JPS61265888A - Manufacture of semiconductor laser - Google Patents
Manufacture of semiconductor laserInfo
- Publication number
- JPS61265888A JPS61265888A JP10863585A JP10863585A JPS61265888A JP S61265888 A JPS61265888 A JP S61265888A JP 10863585 A JP10863585 A JP 10863585A JP 10863585 A JP10863585 A JP 10863585A JP S61265888 A JPS61265888 A JP S61265888A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor laser
- layer
- grooves
- thickness
- active layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/028—Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/0201—Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
- H01S5/0203—Etching
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の分野)
本発明は端面へのコーティング作業が簡単な半導体レー
ザの製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a method of manufacturing a semiconductor laser in which the end facets are easily coated.
(従来技術とその問題点)
半導体レーザはその端面にコーティングを施すことによ
り、種々の特性を改善することができん例えば、短波長
帯で発振するAjGaAs/GaAs系の半導体レーザ
では、レーザ出力を増すと、端面においてhpの酸化等
による端面損傷(以下CODと称する)が生じるが、こ
のCODは端面に誘電体膜等をコーティングすることに
よって防ぐことができる。従ってこの材料系の半導体レ
ーザでは端面にコーティングを施すことは常識となって
いる口また、半導体レーザの前端面に無反射コーティン
グ(以下人Rコーティングと称する)、後端面に反射コ
ーティング(以下Rコーティングと称する)を施せば、
端面反射率が非対称性となり、端面反射率の低いARコ
コ−ィング端面から高出力のレーザ光が得られる(第9
回インターナシ■ナル・セミコンダクタ・レーザ・コン
ファレンス、番号C1の講演)。その他、半導体レーザ
の戻り光に対する雑音特性を改善するため、出射端面側
にRコーティングを施す方法(1984年春季第31回
応用物理学関係連合講演会予稿集、番号29a−M−9
)や、あるいFiA1’Lコーティングを施すことによ
って超多モード発振させる方法(同上、番号29p−M
−7)′!にどが実際に試みられている。(Prior art and its problems) Various characteristics of semiconductor lasers cannot be improved by coating their end faces. For example, in AjGaAs/GaAs semiconductor lasers that oscillate in a short wavelength band, it is difficult to improve the laser output In this case, end face damage (hereinafter referred to as COD) occurs on the end face due to oxidation of HP, etc., but this COD can be prevented by coating the end face with a dielectric film or the like. Therefore, it is common knowledge that semiconductor lasers using this material are coated with a coating on the end facets.In addition, the front facet of the semiconductor laser has an anti-reflection coating (hereinafter referred to as R-coating), and the rear facet has a reflective coating (hereinafter referred to as R-coating). ),
The end face reflectance becomes asymmetric, and high-output laser light can be obtained from the AR cocoing end face with low end face reflectance (No. 9).
International Semiconductor Laser Conference, lecture number C1). In addition, there is a method of applying an R coating to the output end face in order to improve the noise characteristics of a semiconductor laser with respect to the return light (Proceedings of the 31st Spring Conference on Applied Physics, No. 29a-M-9).
), or a method of ultra-multimode oscillation by applying FiA1'L coating (same as above, number 29p-M
-7)′! Nido is actually being tried.
ところで、従来半導体レーザの端面にこのようなコーテ
ィングを施す場合、既忙電極まで形成した半導体レーザ
用りエハ全幅300μm程度のパー状に!?開し、この
臂開面に誘電体膜をコーティングする方法をとっていた
。この際コーテイング膜が電極側圧回り込まないように
注意する必要があり、を几極めて細いパーの1本1本を
手作業で取り扱わ危ければならず、更に1本のパーは半
導体レーザ数10個分にしか々ら々いため、この工程は
多くの工数1ftl! L、大量生産向きではなかつ九
〇
(発明の目的)
本発明の目的は、これら問題点を解決すべく、端面への
コーティングが非常に簡単な製造方法を提供することに
ある。By the way, when applying such a coating to the end face of a conventional semiconductor laser, the wafer for the semiconductor laser, which has even the busy electrodes formed, has a par shape with a total width of about 300 μm! ? The method used was to open the arm and coat the open surface with a dielectric film. At this time, care must be taken to prevent the coating film from wrapping around the electrode side, and it is dangerous to handle each extremely thin par by hand. Furthermore, one par is equivalent to ten semiconductor lasers. This process requires a lot of man-hours! L. Not suitable for mass production (Objective of the Invention) In order to solve these problems, the object of the present invention is to provide a manufacturing method in which coating the end face is extremely simple.
