F, and determining the angular velocity ω based on it. Ru.

ところで前記第1図の例では短辺上下端部の水平移動速
度は時間と共に増大していき、後述するような短辺駆動
装置等の制約より水平移動速度に制限がある場合には、
1回の幅変更操作によって必要とする変更量全確保でき
ないことになる。このような問題を解決するには短辺駆
動装置の能力アップや駆動機構の改造を行うか、或いは
前記幅変更操作を繰り返し実施する必要が生じる。この
ような問題を本発明においては、幅変更前半部の前傾期
(幅縮小)も1〜くは後頬部(幅拡大)から幅変更後半
部の後頬部(幅縮小)もしくは前傾期(幅拡大)へ移行
する間に短辺の平行移動を行わせることにより効果的に
解決することができる。
By the way, in the example shown in FIG. 1, the horizontal movement speed of the upper and lower ends of the short side increases with time, and if there is a limit to the horizontal movement speed due to constraints such as the short side drive device as described later,
It is not possible to secure the entire required width change amount with one width change operation. To solve this problem, it is necessary to increase the capacity of the short side drive device, modify the drive mechanism, or repeat the width changing operation. In the present invention, this problem can be solved by changing the forward leaning period (width reduction) in the first half of the width change from 1 to 1 or the rear cheek part (width expansion) to the rear cheek part (width reduction) or forward tilting in the latter half of the width change. This can be effectively solved by moving the short side in parallel during the transition to the phase (width expansion).

即ち、前記(23)、 (1)式より鋳片の変形を幅変
更期間中、常に適正に保つためには水平移動速度vhが
時間tの1次関数であり、かつ角速度ωが一定であれば
よいと言う知見が得られたが、前記(23)、(1)式
において(λ−α$=0)の場合も、前記(19)、(
22)式を満足することになる。
That is, from equations (23) and (1) above, in order to keep the deformation of the slab always appropriate during the width change period, it is necessary that the horizontal movement speed vh is a linear function of time t and that the angular velocity ω is constant. However, even in the case of (λ-α$=0) in equations (23) and (1), the equations (19) and (
22) formula is satisfied.

この場合、(1)式より角速度ωも(ω−0)となり、
短辺は平行移動する。つまりこの平行移動を行う場合に
おいても鋳片の変形を常に目的とする一定の値に保ち得
る可能性があることを示している。
In this case, the angular velocity ω also becomes (ω-0) from equation (1),
The short side moves in parallel. In other words, even when this parallel movement is performed, it is possible to maintain the deformation of the slab at a constant target value.

そこで本発明者等は更に研究を重ねた結果、前述した本
発明の幅変更方法、つまり短辺の移動前傾期と、後頬部
に区分し、この各期間における短辺の水平移動速度の増
速率αsを、予め許容シェル変形抵抗力をパラメータと
して求めると共に、前記旋回装置の角速度ωを前記(1
)式で定め、当該期間中、前記増速率αs及び角速度ω
を一定に維持して幅変更を行う幅変更方法において、圧
延条件及び、もしくは短辺駆動装置の制約条件より前記
短辺の最大許容水平移動速度Vmaxを設定し5幅変更
前半部の前傾期、もしくは後頬部における前記短辺の水
平移動速度が前記V maxを超える際に、幅変更前半
部と後半部の間に前記(2)及び(3)式で4見られる
範囲内の平行移動速度VDで短辺の平行移動を行わしめ
ることによって、鋳造欠陥の発生を防止しつつ最短時間
で幅変更を実施が可能であることを確認した。
Therefore, as a result of further research, the inventors of the present invention have divided the width change method of the present invention into the forward tilting period of the short side and the rear cheek area, and have determined that the horizontal movement speed of the short side in each period is The speed increase rate αs is determined in advance using the allowable shell deformation resistance force as a parameter, and the angular velocity ω of the swing device is determined by the (1
), and during the period, the speed increase rate αs and the angular velocity ω
In the width changing method in which the width is changed while maintaining the width constant, the maximum permissible horizontal movement speed Vmax of the short side is set based on the rolling conditions and/or the constraints of the short side drive device, and the forward tilting period of the first half of the width change is set. , or when the horizontal movement speed of the short side in the rear cheek exceeds the V max, the width is changed between the first half and the second half within the range shown in equations (2) and (3) above. It was confirmed that by moving the short side in parallel at speed VD, it was possible to change the width in the shortest possible time while preventing the occurrence of casting defects.

さて、前記短辺の水平移動速度yhの制限とはどのよう
な場合に生じるかを説明する。前述したような幅変更を
実施した場合、その間に製造される鋳片は第10図(a
)に示すようにテーパー金有したものと々る。従来この
幅変更時のテーパーを有した鋳片(以下幅変更鋳片4m
と言う)は層化するか、或いは鋳片を冷却した稜、第1
1図(b)に破線で示すようにテーパ一部分を切除し、
然る後再加熱して圧延する方法が一般的に採用されてい
た。
Now, in what cases the horizontal movement speed yh of the short side is limited will be explained. When the width is changed as described above, the slab produced during that time will be as shown in Figure 10 (a).
) with a tapered metal plate as shown. Conventionally, this slab with a taper when changing the width (hereinafter referred to as 4m width changing slab)
) is the ridge where the slab is layered or cooled, the first
1. Cut off a part of the taper as shown by the broken line in Figure 1(b),
A method of subsequently reheating and rolling was generally employed.

しかしながら該方法では歩留り低下やエネルギー費の高
騰に繋がり、而して幅変更鋳片を切断等の加工を行うこ
となく圧延し、製品とすることが望まれていた。この場
合鋳片のテーパーtをおまり大きくすると圧延できない
という問題がある。鋳片のテーパー量は@造速度と幅変
更速度の比で決まるため前記テーパー量に制限がある場
合には前記水平移動速度vhにも制限を生じる。
However, this method leads to a decrease in yield and a rise in energy costs, and it has therefore been desired to roll the width-changed slab into a product without cutting or other processing. In this case, there is a problem that if the taper t of the slab is increased too much, it cannot be rolled. Since the amount of taper of the slab is determined by the ratio of the forming speed and the width changing speed, if there is a limit to the taper amount, there is also a limit to the horizontal movement speed vh.