(発明の構成)
本発明によるその製造方法は、少くとも活性層を含む多
層構造を形成する工程と、前記活性層よシも深く且つ前
記活性層に対して垂直々側面を持つ複数の溝を形成する
工程と、少くとも前記溝の側面を覆うように誘電体膜を
形成する工程と、前記多層構造半導体フェノ・を前記溝
部分で切断する工程とを少くとも備えたことを特徴とし
ている。(Structure of the Invention) The manufacturing method according to the present invention includes the steps of forming a multilayer structure including at least an active layer, and forming a plurality of grooves that are deeper than the active layer and have sides perpendicular to the active layer. The present invention is characterized by comprising at least a step of forming a dielectric film, a step of forming a dielectric film so as to cover at least the side surfaces of the groove, and a step of cutting the multilayer semiconductor phenol at the groove portion.
(発明の原理)
近年リアクティブ・イオンエツチング法(以下RIFi
法と称する)を用いて半導体レーザの端面を形成する方
法が盛んに試みられている。1983年3月発行のエレ
クトロ・レターズ誌、第19巻、6号、ページ213〜
215にその一例が示されている。RIE法では半導体
ウェハを垂直にエツチングすることができるため、その
エツチング面は従来の半導体レーザの臂開面に代わる反
射鏡として使用できる。実際、上記論文では、RIB法
によって形成した端面を有する半導体レーザで、両端に
臂開面を有する素子と同程度の発振特性を得たと述べて
いる。このRIII法を用いれば、半導体ウェハの状態
でレーザの端面を形成でき、ま九そうして得られた半導
体フェノ・に誘電体膜全形成すれば、一度に数100個
分の半導体レーザの端面にコーティングを施すことがで
きる。更に半導体ウェハは従来のパーよりも取り扱いが
楽である。このように、この発明ではエツチングで複数
の溝を形成しておき、少々くともこの溝の側壁を覆うよ
うに誘電体膜を形成するので一度に多数のレーザノ端面
をコーティングすることが可能となる。この結果生産性
が向上する。(Principle of the invention) In recent years, reactive ion etching method (hereinafter referred to as RIFi)
Many attempts have been made to form the end face of a semiconductor laser using the method (referred to as the method). Electro Letters magazine, March 1983, Volume 19, Issue 6, Pages 213~
An example is shown at 215. Since the RIE method allows vertical etching of a semiconductor wafer, the etched surface can be used as a reflecting mirror in place of the arm-opening surface of a conventional semiconductor laser. In fact, the above paper states that a semiconductor laser having end faces formed by the RIB method achieved oscillation characteristics comparable to those of a device having arm openings at both ends. If this RIII method is used, the end face of a laser can be formed in the state of a semiconductor wafer, and if the entire dielectric film is formed on the semiconductor phenol thus obtained, the end face of several hundred semiconductor lasers can be formed at once. can be coated. Additionally, semiconductor wafers are easier to handle than conventional wafers. In this way, in this invention, a plurality of grooves are formed by etching, and a dielectric film is formed to cover at least the side walls of these grooves, making it possible to coat a large number of laser beam end faces at once. . This results in improved productivity.
(実施例1) 以下に本発明を図面を用いて詳細に説明する。(Example 1) The present invention will be explained in detail below using the drawings.