一方、前記第5図に示すような短辺の駆動装置では軸受
部の回動角ζには制限があり、幅変更時の傾斜角βを大
きくすることにも限度がある。前記第1図の幅変更方法
では時間と共に前記傾斜角βが増大、又は減少するため
、傾斜角βに制限があると前傾期成いは後頬部の所要時
間にも制限が生じ、このため短辺移動速度の制限となる
On the other hand, in the short-side drive device as shown in FIG. 5, there is a limit to the rotation angle ζ of the bearing, and there is also a limit to increasing the inclination angle β when changing the width. In the width changing method shown in FIG. 1, the inclination angle β increases or decreases with time, so if there is a limit to the inclination angle β, there will also be a limit to the time required for the anteversion phase or the rear cheek area. Therefore, the short side movement speed is limited.

本発明では前記問題が生じた場合、前述したように幅変
更時の短辺の最大移動速度V maxを設定し、幅変更
前半部の短辺の水平移動速度vhが前記V mawを超
える際には幅変更の前半部と後半部との間に所定の条件
を満足する速度で平行移動を行わせることによって効果
的に解決することを可能とした。第11図は前記方法に
基づく幅変更時における短辺の水平移動速度と、回動速
度を説明する線図であって、第11図(a)は幅縮小を
、第11図(blは幅拡大を示すものである。、尚、こ
の第11図は回動支点を短辺の略中心位置にしたC11
+12)例である。
In the present invention, when the above problem occurs, the maximum moving speed V max of the short side at the time of width change is set as described above, and when the horizontal moving speed vh of the short side in the first half of the width change exceeds the above V max, This problem can be effectively solved by performing parallel movement between the first half and the second half of the width change at a speed that satisfies a predetermined condition. FIG. 11 is a diagram illustrating the horizontal movement speed and rotation speed of the short side when changing the width based on the above method, in which FIG. 11(a) shows width reduction; This figure shows an enlarged view of C11 with the pivot point set at approximately the center of the short side.
+12) This is an example.

而して第11図(a)に示す幅縮小の場合にあたっては
短辺を鋳型中心方向に移動させるが、その前半では水平
移動速度vhが許容される最大移動速度■maxに達す
るまで短辺を鋳型中心側へ傾ける前傾操作を行う。この
前傾期においては正方向の角速度ωで回動せしめつつ、
一定の増速率αsf有して前傾操作が行われる。前記V
 maxに達すると旋回装置を停止し、前記平行移動速
度Vpで短辺の移動を行わしめ、目標とする幅変更量よ
り定められる平行移動時間を経過後に、負方向の角速度
ωに切り替え、短辺を鋳型中心方向 操作を行わしめ一連の幅変更操作を終わる。
In the case of width reduction shown in Fig. 11(a), the short side is moved toward the center of the mold, but in the first half, the short side is moved until the horizontal movement speed vh reaches the maximum allowable movement speed max. Perform forward tilting operation to tilt toward the center of the mold. During this forward tilting period, while rotating at a positive angular velocity ω,
The forward tilting operation is performed with a constant speed increase rate αsf. Said V
When the angular velocity reaches max, the rotation device is stopped, the short side is moved at the parallel movement speed Vp, and after the parallel movement time determined by the target width change amount has elapsed, the angular velocity is switched to the negative direction ω, and the short side is moved at the parallel movement speed Vp. The operation is performed in the direction of the center of the mold, and a series of width changing operations is completed.

次に幅拡大を実施するに当たっては前記幅縮小   ゛
とは逆に短辺を鋳型及中心方向に移動させていくが、ま
ずその前半では負方向の一定の角速度ωで短辺を回動せ
しめつつ、前述したように一定の増速率α@を有する水
平移動速度で後傾、移動を行わしめ、前記V maxに
達すると平行移動速度vpで平行移動を行わしめ、目標
とする幅変更量より定められる平行移動時間Thを経過
後に、直ちに正方向の角速度に切り替え前傾操作を行う
。この幅拡大の前稜傾操作においても短辺の水平移動速
度は増速率α8f有し、それぞれ時間と共に増速もしく
は減速される。
Next, when enlarging the width, the short side is moved toward the mold and the center, contrary to the width reduction described above, but in the first half, the short side is rotated at a constant angular velocity ω in the negative direction. As described above, the backward tilting and movement are performed at a horizontal movement speed with a constant acceleration rate α@, and when the V max is reached, the parallel movement is performed at a parallel movement speed vp, which is determined based on the target width change amount. Immediately after the parallel movement time Th elapses, the angular velocity is switched to the positive direction and the forward tilting operation is performed. Even in this front edge tilting operation for widening the width, the horizontal movement speed of the short side has an acceleration rate α8f, and is accelerated or decelerated with time.

次に前記短辺の最大移動速度V maxO設足法につい
て説明する。
Next, the method of setting the maximum moving speed V maxO of the short side will be explained.

短辺の最大移動速度V maxは前述したように後続す
る圧延条件から設定される場合と短辺駆動装置の制約条
件より設定される場合がある。而してまず圧延条件から
設定される場合について説明する。
As described above, the maximum moving speed V max of the short side may be set based on the subsequent rolling conditions or may be set based on the constraint conditions of the short side drive device. First, the case where rolling conditions are set will be explained.

前記第10図に示すように鋳片のテーパー量ξが大きく
なると、例えば連続鋳造機から圧延機へ送給される過程
の搬送装置に設置された端部誘導加熱装置において目的
とする端部加熱ができなくなったり、あるいは圧延した
後の製品の幅寸法に誤差が生じる可能性がある。後者の
幅誤差については圧延機の前方に幅圧下装置を設ける技
術が開発されてはいるがこの幅圧下装置によって修正で
きる量にも限界があり、前記テーパー量ξが所定以上と
なると幅誤差の発生は免れない。従って連続鋳造機に続
いて設けられた各設備から許容されるテーパー量及び圧
延稜の製品に許容される幅誤差等より幅変更鋳片4aK
iFF容されるテーパー量ξを決定する。(本発明にお
いて圧延条件とけ前記圧延による幅精度、その他棹々の
圧延条件に加えて前述した連続鋳造機から圧延機までの
鋳片搬送過程に設けられた各設備から許容される条件を
含めて言うものである。) このテーパー量ξは、鋳片の形状が鋳型の下端幅で決定
されることから鋳造速度Ucと水平移動速度vhとより
下記(47)式のように表されるものである。
As shown in FIG. 10, when the taper amount ξ of the slab increases, for example, an end induction heating device installed in a conveying device during feeding from a continuous casting machine to a rolling mill can achieve the desired end heating. or there may be an error in the width dimension of the product after rolling. Regarding the latter width error, a technology has been developed in which a width reduction device is installed in front of the rolling mill, but there is a limit to the amount that can be corrected by this width reduction device, and when the taper amount ξ exceeds a predetermined value, the width error Occurrence cannot be avoided. Therefore, the width of the cast slab 4aK is determined based on the taper amount allowed by each equipment installed after the continuous casting machine and the width error allowed for the rolled ridge product.
Determine the amount of taper ξ allowed by iFF. (In the present invention, the rolling conditions include the width accuracy due to the above-mentioned rolling, other rolling conditions as well as conditions permitted by each equipment installed in the process of conveying the slab from the continuous casting machine to the rolling machine. ) This taper amount ξ is expressed as the following equation (47) using the casting speed Uc and the horizontal movement speed vh, since the shape of the slab is determined by the width of the lower end of the mold. be.