第1図(d1図は本発明の第1の実施例である半導体レ
ーザの断面図であり、第1図(a)〜(c)はその製造
方法を説明する図である。まず(、II)ではn−Ga
As基板1の上に厚さ3μ廊のn−AA!0.3GaO
,7Asバッファ層2、厚さ0.1μ専のノンドープA
76、lGa0.gAs活性層3、厚さ2μ罵のp−A
Jo、3Ga(1,7Asクラッド層4、厚さ1μ専の
p−GaAsキャップ層5を項にエピタキシャル成長し
た後、p−GaAsキャップ層5の上にCr/Auから
力るp側電極6、n−GaAs基板1の下K AuGe
Niからなるn側電極7を形成する。(b)では半導体
ウェハに活性層3より深く且つ活性層3に対して側面が
垂直4幅20μmの溝8を300μmの間隔でRIB法
を用いて形成した後、全面に厚さ約zsooiのS+0
2膜9を形成する。(C)では溝8以外の平担部10に
おいてsio、膜9を除去し、電極6を露出させる。こ
うして得られt半導体ウェハを溝部分8で切断すること
により、(d)で示した所望の構造の半導体レーザが得
られ九〇この半導体レーザFi2つの端面11,12が
8IO1膜9で覆われているため、100mW以上の高
出力動作時に訃いてもAJGaAs7句aAs系半導体
レーザ特有のCODは発生しなかつ念。更に、この半導
体レーザは810.膜11.12の厚さを発振波長0.
81 μmの1/2n6倍(n6は8i0.膜の屈折率
で約1.45)としであるため、2つの端面11,12
の反射率はコーティングを施さない場合とほぼ同じであ
り、コーティングを施したことによる発振閾値電流、外
部微分量子効率等の変化はなかつto(実施例2)
第2図(d)は本発明の第2の実施例である半導体レー
ザの断面図であり、第2図(、)〜(e)はその製造工
程を説明する。図である。(、)でFin−InP基板
21の上に、厚さ3声のバッファ層22、厚さ0.1μ
m、波長組成1.3μ馬のノンドープInGaAsP活
性層23、厚さ2μmのp−InPクラッド層24、厚
さ1μ専のp”−In(hAsP キャップ層25を
順にエピタキシャル成長しt後、p+−InGaAsP
キャップ層25の上)?: Cr/Auからなるp側
電極6、n−InP基板1の下にAuGeNiからなる
n側電極7を形成する。(b)ではこの半導体ウェハに
活性層23よりも深く側面が垂直彦幅20μ簿の溝8を
300μmの間隔でRIFt法により形成し几後、全面
に厚さ1200人のSiN膜2膜上6成する。更に厚さ
930大+1D8i膜及び厚す2200 Xosto、
膜が交互に繰り返す4層構造誘電体膜27をウエノ・の
斜め上方からスパッタ法により堆積させる。この時4層
構造誘電体膜27Fi溝8の一方の側面及び平担部10
にのみ形成される。(c)では平担部1004層構造誘
電体膜27及び8iN膜26を除去し、p側電極6を露
出させる。こうして得られた多層半導体ウェハを溝部分
8で切断することによシ、(d)に示した所望の半導体
レーザが得られた。この半導体レーザKt?込ては、S
IN膜26の厚さが発振波長1.3μmの1/6nN倍
(nHtl;t S iNの屈折率で約1.85)とし
である九め、SIN膜26のみが形成された端面11側
の反射率は約10%と低く、また、4層構造誘電体膜2
7においては、Si膜及び8i01膜の厚さをそれぞれ
発振波長の1/4ns(nsは8iの屈折率で約3.5
)倍、1/4n0倍としであるため、4層構造誘電体膜
27が形成され几端面の反射率は約80チと高くなつて
いる。従って、端面反射率の非対称性によシ、低反射率
端面11側から100mW以上の高出力を得ることがで
き九〇(実施例3)
以上の実施例では、半導体ウェハKp側電極6を形成し
た後に溝8及び誘電体膜9,26.27を形成する方法
を示したが、第3の実施例ではp側電極6を後付けで形
成する方法について説明する。FIG. 1(d1) is a cross-sectional view of a semiconductor laser which is a first embodiment of the present invention, and FIGS. 1(a) to (c) are diagrams for explaining its manufacturing method. ), n-Ga
n-AA with a thickness of 3 μm on the As substrate 1! 0.3GaO
, 7As buffer layer 2, non-doped A with a thickness of 0.1μ
76, lGa0. gAs active layer 3, 2μ thick p-A
After epitaxially growing a 3Ga (1,7As) cladding layer 4 and a 1μ thick p-GaAs cap layer 5, a p-side electrode 6, n made of Cr/Au is applied onto the p-GaAs cap layer 5. -K AuGe under GaAs substrate 1
An n-side electrode 7 made of Ni is formed. In (b), grooves 8 with a width of 20 μm and deeper than the active layer 3 and perpendicular to the active layer 3 are formed in the semiconductor wafer at intervals of 300 μm using the RIB method.