ξ= V h / U c    ・” ・・・(47
)従って鋳片のテーパーtを予め決定された前記ξ以下
とするためには水平移動速度vhは下We(48)式で
求められるVmax以下でなければならない。
ξ= V h / U c ・” (47
) Therefore, in order to make the taper t of the slab less than or equal to the predetermined ξ, the horizontal movement speed vh must be less than or equal to Vmax determined by the equation We (48) below.

Vmax=ξ・UC……(48) 次に短辺駆動装置の制約条件より設定される場合を説明
する。短辺駆動装置の制約条件としては軸受部の回動角
ζに制限が加えられる時と、駆動装置の能力から制限が
加えられるときがある。回動角この制限は、軸受部の構
造上の理由、又は湾曲鋳型等においては長辺と短辺の隙
間eFF容値以下に押さえる必要から生じ、最大可能回
動角ζmaxが決定される。該回動角ζは傾斜度合で表
すと、前記第1図に下す幅変更方法においてはζ=ω・
t   ・・・・・・(49)となる。この時の幅変更
前半部の水平移動速度vhけ vh−αsl ・t 十rl ・・・・・・(50)で
あることから ■  h −U c  拳  ζ + γ ]   −
−−−−・ (Flu)と表せる。従ってVmaxは下
記(52)式で定められる。
Vmax=ξ·UC (48) Next, the case where it is set based on the constraint conditions of the short side drive device will be explained. As a constraint on the short-side drive device, there are times when a limit is placed on the rotation angle ζ of the bearing portion, and there are times when a limit is placed on the ability of the drive device. This restriction on the rotation angle arises from the structural reasons of the bearing part or the need to suppress the gap eFF between the long side and the short side in curved molds, etc., and determines the maximum possible rotation angle ζmax. The rotation angle ζ is expressed by the degree of inclination, and in the width changing method shown in FIG. 1, ζ = ω・
t...(49). At this time, since the horizontal movement speed in the first half of the width change is vh ke vh - αsl ・t 0rl ... (50), ■ h - U c fist ζ + γ ] −
It can be expressed as -----・ (Flu). Therefore, Vmax is determined by the following equation (52).

V max = U c *ζmax+γ1 ・(52
)又、駆動装置のシリンダー能力から制限が加えられる
場合はシリンダーの最大速度がV maxとなる。
V max = U c * ζ max + γ1 ・(52
) Also, if a restriction is imposed by the cylinder capacity of the drive device, the maximum speed of the cylinder will be V max.

以上のように圧延条件、あるいは短辺駆動装置の制約条
件、あるいはその双方から短辺の最大速度V maxが
設定される。前記第1図に示した幅変更方法においては
折返し時間Trで短辺の水平移動速度■hが最大となる
。この時の最大水平移動速度をV h maxとすれば
このV h maxは下記(53)式で弄される。
As described above, the maximum speed V max of the short side is set based on the rolling conditions, the constraint conditions of the short side drive device, or both. In the width changing method shown in FIG. 1, the horizontal movement speed h of the short side reaches its maximum at the turning time Tr. If the maximum horizontal movement speed at this time is V h max, this V h max is manipulated by the following equation (53).

V h max−α81・Tr+γ1   −・・−・
・(53)本発明においては前記V h maxが前記
V maxを超える際に、Vmaxを超えず、かつ後述
する速度以上で短辺を平行移動させるものである。
V h max-α81・Tr+γ1 −・・−・
- (53) In the present invention, when the V h max exceeds the V max, the short side is moved in parallel without exceeding V max and at a speed higher than the speed described later.

さて前記平行移動速度Vpは幅変更前半部においてエア
ーギャップが発生せず、過度の押し込みが表されること
のない条件を維持して平行移動を行なえるように設定す
る必要がある。
Now, the parallel movement speed Vp needs to be set so that the parallel movement can be performed while maintaining conditions in which no air gap is generated in the first half of the width change and no excessive pushing is caused.

平行移動を行う平行移動期における鋳片の歪速度は短辺
の上下端部とも前記(15) 、(16)式から下記(
54)式で表される。
The strain rate of the slab during the parallel movement period at both the upper and lower ends of the short side is calculated from equations (15) and (16) above as shown below (
54) is expressed by the formula.

’/ u = ’7 t = (Vp/W)  (Uc
/W) ・ω*Trl= (Vp−αs1・Trl) 
・・・・・・(54);1u、;11が零以下であれば
鋳片と短辺との間にエアーギャップを生じて鋳造欠陥が
発生する。
'/ u = '7 t = (Vp/W) (Uc
/W) ・ω*Trl= (Vp−αs1・Trl)
(54) If 1u and 11 are less than zero, an air gap will be created between the slab and the short side, resulting in casting defects.

従って;) t+、  々tは正でなければならない。Therefore;) t+, t must be positive.

このことより平行移動速度Vpは前記(54)式と、V
max以下との条件より下記式、つまり前述した(2)
及び(3)式の範囲にする必要がある。
From this, the parallel movement speed Vp can be calculated using the above equation (54) and V
Based on the condition that it is less than or equal to max, the following formula, that is, the above-mentioned (2)
and (3).

I V max l≧1Vpl   ・・・・・・(2
)Vp≧αs1@Tr   ・・・・・・(3)前述し
た短辺の水平移動速度の制限は、その速度の絶対値の大
きさを制限するものであるので前記(2)式は絶対値金
つけて表示する必要がある。
I V max l≧1Vpl (2
)Vp≧αs1@Tr (3) The above-mentioned restriction on the horizontal movement speed of the short side limits the magnitude of the absolute value of the speed, so the above equation (2) is expressed as the absolute value. It is necessary to display it with money.

さて、周知の如く通常操業時における短辺の傾斜角は鋳
片幅や鋳造速度等によって設定されており、鋳片幅が広
い程テーパー−i!: <本発明においてテーパー量と
は前記第6図に2点鎖線で示す鋳型下端部を通る鉛直線
Yzと上端部との水平距離を言い、前記傾斜角βが90
度のときは該テーパーl゛は±0となる。以下該テーパ
ー量を露で表す。)は大きくなり、鋳片幅が狭くなると
前記テーパー葉も小さくなる。
Now, as is well known, the inclination angle of the short side during normal operation is set by the slab width, casting speed, etc., and the wider the slab width, the more the taper -i! : <In the present invention, the taper amount refers to the horizontal distance between the upper end and the vertical line Yz passing through the lower end of the mold shown by the two-dot chain line in FIG. 6, and the inclination angle β is 90
When the taper is 1°, the taper l' is ±0. The taper amount is hereinafter expressed in terms of dew. ) becomes larger, and as the slab width becomes narrower, the tapered leaves also become smaller.

従って連続鋳造中に鋳片の幅変更を実施した場合、その
実施前と実施後では鋳片幅が変わることから短辺の傾斜
角βも変わることになり、前記テーパー量にも変化させ
る必要がある。このテーパー量の変化を例えば幅変更終
了後に実施すると、幅変更操作とは別にテーパー量のみ
の変更を行う操作(以下テーパー量修正操作と言う〕を
行わなければならず、以下のような問題が発生する。即
ち、幅変更の制御が非常に複雑、かつ面倒になるうえに
、幅変更終了からテーパー量修正操作が終了するまでは
不適正なテーパー量で鋳造が行われることから、鋳片欠
陥の発生やBOの危険が高まる。又、テーパーI修正操
作において鋳型下端部或いは上下端部を同時に移動させ
、テーパーi’e修正させると目標とする鋳片の幅変更
量と実際の幅変更量とが一致せず、鋳片幅に誤差を生じ
る可能性が極めて高い。
Therefore, if the width of the slab is changed during continuous casting, the width of the slab will change before and after the change, so the inclination angle β of the short side will also change, and it is necessary to change the taper amount as well. be. For example, if this taper amount change is performed after the width change is completed, an operation to change only the taper amount (hereinafter referred to as the taper amount correction operation) must be performed separately from the width change operation, which causes the following problems. In other words, controlling the width change is very complicated and troublesome, and casting is performed with an inappropriate taper amount from the end of the width change until the end of the taper amount correction operation, resulting in slab defects. In addition, if the lower end of the mold or the upper and lower ends of the mold are simultaneously moved in the taper I correction operation and the taper I'e is corrected, the amount of width change of the slab and the actual width change will be different. There is a very high possibility that the width of the slab will be incorrect.

一方、本発明に基づく幅変更の後半に相当する後頬部、
もしくは前傾期において目標テーパー1に達した′時点
で幅変更を終了する方法も考えられるが、この方法では
目標幅変更曽に達する前に幅変更操作が終了するととK
なり、目標鋳片幅に対し実際の鋳片幅に誤差が生じる結
果となる。この誤差を幅変更操作終了後に修正するとす
れば短辺を平行移動させなければならず、該平行移動を
行った場合、シェル変形抵抗力が大きくなったシ(幅縮
小の時)、エアーギャップを生じ(幅拡大の時)安定し
た連続鋳造ができなくなる。
On the other hand, the rear cheek area corresponds to the latter half of the width change based on the present invention,
Alternatively, a method may be considered in which the width change ends when the target taper 1 is reached in the anteversion phase, but with this method, it is difficult to complete the width change operation before reaching the target taper 1.
This results in an error in the actual slab width relative to the target slab width. If this error is to be corrected after the width change operation is completed, the short side must be moved in parallel, and when this parallel movement is performed, the shell deformation resistance becomes large (when the width is reduced), and the air gap is This occurs (when expanding the width), making stable continuous casting impossible.

而して本発明は、前述した幅変更開始時のテーパー量と
幅変更終了時の目標テーパー量の差から生じる目標幅変
更量に対する誤差を、前記前傾期から後頬部へ移行する
間に前記平行移動期を設けることによって効果的に吸収
せしめることが可能である。
Therefore, the present invention eliminates the error in the target width change amount caused by the difference between the taper amount at the start of the width change and the target taper amount at the end of the width change during the transition from the anteversion period to the rear cheek area. Effective absorption can be achieved by providing the parallel movement period.

次に前記テーパー量の変化を幅変更実施過程で行わしめ
、前記テーパー量の変化によって生じる恐れのある目標
幅変更量に対する誤差を吸収する方法について説明する
Next, a method will be described in which the taper amount is changed during the width change implementation process and an error with respect to the target width change amount that may occur due to the change in the taper amount is absorbed.

鋳片凝固収縮量の関係から鋳片幅が広くなるとテーパー
量は大きく(傾斜角βは小さく)、逆に鋳片幅が狭くな
るとテーパー量は小さく(傾斜角βは大きく)すること
が一般的に知られている。
In relation to the amount of slab solidification shrinkage, the wider the slab width, the larger the taper amount (smaller the inclination angle β), and conversely, the narrower the slab width, the smaller the taper amount (larger the inclination angle β). known to.

従って鋳片幅を縮小する場合、前傾期でのチー74g−
の変更量よりも後頬部のテーパー変更量が少なくなり、
テーパー量を目標値に正しく一致させて幅変更を終了さ
せると幅変更時間は第12図示すT△にだけ短くなり、
これによって幅変更量1wだけ目標幅変更量に対して不
足することになる。
Therefore, when reducing the width of the slab, the chi 74g-
The amount of taper change in the rear cheek area is smaller than the amount of change in
When the width change is completed with the taper amount correctly matching the target value, the width change time will be shortened by T△ shown in Fig. 12,
As a result, the width change amount 1w is short of the target width change amount.