Two films 9 are formed. In (C), the film 9 is removed from the flat portion 10 other than the groove 8, and the electrode 6 is exposed. By cutting the semiconductor wafer obtained in this way at the groove portion 8, a semiconductor laser having the desired structure shown in (d) is obtained. Therefore, even if the laser is operated at a high output of 100 mW or more, the COD characteristic of the AJGaAs7 aAs semiconductor laser will not occur. Furthermore, this semiconductor laser has an 810. The thickness of the films 11 and 12 is set to the oscillation wavelength of 0.
Since it is 1/2n6 times 81 μm (n6 is the refractive index of the 8i0. film and is approximately 1.45), the two end faces 11 and 12
The reflectance of is almost the same as that without coating, and there is no change in oscillation threshold current, external differential quantum efficiency, etc. due to coating. It is a sectional view of a semiconductor laser which is a second embodiment, and FIGS. 2(a) to 2(e) explain the manufacturing process thereof. It is a diagram. At (,), on the Fin-InP substrate 21, a buffer layer 22 with a thickness of 3 layers and a thickness of 0.1μ
m, a non-doped InGaAsP active layer 23 with a wavelength composition of 1.3 μm, a p-InP cladding layer 24 with a thickness of 2 μm, and a p”-In(hAsP) cap layer 25 with a thickness of 1 μm are sequentially epitaxially grown.
above the cap layer 25)? : A p-side electrode 6 made of Cr/Au and an n-side electrode 7 made of AuGeNi are formed under the n-InP substrate 1. In (b), trenches 8 with a vertical side surface and a width of 20 μm are formed in this semiconductor wafer at intervals of 300 μm, deeper than the active layer 23, by the RIFt method. to be accomplished. In addition, 930 thick + 1D8i film and 2200 thick Xosto,
A dielectric film 27 having a four-layer structure in which films are alternately repeated is deposited by sputtering from diagonally above the wafer. At this time, one side surface of the four-layer structure dielectric film 27Fi groove 8 and the flat part 10
Formed only in In (c), the flat portion 1004 layer structure dielectric film 27 and the 8iN film 26 are removed to expose the p-side electrode 6. By cutting the multilayer semiconductor wafer thus obtained at groove portions 8, the desired semiconductor laser shown in (d) was obtained. This semiconductor laser Kt? Including S
The thickness of the IN film 26 is 1/6 nN times the oscillation wavelength of 1.3 μm (nHtl; the refractive index of tSiN is approximately 1.85). The reflectance is as low as about 10%, and the 4-layer dielectric film 2
7, the thickness of the Si film and the 8i01 film was set to 1/4 ns of the oscillation wavelength (ns is about 3.5 with the refractive index of 8i).
) and 1/4n0 times, a four-layer dielectric film 27 is formed and the reflectance of the end surface is as high as about 80 cm. Therefore, due to the asymmetry of the end face reflectance, a high output of 100 mW or more can be obtained from the low reflectance end face 11 side.90 (Example 3) In the above example, the semiconductor wafer Kp side electrode 6 is formed. Although the method of forming the groove 8 and the dielectric films 9, 26, and 27 after the above steps has been described, in the third embodiment, a method of forming the p-side electrode 6 afterward will be described.