又、鋳片幅拡大の場合においても後頬部のテーパー変更
量より前傾期のテーパー変更量の方が少なく、前述した
と同様にテーパー量を目標値に正しく一致させて幅変更
を終了させると幅変更時間は前記幅縮小と同様にT△に
だけ短くなシ、これによって幅変更量はΔWだけ不足す
ることになる。
Furthermore, even in the case of expanding the slab width, the amount of taper change during the anteversion period is smaller than the amount of taper change at the rear cheek, and as described above, the width change is completed by correctly matching the taper amount to the target value. Similarly to the width reduction, the width change time is shortened by TΔ, and as a result, the width change amount is short by ΔW.

この目標幅変更量に対する不足量ΔWが幅変更   □
開始時のテーパー量と幅変更終了時の目標テーパー量の
差から生じる目標幅変更量に対する誤差である。本発明
においては前記誤差を前傾期から後頬部へ移行する間に
平行移動を行わせることによって吸収するものである。
The shortfall amount ΔW for this target width change amount is the width change □
This is an error with respect to the target width change amount resulting from the difference between the taper amount at the start and the target taper amount at the end of width change. In the present invention, the above-mentioned error is absorbed by performing parallel movement during the transition from the anteversion period to the rear cheek area.

次に前記誤差を吸収する平行移動の具体的制御法の一例
を第13図の線図に基づき説明する。尚、この第13図
も回動支点を短辺の略中心位置にした( t1+12 
)例である。
Next, an example of a specific control method for parallel movement that absorbs the error will be explained based on the diagram of FIG. 13. In addition, this Fig. 13 also has the rotation fulcrum at the approximate center position of the short side (t1+12
) is an example.

まず幅変更を実施するに当たって前傾期終了時のテーノ
髪−量に1及び平行移動終了時の鋳片幅W2((1/2
ンX鋳片幅)を求める。
First, when changing the width, add 1 to the amount of hair at the end of the forward tilt period, and add 1 to the slab width W2 ((1/2
Find the width of the slab.

前記El、W2が求められたら、予め求められていた前
記増速率α$及び角速度ωを一定に維持して前傾操作を
開始する。この前傾期はテーパー量が前記に1に達する
まで行われ、&1に達したら直ちに旋回装置の駆動を停
止し、水平移動速度vhを一定に保持した平行移動に移
行する。
Once El and W2 are determined, the forward tilting operation is started while maintaining the acceleration rate α$ and the angular velocity ω, which were determined in advance, constant. This forward tilting period is carried out until the taper amount reaches 1, and as soon as it reaches &1, the drive of the swing device is stopped and a transition is made to parallel movement with the horizontal movement speed vh kept constant.

前記平行移動期は、鋳片幅が前記W2に達するまで行わ
れ、W2に達したら直ちに後頬部に移行する。
The parallel movement period is continued until the width of the slab reaches W2, and immediately after reaching W2, it moves to the rear cheek part.

この後頬部に増速率αsは前傾期の増速率と方向を逆と
するのみで、その絶対値を同じとすることから(1α5
ll=lα521)後頬部の間、増速率αs及び角速度
ωは前傾期と逆方向に一定に維持する。この稜傾操作に
よりテーノゼー量は幅変更開始時のテニパー看に順次復
帰するが、該テーパー量が目標テーノを一童に2に一致
したらその時点て幅変更を終了する。
The acceleration rate αs in the rear cheek region is only reversed in direction and the absolute value is the same as the acceleration rate in the anteversion phase (1α5
ll=lα521) During the posterior cheek region, the speed increase rate αs and the angular velocity ω are kept constant in the opposite direction to the anteversion phase. Through this ridge tilting operation, the taper amount is sequentially returned to the teniper angle at the start of the width change, but when the taper amount matches the target tenor to 2, the width change ends at that point.

以上のように前傾期終了時のテーパーtE1及び平行移
動終了時の鋳片幅W2を、前述した不足量ΔWによって
生じる誤差を考慮して設定することによシ目標幅変更量
に対する誤差を、前傾期から稜頬部へ移行する間の平行
移動によって効果的に吸収することができる。
As described above, by setting the taper tE1 at the end of the forward tilting period and the slab width W2 at the end of the parallel movement, taking into consideration the error caused by the shortfall ΔW mentioned above, the error with respect to the target width change amount can be reduced. It can be effectively absorbed by parallel movement during the transition from the anteversion phase to the craniobuccal region.

〔実施例〕〔Example〕

350屯/Hの湾曲形連続鋳造機において低炭Atキル
ド鋼の製造中に本発明を実施した。本実施例に用いた短
辺駆動装置は前記第5図に示した構成のものであり、駆
動装置13及び旋回装置14には、共に油圧式のシリン
ダー装置を用いた。この短辺駆動装置と連続鋳造機の設
備仕様及び操業条件は第4表に示す通シである。
The invention was carried out during the production of low carbon At killed steel in a 350 ton/H curved continuous caster. The short side drive device used in this embodiment has the configuration shown in FIG. 5, and both the drive device 13 and the swing device 14 are hydraulic cylinder devices. The equipment specifications and operating conditions of this short side drive device and continuous casting machine are as shown in Table 4.

さて、本実施例では幅変更時間の最短化を狙って初期速
度rl、r2を前記第1表のように設定した。
In this embodiment, the initial speeds rl and r2 are set as shown in Table 1 above with the aim of minimizing the width change time.

一方、α増速率α$はシェル強度から設定される値では
駆動装置のシリンダー能カが不足したので改めてこのシ
リンダー能力から求めた。
On the other hand, since the cylinder capacity of the drive device was insufficient with the value set from the shell strength, the α acceleration rate α$ was determined again from this cylinder capacity.

而してシリンダーの有効能力Favは前記(38)式よ
り(16屯−3屯−3屯−10屯)10屯となった。又
当該鋼種の利幅試験結果より Go=2.5X10  
 ((kg/mm2)” @ 8cc )、n = 0
.32、q=28000(110K)が求められた。又
シェル厚の測定によりHo = 20 (rrvn/m
 1 n 1/2)であった。
Therefore, the effective capacity Fav of the cylinder was determined to be (16 tons - 3 tons - 3 tons - 10 tons) 10 tons from the above formula (38). Also, from the profit margin test results of the steel type, Go=2.5X10
((kg/mm2)" @ 8cc), n = 0
.. 32, q=28000 (110K) was obtained. Also, by measuring the shell thickness, Ho = 20 (rrvn/m
1 n 1/2).

この条件下で増速率αmを逐次変化させ、前記(34)
−(37)式に基づいて必要駆動力Fi求めた。この結
果、前記必要駆動力Fを10屯以下とするためには、増
速率αsを50−m1n2以下とする必要のあることが
判った。従って増速率αsを501mIn2とした。こ
れに伴って角速度ωは前記(1)式よりω=501ムn
2/1600m1’1nIn=0.03125   (
rad/min)となった。
Under this condition, the speed increase rate αm is successively changed, and the above (34)
- Required driving force Fi was calculated based on equation (37). As a result, it was found that in order to make the required driving force F less than 10 tons, it was necessary to make the speed increase rate αs less than 50-m1n2. Therefore, the speed increase rate αs was set to 501 mIn2. Along with this, the angular velocity ω is calculated from the above equation (1) as ω=501mun
2/1600m1'1nIn=0.03125 (
rad/min).

前傾期の増速率αs1と後頬部の増速率αs2は前述し
たように制御性を高めるために αm1=−αs2とし
た。
The speed increase rate αs1 in the forward tilt period and the speed increase rate αs2 in the rear cheek region are set to αm1=−αs2 in order to improve controllability, as described above.

以上の設定により、水平移動速度■hと角速度ωは、幅
縮小の場合は以下のように定まった。
With the above settings, the horizontal movement speed h and the angular speed ω are determined as follows in the case of width reduction.

幅縮小時の前傾期 (0≦t≦Tr) V h = 501 + 12.5  (rrul’1
nIn)ω= 0.03125  (rad/rnln
)幅縮小時の彼頬部 (Tr≦t≦Tw)V  h  
=  −501+1 00Tr+1 2.5    (
mIvmlo)ω=−0,03125(rad/min
)尚、折り返し時間Trは、片側の鋳片幅変更量Sより
下F (55)式で求められる。
Anterior tilt period during width reduction (0≦t≦Tr) V h = 501 + 12.5 (rrul'1
nIn) ω= 0.03125 (rad/rnln
) His cheek area when the width is reduced (Tr≦t≦Tw)V h
= -501+1 00Tr+1 2.5 (
mIvmlo)ω=-0,03125(rad/min
) The turn-back time Tr is determined by the lower F equation (55) from the amount of change S in slab width on one side.

T r−0,2((1,5625+8/2) 1/2−
1.25 ) (min)= (55)さて、前述のよ
うに水平移動速度vh及び角速度ωを設定し、幅変更時
間Twの半i T rまで前傾移動させ、半量Tr到達
後は後傾移動を行い幅縮小を実施した。第5表は目標幅
変更(縮小)量に対する幅変更時間を従来法と比較して
表わしたものである。従来法による幅縮小は前記第3図
に示すように上下2本のシリンダーを用い、傾斜角度を
強めたのち平行移動する方法で行った。この場合発生エ
アーギャップ量を大きな鋳造欠陥を生じない程度に押さ
え、かつ必要駆動力を10屯以下として幅縮小を行うた
めには平行移動速度Vmは15rr1rIv/分が限界
であった。
T r-0,2 ((1,5625+8/2) 1/2-
1.25 ) (min) = (55) Now, as mentioned above, set the horizontal movement speed vh and angular velocity ω, move forward to half the width change time Tw, and after reaching half the width Tr, tilt backward. Moved and reduced width. Table 5 shows the width change time relative to the target width change (reduction) amount in comparison with the conventional method. Width reduction by the conventional method was carried out by using two cylinders, upper and lower, as shown in FIG. 3, by increasing the angle of inclination and then moving them in parallel. In this case, in order to suppress the amount of air gap generated to an extent that does not cause large casting defects and to reduce the width by reducing the required driving force to 10 tons or less, the limit for the parallel movement speed Vm was 15rr1rIv/min.

この第5表から明らかなように幅縮小量の大小にかかわ
らず、本発明の実施例の方が、従来法に比べて幅変更時
間が著しく短いことがわかる。又、幅縮小量が大きくな
るほど本発明の実施例による幅変更時間短縮効果は増大
する。
As is clear from Table 5, regardless of the amount of width reduction, the width changing time is significantly shorter in the embodiment of the present invention than in the conventional method. Furthermore, the larger the amount of width reduction, the greater the width change time reduction effect achieved by the embodiment of the present invention.

次に幅拡大の場合も前記幅縮小と同様に前記第3表及び
(56)式より、水平移動速度vh1角速度ω及び折シ
返し時間Trが以下のように求まった。
Next, in the case of width expansion, the horizontal movement speed vh1 angular velocity ω and turning time Tr were determined as follows from Table 3 and equation (56), as in the case of width reduction.

幅拡大時の後頬部 (O≦t≦Tr) Vh =−50t+12.5   (−mIn)ω= 
 0.03125  (rad/min)幅拡大時の前
傾期 (Tr≦t≦Tw)Vh−501−100Tr 
+ 12.5      (m「し1nin)ω=  
0.03125   (red/1nin)T r=0
.2 ((1,5625+8/2) 1/2+ 1.2
5 ) (mln ) (56)第6表は前記幅縮小と
同様に目標幅変更(縮小)量に対する幅変更時間を従来
法と比較して表わしたものである。
Rear cheek area when width is expanded (O≦t≦Tr) Vh =-50t+12.5 (-mIn)ω=
0.03125 (rad/min) Forward tilt period when width is expanded (Tr≦t≦Tw)Vh-501-100Tr
+ 12.5 (m 1 nin) ω=
0.03125 (red/1nin) T r=0
.. 2 ((1,5625+8/2) 1/2+ 1.2
5) (mln) (56) Table 6 shows the width change time relative to the target width change (reduction) amount in comparison with the conventional method, similar to the width reduction described above.

この第6表から明らかなように、幅拡大においても従来
法に比較して幅変更時間を著しく短縮でキ、シかも鋳造
欠陥の発生も全く認められなかった。
As is clear from Table 6, even when the width was expanded, the width change time was significantly shortened compared to the conventional method, and no cracks or casting defects were observed.

以上詳述したように本発明の実施によシ、鋳型の幅変更
が最小時間で可能となった。このため幅変更による鋳片
の幅が変化する部分を少なくてきt歩留を著しく向上で
きた。
As described in detail above, by carrying out the present invention, it has become possible to change the width of the mold in a minimum amount of time. Therefore, the portion where the width of the slab changes due to the width change is reduced, and the yield can be significantly improved.