第3図(d)は本発明の第3の実施例である半導体レー
ザの断面図であり、第3図(a)〜(。)はその製造工
程を示す図である。半導体レーザは第1の実施例と同じ
AlGaAs/缶As系のものである。(3)では□−
GaAs基板1の上にn−AjO,30io、7Aaバ
、7ア層2、ノンドープA4.lGa0.gAs活性層
3、p−人!。、3GIO,7AIクラッド層’ 、P
−GaAsキャップ層Sfe順忙エピタキシャル成長す
る。各層の厚さは第1の実施例と同じである。(b)で
は半導体ウェハに活性層3より深く、活性層3に対して
側面が垂直な幅20μmの溝8を300μmの間隔で形
成する。更に全面に厚さ2800Aの8i0.膜9を形
成しt後、平担部10の8i0z膜9に窓を開ける。(
c)では、平担部10にのみCr/Auから々るp側電
極6を形成する。このp側電極6の形成方法は、まず全
面にp側電極6を形成し几後、溝部分8においてそれを
除去するか、あるいは、溝部分8にレジストを埋め、そ
の後全面にp側電極6を形成し、す7トオフ法により溝
部分8のp側電極6を除去すればよい。更にn−GaA
s基板1の下にAuGeNiからなるn側電極7を形成
する。こうして得られた半導体ウェハを溝部分8で切断
することにより、(d)で示し几所望の半導体レーザが
得られ几。この半導体レーザも・第1の実施例で示した
素子と同様に100mW以上の高出力動作時においても
COD等の発生は見られなかった。FIG. 3(d) is a sectional view of a semiconductor laser according to a third embodiment of the present invention, and FIGS. 3(a) to 3(.) are diagrams showing the manufacturing process thereof. The semiconductor laser is of the AlGaAs/can As type as in the first embodiment. In (3), □−
On a GaAs substrate 1, n-AjO, 30io, 7Aa layer 2, non-doped A4. lGa0. gAs active layer 3, p-person! . ,3GIO,7AI cladding layer' ,P
- GaAs cap layer Sfe is grown epitaxially. The thickness of each layer is the same as in the first embodiment. In (b), grooves 8 having a width of 20 μm and having a side surface perpendicular to the active layer 3 and which are deeper than the active layer 3 are formed at intervals of 300 μm in the semiconductor wafer. Furthermore, the entire surface is covered with 8i0. After forming the film 9, a window is opened in the 8i0z film 9 of the flat portion 10. (
In c), the p-side electrode 6 made of Cr/Au is formed only on the flat portion 10. The method for forming the p-side electrode 6 is to first form the p-side electrode 6 on the entire surface and then remove it in the groove portion 8, or to fill the groove portion 8 with resist, and then to form the p-side electrode 6 on the entire surface. , and then remove the p-side electrode 6 in the groove portion 8 by a step-off method. Furthermore, n-GaA
An n-side electrode 7 made of AuGeNi is formed under the s-substrate 1. By cutting the semiconductor wafer thus obtained at the groove portion 8, the desired semiconductor laser shown in (d) can be obtained. Similarly to the device shown in the first embodiment, this semiconductor laser did not cause any COD or the like even when operated at a high output of 100 mW or more.
尚、本発明の実施例では溝8の形成にRIE法を用い念
が、その形成方法はこれに限ることは々く、例えばイオ
ンミリング法あるいはウェットエツチング法等でもよい
。また、本発明の実施例では半導体ウェハを溝部分8で
切断することによって、2つのエツチング端面11,1
2を持つ半導体レーザを製作する工程を示したが、本発
明によれば一方の端面のみがエツチングによって形成さ
れ、他方が骨間によって形成された半導体レーザも製作
可能であ夛、その場合、溝8の間隔を約600μ肩とし
、半導体ウェハを溝部分8及び平担部10の中央付近で
骨間すればよい。更に半導体レーザは素子内部に回折格
子を持つDFBレーザであってもよい。Incidentally, in the embodiment of the present invention, the RIE method is used to form the grooves 8, but the formation method is not limited to this, and for example, an ion milling method or a wet etching method may be used. Further, in the embodiment of the present invention, by cutting the semiconductor wafer at the groove portion 8, two etched end faces 11, 1 are formed.
However, according to the present invention, it is also possible to manufacture a semiconductor laser in which only one end face is formed by etching and the other end face is formed by a groove. 8 should be approximately 600 μm apart, and the semiconductor wafer may be placed between the bones near the center of the groove portion 8 and the flat portion 10. Further, the semiconductor laser may be a DFB laser having a diffraction grating inside the element.
(発明による効果)
本発明による半導体レーザ端面へのコーティング作業の
工程は、半導体レーザをウエノ・の状態でをり扱うこと
ができ、且つ大量の素子を一度にコーティングすること
ができるため、作業工程が簡単で、大量生産に適してい
る。ま几、大量の素子を一度に製作することは、各素子
のコーティング端面の反射率のばらつきを小さく抑える
ことができ、従って、素子特性の面での均一性も向上す
る。(Effects of the Invention) The process of coating the end face of a semiconductor laser according to the present invention has the advantage that the semiconductor laser can be handled in a wet state and a large number of devices can be coated at once. is easy and suitable for mass production. However, by manufacturing a large number of devices at once, variations in the reflectance of the coated end faces of each device can be suppressed to a small extent, and therefore, the uniformity of device characteristics is also improved.
第1〜第3図は本発明第1〜第3の実施例である半導体
レーザの構造及びその製造方法を示す図であり、それぞ
れの図において、(d)は半導体レーザの断面図、(a
)〜(C)はその製造方法を説明する図である。図中1
はn−GaAs基板、2はn−Aノ(L3Gao、7A
sバッファ層、3はノンドープAA!o、IGa□、g
As活性層、4はI’−A”0.3o”0.7”クラッ
ド層、5はp−GaAsキャップ層、6はp側電極、7
ijn側電極、8Fi溝、9 FiSift膜、10は
平担部、11,12I/i端面、21はn−InP基板
、22 tl;t n−InPバッファ層、23はノン
ドープInGaAsP活性層、24はp−InPクラッ
ド層、25はp+−InGaAsPキ+yプ層、26は
芽 1 図
(bン
(C]
(σ)
乙 洲Z図
(b)
(C)
(d)1 to 3 are diagrams showing the structure and manufacturing method of semiconductor lasers according to the first to third embodiments of the present invention. In each figure, (d) is a cross-sectional view of the semiconductor laser, and (a)
) to (C) are diagrams illustrating the manufacturing method. 1 in the diagram
is n-GaAs substrate, 2 is n-A (L3Gao, 7A
s buffer layer, 3 is non-doped AA! o, IGa□, g
As active layer, 4 is I'-A"0.3o"0.7" cladding layer, 5 is p-GaAs cap layer, 6 is p-side electrode, 7
ijn side electrode, 8 Fi groove, 9 FiSift film, 10 is flat part, 11, 12 I/i end face, 21 is n-InP substrate, 22 tl;t n-InP buffer layer, 23 is non-doped InGaAsP active layer, 24 is p-InP cladding layer, 25 is p+-InGaAsP cap layer, 26 is bud.
Claims (1)
前記活性層よりも深く且つ前記活性層に対して垂直な側
面を持つ複数の溝を前記多層積層構造に形成する工程と
、少くとも前記溝の側面を覆うように誘電体膜を形成す
る工程と、前記多層構造半導体ウェハを前記溝部分で切
断する工程とを少くとも備えたことを特徴とする半導体
レーザの製造方法。forming a multilayer stacked structure including at least an active layer;
forming a plurality of grooves in the multilayer stacked structure that are deeper than the active layer and having side surfaces perpendicular to the active layer; and forming a dielectric film to cover at least the side surfaces of the grooves. . A method of manufacturing a semiconductor laser, comprising at least the steps of cutting the multilayer structure semiconductor wafer at the groove portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10863585A JPS61265888A (en) | 1985-05-20 | 1985-05-20 | Manufacture of semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10863585A JPS61265888A (en) | 1985-05-20 | 1985-05-20 | Manufacture of semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61265888A true JPS61265888A (en) | 1986-11-25 |
Family
ID=14489794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10863585A Pending JPS61265888A (en) | 1985-05-20 | 1985-05-20 | Manufacture of semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61265888A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0394167A2 (en) * | 1989-04-19 | 1990-10-24 | International Business Machines Corporation | Formation of laser mirror facets and integration of optoelectronics |
EP0450902A2 (en) * | 1990-04-02 | 1991-10-09 | Sharp Kabushiki Kaisha | A method for the production of a semiconductor laser device |
EP0469900A2 (en) * | 1990-08-01 | 1992-02-05 | Sharp Kabushiki Kaisha | A method for the production of a semiconductor laser device |
JPH08293642A (en) * | 1995-04-24 | 1996-11-05 | Mitsubishi Electric Corp | Manufacture and evaluation of semiconductor laser |
JP2008543090A (en) * | 2005-06-01 | 2008-11-27 | ビンオプテイクス・コーポレイシヨン | Spatial filter |
CN114665375A (en) * | 2022-05-24 | 2022-06-24 | 度亘激光技术(苏州)有限公司 | Method for manufacturing semiconductor chip |
-
1985
- 1985-05-20 JP JP10863585A patent/JPS61265888A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0394167A2 (en) * | 1989-04-19 | 1990-10-24 | International Business Machines Corporation | Formation of laser mirror facets and integration of optoelectronics |
EP0450902A2 (en) * | 1990-04-02 | 1991-10-09 | Sharp Kabushiki Kaisha | A method for the production of a semiconductor laser device |
EP0469900A2 (en) * | 1990-08-01 | 1992-02-05 | Sharp Kabushiki Kaisha | A method for the production of a semiconductor laser device |
JPH08293642A (en) * | 1995-04-24 | 1996-11-05 | Mitsubishi Electric Corp | Manufacture and evaluation of semiconductor laser |
JP2008543090A (en) * | 2005-06-01 | 2008-11-27 | ビンオプテイクス・コーポレイシヨン | Spatial filter |
CN114665375A (en) * | 2022-05-24 | 2022-06-24 | 度亘激光技术(苏州)有限公司 | Method for manufacturing semiconductor chip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0653619A (en) | Compound semiconductor device and its manufacture | |
JPH03285380A (en) | Manufacture of semiconductor laser element | |
JPH0491484A (en) | Manufacture of semiconductor laser device | |
JPH03293790A (en) | Wide stripe laser diode | |
JPS61265888A (en) | Manufacture of semiconductor laser | |
JPH09167873A (en) | Semiconductor laser device | |
JP2836822B2 (en) | Method for manufacturing waveguide type semiconductor optical device | |
JP2852663B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPH02206191A (en) | Semiconductor laser device and manufacture thereof | |
JP2913947B2 (en) | Quantum well semiconductor laser | |
JP3040262B2 (en) | Semiconductor laser device | |
JPH11195837A (en) | Manufacture of semiconductor laser | |
JPH0282678A (en) | Manufacture of semiconductor light emitting device | |
JPH11284276A (en) | Semiconductor laser device and its manufacture | |
JPH07312462A (en) | Surface laser beam emitting diode and manufacturing method thereof | |
JPS61236185A (en) | Preparation of semiconductor laser element | |
JPS6332979A (en) | Semiconductor laser | |
JP2730683B2 (en) | Semiconductor light emitting device | |
JP4024319B2 (en) | Semiconductor light emitting device | |
JPH0927653A (en) | Semiconductor laser element | |
JPH01183184A (en) | Semiconductor laser and manufacture thereof | |
JPH03288489A (en) | Distribution feedback semiconductor laser device | |
JPH04255285A (en) | Manufacture of optical semiconductor device | |
JPH1140885A (en) | Semiconductor laser device | |
JPH04243183A (en) | Semiconductor laser and manufacture thereof |