加えて鋳片幅1300〜650皿の間で任意量の幅可変
が実施でき、幅変更時のエアーギャップ量やシェル変形
抵抗力を常に許容値以下とでき、鋳片割れやブレークア
ウト等のない安定した操業が可能となった。
In addition, the slab width can be varied by any amount between 1,300 and 650 plates, and the air gap amount and shell deformation resistance when changing the width can always be kept below the allowable value, resulting in stable slabs without cracking or breakouts. It became possible to operate the

【図面の簡単な説明】[Brief explanation of drawings]

第1図fat 、(b)は本発明に基づく幅変更時にお
ける短辺の水平移動速度を説明するための線図、第2図
は周知の幅可変鋳型の一例を示す斜視図、第3図(Ml
、(bj、(C1及び第4図(al、(b)、(c)は
従来の幅変更方法の一例を示す模式図であり、第3図が
幅縮小、第4図が幅拡大である。第5図〜第10図は本
発明に基づ〈実施例であり、第5図は短辺駆動装置の一
例を示す斜視図、第6図は幅縮小時の短辺の移動状況を
示す模式図、第7図は幅拡大時の短辺の移動状況を示す
模式図、第7図(a)、(b)は短辺の移動と前記エア
ーギャップの生成条件を説明する概念図、第8図は幅変
更時、鋳片に生じる歪について説明するためのもので、
前記第5図の短辺駆動装置を用いて、連続鋳造中に短辺
を移動させる際の鋳片と短辺の相対的動きを説明する構
成図、第9図は鋳造欠陥の発生することのない増速率α
易、及び短辺の初期速度γの範囲を示す線図、第10図
は幅変更鋳片を示す平面図、第11図及び第13図は本
発明の他の実施例に基づく幅変更時における短辺の水平
移動速度を説明するための線図、第12図はテーパー量
変更によって発生する幅変更量の誤差を説明するための
線図である。 1、la、lb:短辺、2’ m 、2 b’ :長辺
、″4;鋳片、11;回動軸、12;軸受部、13;水
平駆動装置、14;旋回装置、120:回動アーム。 代理人 弁理士 秋 沢 政 光 外2名
Fig. 1 (b) is a diagram for explaining the horizontal movement speed of the short side when changing the width according to the present invention, Fig. 2 is a perspective view showing an example of a known variable width mold, Fig. 3 (Ml
, (bj, (C1) and Figures 4 (al, (b), and (c) are schematic diagrams showing an example of a conventional width changing method, where Figure 3 shows width reduction and Figure 4 shows width expansion. Figures 5 to 10 are examples based on the present invention, with Figure 5 being a perspective view showing an example of a short side drive device, and Figure 6 showing the movement of the short side when the width is reduced. FIG. 7 is a schematic diagram showing the movement of the short side when the width is expanded; FIGS. 7(a) and 7(b) are conceptual diagrams explaining the movement of the short side and the conditions for creating the air gap; Figure 8 is for explaining the strain that occurs in slabs when width is changed.
A configuration diagram illustrating the relative movement of the slab and the short side when moving the short side during continuous casting using the short side drive device shown in FIG. acceleration rate α
FIG. 10 is a plan view showing the width changing slab, and FIGS. 11 and 13 are diagrams showing the range of the initial velocity γ on the short side. FIG. 11 and FIG. A diagram for explaining the horizontal movement speed of the short side, and FIG. 12 is a diagram for explaining the error in the width change amount caused by changing the taper amount. 1, la, lb: short side, 2' m, 2 b': long side, ``4; slab, 11; rotating shaft, 12; bearing section, 13; horizontal drive device, 14; turning device, 120: Rotating arm. Agent: Patent attorney Masaaki Akizawa, 2 Mitsugai

Claims (3)

【特許請求の範囲】[Claims] (1)連続鋳造中に、水平方向駆動装置と、該駆動装置
と独立して作動する旋回駆動装置を介して鋳型短辺を移
動せしめる鋳片幅変更方法において、前記短辺の移動を
該短辺を鋳型中心側へ順次傾ける前傾期と、鋳型反中心
側へ順次傾ける後傾期に区分し、各期間における短辺の
水平方向移動速度の増速率α_sを予め許容シェル変形
抵抗力をパラメータとして求めると共に、前記旋回装置
の角速度ωを下記(1)式で定め、当該期間中、前記増
速率α_s及び角速度ωを一定に維持して幅変更を行う
ことを特徴とする連続鋳造中における鋳片幅変更方法。 ω=α_s/Uc・・・・・・(1) 但しω;旋回装置の角速度(rad/min)α_s;
短辺の水平方向移動速度の増速率(mm/min^2)
Uc;鋳造速度(mm/min)
(1) In a slab width changing method in which a short side of the mold is moved during continuous casting via a horizontal drive device and a swing drive device that operates independently of the drive device, the short side is moved in the short direction. The side is divided into a forward tilting period in which the sides are sequentially tilted toward the center of the mold, and a backward tilting period in which the sides are sequentially tilted toward the mold center side, and the acceleration rate α_s of the horizontal movement speed of the short side in each period is determined in advance by setting the allowable shell deformation resistance force as a parameter. and the angular velocity ω of the turning device is determined by the following equation (1), and during the period, the width is changed while maintaining the speed increase rate α_s and the angular velocity ω constant. How to change one width. ω=α_s/Uc...(1) However, ω; angular velocity of the turning device (rad/min) α_s;
Acceleration rate of horizontal movement speed of short side (mm/min^2)
Uc: Casting speed (mm/min)
(2)圧延条件及び、もしくは短辺駆動装置の制約条件
より前記短辺の最大許容水平移動速度Vmaxを設定し
、幅変更前半部の前傾期、もしくは後傾期における前記
短辺の水平移動速度が前記Vmaxを超える際に、幅変
更前半部と後半部の間に下記(2)及び(3)式で与え
られる範囲内の平行移動速度Vpで短辺の平行移動を行
わしめ、鋳造欠陥の発生を防止しつつ最短時間で幅変更
を実施することを特徴とする特許請求の範囲、第1項記
載の鋳片幅変更方法。 |Vmax|≧|Vp|・・・・・・(2)Vp≧α_
s1・Tr1・・・・・・(3)但しVmax;最大許
容水平移動速度(mm/min)Vp;平行移動速度(
mm/min) α_s1;幅変更前半の前傾期又は後傾期の短辺の水平
方向移動速度の増速率 (mm/min^2) Tr1;幅変更前半の前傾期又は後傾期の 所要時間
(2) Set the maximum permissible horizontal movement speed Vmax of the short side based on the rolling conditions and/or constraints of the short side drive device, and horizontally move the short side during the forward tilting period or backward tilting period in the first half of the width change. When the speed exceeds Vmax, the short side is translated in parallel between the first half and the second half of the width change at a translation speed Vp within the range given by equations (2) and (3) below, thereby eliminating casting defects. 2. A method of changing the width of a slab according to claim 1, wherein the width is changed in the shortest possible time while preventing the occurrence of. |Vmax|≧|Vp|・・・・・・(2) Vp≧α_
s1・Tr1... (3) However, Vmax: Maximum allowable horizontal movement speed (mm/min) Vp: Parallel movement speed (
mm/min) α_s1: Acceleration rate of horizontal movement speed of the short side during the forward tilting period or backward tilting period in the first half of width change (mm/min^2) Tr1: Requirement for the forward tilting period or backward tilting period in the first half of width change time
(3)幅変更開始時のテーパー量と幅変更終了時の目標
テーパー量の差から生じる目標幅変更量に対する誤差を
、前傾期から後傾期、もしくは後傾期から前傾期へ移行
する間に平行移動期間を設けることにより吸収すること
を特徴とする特許請求の範囲、第1項記載の鋳片幅変更
方法。
(3) Shift the error in the target width change amount caused by the difference between the taper amount at the start of the width change and the target taper amount at the end of the width change from the forward tilt period to the backward tilt period or from the backward tilt period to the forward tilt period. 2. A method of changing the width of a slab according to claim 1, wherein the width of the slab is changed by providing a parallel movement period in between.
JP10950885A 1984-11-09 1985-05-21 Method for changing ingot width Granted JPS61266166A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP10950885A JPS61266166A (en) 1985-05-21 1985-05-21 Method for changing ingot width
AU47023/85A AU554019B2 (en) 1984-11-09 1985-09-03 Changing slab width in continuous casting
CA000490523A CA1233011A (en) 1984-11-09 1985-09-12 Method of changing width of slab in continuous casting
EP85306509A EP0182468B1 (en) 1984-11-09 1985-09-13 Method of changing width of slab in continuous casting
DE8585306509T DE3578554D1 (en) 1984-11-09 1985-09-13 METHOD FOR CHANGING THE WIDTH OF A CAST STRAND IN CONTINUOUS CASTING.
ES547211A ES8702811A1 (en) 1984-11-09 1985-09-23 Method for varying the width of a slab cast in a continuous-casting mould
BR8504644A BR8504644A (en) 1984-11-09 1985-09-23 PROCESS FOR CHANGING WIDTH UNDER CONTINUOUS FOUNDATION AND APPLIANCE FOR CONTINUOUS FOUNDRY MOLD, OF THE TYPE OF VARIABLE WIDTH
US06/783,589 US4660617A (en) 1984-11-09 1985-10-03 Method of changing width of slab in continuous casting
ES554807A ES8704368A1 (en) 1984-11-09 1986-05-09 Method for varying the width of a slab cast in a continuous-casting mould
US06/883,395 US4727926A (en) 1984-11-09 1986-07-29 Apparatus for changing width of slab in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10950885A JPS61266166A (en) 1985-05-21 1985-05-21 Method for changing ingot width

Publications (2)

Publication Number Publication Date
JPS61266166A true JPS61266166A (en) 1986-11-25
JPH0557066B2 JPH0557066B2 (en) 1993-08-23

Family

ID=14512040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10950885A Granted JPS61266166A (en) 1984-11-09 1985-05-21 Method for changing ingot width

Country Status (1)

Country Link
JP (1) JPS61266166A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104942250A (en) * 2014-03-26 2015-09-30 上海宝信软件股份有限公司 Online continuous casting billet preset width setting and tracking method
KR20160078819A (en) * 2014-12-24 2016-07-05 주식회사 포스코 Apparatus for Continuous Casting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104942250A (en) * 2014-03-26 2015-09-30 上海宝信软件股份有限公司 Online continuous casting billet preset width setting and tracking method
CN104942250B (en) * 2014-03-26 2017-08-11 上海宝信软件股份有限公司 The method of continuous casting billet online presetting wide setting and tracking
KR20160078819A (en) * 2014-12-24 2016-07-05 주식회사 포스코 Apparatus for Continuous Casting

Also Published As

Publication number Publication date
JPH0557066B2 (en) 1993-08-23

Similar Documents

Publication Publication Date Title
US5584336A (en) Thin gauge roll casting method
RU2492023C2 (en) Method and device for control over continuous cast billet solidification at continuous caster in starting casting process
EP0182468B1 (en) Method of changing width of slab in continuous casting
JP2021535838A (en) Light reduction method by combining flat roll and convex roll for bloom continuous casting
US4702303A (en) Width adjustment of molds for continuously casting slab ingots
CN108372280A (en) A kind of casting technique of graphite mould titanium alloy casting
CN101257987B (en) Method of making thin cast strip using twin-roll caster and apparatus thereof
JPS61266166A (en) Method for changing ingot width
JPH0369618B2 (en)
JPS6229139B2 (en)
JP2959390B2 (en) Width change method during casting in continuous casting
JPS6258811B2 (en)
JPH0219745B2 (en)
JPH0219744B2 (en)
JPH0441061A (en) Method for changing width of cast slab in continuous casting of steel
JPS61269967A (en) Pouring device by multiplex pots
JP2549529Y2 (en) Balance / weight mechanism for fixed-point pouring of vacuum induction melting equipment
JPH03248758A (en) Method for expanding width during continuous casting
JPH11333549A (en) Apparatus for controlling supply of molten metal
JPH0219743B2 (en)
JPS63171249A (en) Continuous casting method for cast metal strip
JP4214820B2 (en) Leocaster and continuous casting method
JPS5897466A (en) Small arced mold for continuous casting
JPS63303670A (en) Apparatus for controlling rolling reduction to cast slab in continuously cast slab rolling reduction support apparatus
JP2003053491A (en) Method for changing width of cast slab in continuous casting and mold for continuous casting

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees