JPS6126575B2 - - Google Patents

Info

Publication number
JPS6126575B2
JPS6126575B2 JP9826778A JP9826778A JPS6126575B2 JP S6126575 B2 JPS6126575 B2 JP S6126575B2 JP 9826778 A JP9826778 A JP 9826778A JP 9826778 A JP9826778 A JP 9826778A JP S6126575 B2 JPS6126575 B2 JP S6126575B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin composition
temperature
weight
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9826778A
Other languages
Japanese (ja)
Other versions
JPS5525449A (en
Inventor
Akio Fujisaki
Tatsuto Watanabe
Takashi Kato
Juichi Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP9826778A priority Critical patent/JPS5525449A/en
Publication of JPS5525449A publication Critical patent/JPS5525449A/en
Publication of JPS6126575B2 publication Critical patent/JPS6126575B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は発泡性熱可塑性樹脂組成物に関し、詳
しくは発泡倍率の高い熱可塑性樹脂成形品の提供
を可能とする新規な発泡性樹脂組成物に関するも
のである。 従来より熱可塑性樹脂の発泡成形には、発泡剤
として化学的発泡剤、あるいは物理的発泡剤等、
種々使用されているが、それぞれ熱可塑性樹脂の
用途、加工成形条件等に応じて選択されている。 熱可塑性樹脂の内で加工に際して加熱融解させ
た場合急激な粘性低下を示すポリプロピレンやナ
イロンの様な樹脂の場合、樹脂中に泡体を包含滞
留させる事がむずかしく発泡倍率の高い均一な成
形品を得る事が困難である。特に一般に広く使用
されている化学発泡剤のアゾジカーボンアミドや
オキシビスベンゼンスルホニルヒドラジド等のよ
うな熱分解型発泡剤の場合は分解反応に発熱を伴
うために一層高発泡倍率成形品の成形を困難にし
ている。 この対策の一つとして発泡剤にアルコキシメチ
ル尿素を用いる提案が知られている。これは、主
分解反応の際に発熱を伴わない為、例えばポリプ
ロピレンを主成分とする押出発泡成形に使用した
場合、温度コントロールが容易となり、2倍以上
の高発泡成形品を得る事は容易である。 しかしながら、アルコキシメチル尿素はその分
解温度が低い為、高融点の熱可塑性樹脂用に使用
した場合樹脂の可塑化以前に熱分解反応が始ま
り、発生ガスが溶融樹脂に溶解する前に逃散する
結果となり、発泡剤の浪費をきたしやすい。 本発明者等は、かかる困難を解消し、かつ、ア
ルコキシメチル尿素同様な利点を持つた発泡剤を
長年に渉つて鋭意探索検討を重ねた結果、本発明
に到達した。 本発明は、熱可塑性樹脂100重量部に対し
()の構造式を有するアルコキシメチルメラミ
ンのうち1種又は2種以上を0.1ないし10重量部
添加する事を特徴とする発泡性熱可塑性樹脂組成
ここにR1〜R5は、−H又は−CH2−OR7 R6,R7は−H又はC1〜4のアルキル基で
ある。 本発明に使用する発泡剤のアルコキシメチルメ
ラミンは、アルコキシメチル尿素同様、主分解反
応時の発熱が少なく、一方その分解温度は250℃
前後であつて、熱分解型発泡剤としては極めて分
解温度が高い為、この温度前後を成形加工の適用
温度とするポリカーボネートのような熱可塑性樹
脂の発泡成形には好適である。 さらに、また本発明に関する発泡剤は成形加工
時の適用温度付近で酸性を呈する酸性触媒、例え
ば、パラトルエンスルホン酸を共存させる事によ
つて分解開始温度を低下させる事が可能であり、
この触媒の添加量の増減によつて後記する実施例
2〜4のように分解開始温度を調節し、ポリオレ
フイン等各種熱可塑性樹脂組成物の成形温度に適
合させる事ができる。 本発明の組成物に使用される熱可塑性樹脂とし
ては、ポリエチレン、ポリプロピレン、ポリアミ
ド、ポリカーボネート、ポリアセタール、ポリフ
エニレンオキサイド等のホモポリマー及びコポリ
マーの各種の熱可塑性樹脂及びそれ等の二種以上
の混合物を含み又炭酸カルシウム、タルク、アス
ベスト、シリカ等の様な充填剤を適宜含有してい
ても差支えない。 本発明に関る発泡剤の例としては、メラミンの
メトキシメチル、エトキシメチル、プロポキシメ
チル、イソプロポキシメチル、ブトキシメチル、
イソブトキシメチル、sec−ブトキシメチル、
tert−ブトキシメチルの各々モノ、ジ、トリ、テ
トラ、ペンタ、ヘキサ置換体等を挙げられるが、
トリメトキシメチルメラミン、ヘキサメトキシメ
チルメラミン等が一般に市場で入手しやすい。一
般に市場で入手できるアルコキシメチルメラミン
は官能基数の近似したものの混合物となつている
場合が多く、又不純物として縮重合したオリゴマ
ーを含む事もあるが、本発明の目的には使用する
事ができ、差支えない。 アルコキシメチルメラミンの配合比率は熱可塑
性樹脂100重量部に対し、0.1〜10重量部であつ
て、0.1重量部以下では発泡効力が小さく、熱可
塑性樹脂の軽量化や成形時のヒケ防止に対し殆ん
ど役に立たない。又10重量部以上の場合は成形さ
れる発泡体のセルが相互に連なり、謂ゆる連通気
泡となり、発泡ガスが発泡体から逃散し、その結
果かえつて発泡倍率が低下する為望ましくない。 アルコキシメチルメラミンを高温時に分解促進
する酸性触媒としては熱可塑性組成物の成形温度
に於いて酸性を呈するもの、即ち、高温時にアル
コキシメチルメラミンに対し、プロトンを与える
ものであれば良い。具体的には、各種の典型的な
無機酸や有機酸(カルボン酸類、スルホン酸類)
及び酸性硫酸ソーダの如き酸性塩等、常温でも酸
性を示すものの他、常温では中性に近いが熱時に
は、熱分解等により酸性を呈する潜在性触媒があ
る。潜在性触媒としては、蓚酸ジメチルエステル
のようなカルボン酸エステル類、マレイン酸無水
物のような酸無水物、モノクロロ酢酸のナトリウ
ム塩のような有機ハロゲン化物、トリエタノール
アミン塩酸塩のようなアミンの塩酸塩等がある。
また潜在性触媒としては上記の他に加熱加圧時、
アルコキシメチルメラミンから生じるホルムアル
デヒドや、分解残渣に含まれるメチロール基との
反応によつて酸性物質を遊離する触媒としての作
用もをつ塩化アンモニウムや硫酸アンモニウムの
様なアンモニウム塩や尿素誘導体がある。 通常本発明に使用する酸性触媒としては、発泡
性樹脂組成物を配合した後貯蔵を要する場合に
は、貯蔵中のアルコキシメチルメラミンの分解を
抑制する為潜在性触媒を用いる事が好ましい。 本発明による発泡性熱可塑性樹脂組成物の配合
に際しては特別の操作は不要で通常常温では粘稠
液体である。アルコキシメチルメラミンを組成物
の他の構成成分(主としてベースレジン)と単に
直接混合してもよく、又一度他の低融点の熱可塑
性樹脂と配合混練してマスターペレツトの形態と
した後発泡成形用のベースレジンと混合してもか
まわない。 液体状態のアルコキシメチルメラミンをベース
レジンを混合する際はアルコキシメチルメラミン
の粘稠な性質の為、配合機の器壁への付着により
起る原料ロス及び配合比率の変動を最小限におさ
えるため配合機内への原料投入手順の点で固体
(ペレツト又は粉末)を先に、液体のアルコキシ
メチルメラミンが後から投入する事が好ましい。
配合機は、通常使用されるヘンシエルミキサー、
リボンブレンダー、ドラムブレンダー等で差支え
ないが、均質分散を考慮してヘンシエルミキサー
程度の高回転撹拌のできるものが望ましい。 以下実施例により本発明を説明する。 実施例 1 ポリカーボネート(中粘度グレード)100重量
部に対し商品名サイメル303(ヘキサメトキシメ
チルメラミンが主成分;三井東圧化学製塗料用原
料)2重量部と含水シリカ1.4重量部を添加しヘ
ンシエルミキサーで混合した。 L/D=22圧縮比2.4の40m/mφ押出機にリ
ツプ長150m/mリツプ間隙2m/mのフイシユ
テールダイを取付け上記配合組成物の押出発泡成
形を押出樹脂温度270℃で行つた。 得られたシートは、表面が平滑で見掛比重は
0.4であつた。 比較例 1 サイメル303のかわりにアゾジカーボンアミド
2重量部を添加した組成物について実施例1と同
様の押出成形を行つたところシートは殆んど発泡
せず見掛比重は1.1であつた。 実施例 2〜4 表−1の様な組成物をつくり、実施例1で使用
した押出機を用いて押出発泡成形を行つた。
The present invention relates to a foamable thermoplastic resin composition, and more particularly to a novel foamable resin composition that makes it possible to provide a thermoplastic resin molded article with a high expansion ratio. Conventionally, foam molding of thermoplastic resins uses chemical blowing agents, physical blowing agents, etc.
Various types of resins are used, and each is selected depending on the purpose of the thermoplastic resin, processing and molding conditions, etc. In the case of thermoplastic resins such as polypropylene and nylon, which show a sudden drop in viscosity when heated and melted during processing, it is difficult to incorporate and retain foam in the resin, making it difficult to create uniform molded products with a high expansion ratio. difficult to obtain. In particular, in the case of thermally decomposable blowing agents such as azodicarbonamide and oxybisbenzenesulfonyl hydrazide, which are widely used chemical blowing agents, the decomposition reaction involves heat generation, so it is necessary to mold products with a higher expansion ratio. making it difficult. As one of the countermeasures against this problem, a proposal to use alkoxymethylurea as a blowing agent is known. This is because no heat is generated during the main decomposition reaction, so when used, for example, in extrusion foam molding where polypropylene is the main component, temperature control is easy and it is easy to obtain molded products with a foaming rate that is more than twice as large. be. However, since alkoxymethylurea has a low decomposition temperature, when used for high melting point thermoplastic resins, the thermal decomposition reaction begins before the resin plasticizes, resulting in the generated gas escaping before it dissolves into the molten resin. , the blowing agent is likely to be wasted. The present inventors have spent many years searching and studying a blowing agent that overcomes these difficulties and has advantages similar to those of alkoxymethylurea, and as a result, they have arrived at the present invention. The present invention is a foamable thermoplastic resin composition characterized in that 0.1 to 10 parts by weight of one or more alkoxymethylmelamines having the structural formula () are added to 100 parts by weight of the thermoplastic resin. Here, R1 to R5 are -H or -CH2 - OR7R6 , R7 is -H or a C1-4 alkyl group. Like alkoxymethyl urea, the blowing agent used in the present invention, alkoxymethyl melamine, generates little heat during the main decomposition reaction, and its decomposition temperature is 250°C.
Since the decomposition temperature is extremely high for a thermally decomposable foaming agent, it is suitable for foam molding of thermoplastic resins such as polycarbonate, where the applicable molding temperature is around this temperature. Furthermore, the blowing agent according to the present invention can lower the decomposition start temperature by coexisting with an acidic catalyst that exhibits acidity near the application temperature during molding, such as para-toluenesulfonic acid.
By increasing or decreasing the amount of this catalyst added, the decomposition start temperature can be adjusted as in Examples 2 to 4 to be described later, and can be adapted to the molding temperature of various thermoplastic resin compositions such as polyolefin. The thermoplastic resins used in the composition of the present invention include various thermoplastic resins such as homopolymers and copolymers such as polyethylene, polypropylene, polyamide, polycarbonate, polyacetal, and polyphenylene oxide, and mixtures of two or more thereof. It may also contain fillers such as calcium carbonate, talc, asbestos, silica, etc. as appropriate. Examples of blowing agents according to the present invention include methoxymethyl, ethoxymethyl, propoxymethyl, isopropoxymethyl, butoxymethyl of melamine,
isobutoxymethyl, sec-butoxymethyl,
Examples include mono-, di-, tri-, tetra-, penta-, and hexa-substituted tert-butoxymethyl,
Trimethoxymethylmelamine, hexamethoxymethylmelamine, etc. are generally easily available on the market. Generally, commercially available alkoxymethylmelamine is often a mixture of substances with similar numbers of functional groups, and may also contain condensed oligomers as impurities, but it can be used for the purpose of the present invention. No problem. The blending ratio of alkoxymethyl melamine is 0.1 to 10 parts by weight per 100 parts by weight of the thermoplastic resin. If it is less than 0.1 part by weight, the foaming effect is small, and it is hardly effective for reducing the weight of the thermoplastic resin or preventing sink marks during molding. It's pretty useless. If the amount is 10 parts by weight or more, the cells of the foam to be molded become interconnected, resulting in so-called open-cell foam, which causes foaming gas to escape from the foam, which is undesirable because the expansion ratio is reduced. The acidic catalyst that accelerates the decomposition of alkoxymethyl melamine at high temperatures may be any catalyst that exhibits acidity at the molding temperature of the thermoplastic composition, that is, any catalyst that provides protons to alkoxymethyl melamine at high temperatures. Specifically, various typical inorganic acids and organic acids (carboxylic acids, sulfonic acids)
In addition to those that are acidic even at room temperature, such as acidic salts such as acidic sodium sulfate, there are latent catalysts that are close to neutral at room temperature but become acidic due to thermal decomposition or the like when heated. Latent catalysts include carboxylic acid esters such as oxalic acid dimethyl ester, acid anhydrides such as maleic anhydride, organic halides such as monochloroacetic acid sodium salt, and amines such as triethanolamine hydrochloride. There are hydrochlorides, etc.
In addition to the above, as a latent catalyst, when heated and pressurized,
There are ammonium salts and urea derivatives such as ammonium chloride and ammonium sulfate that act as catalysts to liberate acidic substances by reaction with formaldehyde generated from alkoxymethylmelamine and methylol groups contained in decomposition residues. Generally, as the acidic catalyst used in the present invention, when the foamable resin composition needs to be stored after being blended, it is preferable to use a latent catalyst in order to suppress decomposition of alkoxymethylmelamine during storage. No special operations are required when formulating the foamable thermoplastic resin composition according to the present invention, and it is usually a viscous liquid at room temperature. The alkoxymethyl melamine may be simply mixed directly with the other components of the composition (mainly the base resin), or it may be mixed and kneaded with other low melting point thermoplastic resins to form master pellets and then foam molded. It may be mixed with the base resin for use. When mixing liquid alkoxymethyl melamine with the base resin, due to the viscous nature of alkoxymethyl melamine, it is necessary to minimize raw material loss and fluctuations in the blending ratio due to adhesion to the walls of the blender. In terms of the procedure for feeding raw materials into the machine, it is preferable to feed solids (pellets or powder) first and liquid alkoxymethylmelamine later.
The compounding machine is a commonly used Henschel mixer,
A ribbon blender, drum blender, etc. may be used, but in consideration of homogeneous dispersion, one capable of high rotational stirring such as a Henschel mixer is preferable. The present invention will be explained below with reference to Examples. Example 1 To 100 parts by weight of polycarbonate (medium viscosity grade), 2 parts by weight of Cymel 303 (trade name: hexamethoxymethyl melamine is the main component; raw material for paint manufactured by Mitsui Toatsu Chemical Co., Ltd.) and 1.4 parts by weight of hydrated silica were added. Mixed with a mixer. A 40 m/mφ extruder with L/D=22 and a compression ratio of 2.4 was equipped with a fishtail die having a lip length of 150 m/m and a lip gap of 2 m/m, and the above compounded composition was extruded and foamed at an extrusion resin temperature of 270°C. The obtained sheet has a smooth surface and an apparent specific gravity of
It was 0.4. Comparative Example 1 When the same extrusion molding as in Example 1 was carried out using a composition in which 2 parts by weight of azodicarbonamide was added instead of Cymel 303, the sheet hardly foamed and the apparent specific gravity was 1.1. Examples 2 to 4 Compositions as shown in Table 1 were prepared and extrusion foam molded using the extruder used in Example 1.

【表】 押出成形試験の結果は表−1の見掛比重に示す
通り、発泡性樹脂組成物に対する酸性触媒の添加
量の調節により、発泡倍率に差異が生じる。これ
は、酸性触媒の添加量により発泡剤の分解温度が
変わるためで、実施例2では、分解温度が高すぎ
る為充分なガス発生量が得られず、またガス発生
量を増す目的で高温押出をすると樹脂組成物のメ
ルトテンシヨンが低下し、発生ガスを溶融組成物
中に保持しきれず、発泡倍率は低下する。一方、
実施例4では、発泡剤が樹脂組成物の溶融点以下
で分解を開始する為に発生ガスが溶融組成物中に
包含される前に逃散し、これも発泡倍率の低下が
見られた。 これに対して、実施例3では発泡剤の分解温度
が樹脂組成物の溶融挙動と合致して実用的な高発
泡倍率のシートが得られている。 実施例2〜4から明らかなように、1つの樹脂
組成物に対し1つの発泡剤分解適温があり、樹脂
の種類や組成比に応じて適温が異る。本発明によ
る発泡剤は酸性触媒の添加量を調節する事により
分解温度を微調整する事が可能で極めて好都合で
ある。
[Table] As shown in the apparent specific gravity of the extrusion test results in Table 1, the expansion ratio varies depending on the amount of acidic catalyst added to the foamable resin composition. This is because the decomposition temperature of the blowing agent changes depending on the amount of acidic catalyst added. In Example 2, the decomposition temperature was too high and a sufficient amount of gas generation could not be obtained, and in order to increase the amount of gas generation, high temperature extrusion was performed. If this is done, the melt tension of the resin composition decreases, the generated gas cannot be retained in the molten composition, and the expansion ratio decreases. on the other hand,
In Example 4, since the blowing agent starts to decompose below the melting point of the resin composition, the generated gas escapes before being incorporated into the molten composition, and a decrease in the foaming ratio was also observed. On the other hand, in Example 3, the decomposition temperature of the blowing agent matched the melting behavior of the resin composition, and a sheet with a practical high expansion ratio was obtained. As is clear from Examples 2 to 4, there is one suitable blowing agent decomposition temperature for one resin composition, and the suitable temperature differs depending on the type of resin and composition ratio. The blowing agent according to the present invention is extremely advantageous because the decomposition temperature can be finely adjusted by adjusting the amount of acidic catalyst added.

Claims (1)

【特許請求の範囲】 1 熱可塑性樹脂100重量部に対し、構造式 (式中、R1〜R5はそれぞれ独立に水素、−CH2
−O−R7であり、R6,R7はそれぞれ独立に水
素、C1〜4のアルキル基である。) で表わされるアルコキシメチルメラミンの1種又
は2種以上を0.1〜10重量部を含有してなること
を特徴とする発泡性熱可塑性樹脂組成物 2 発泡性熱可塑性樹脂組成物が、アルコキシメ
チルメラミンを高温時に分解促進する酸性触媒を
含有している特許請求の範囲第1項記載の発泡性
熱可塑性樹脂組成物
[Claims] 1. Structural formula for 100 parts by weight of thermoplastic resin (In the formula, R 1 to R 5 are each independently hydrogen, −CH 2
-O- R7 , and R6 and R7 each independently represent hydrogen or a C1-4 alkyl group. ) Foamable thermoplastic resin composition 2, characterized in that the foamable thermoplastic resin composition contains 0.1 to 10 parts by weight of one or more alkoxymethylmelamines represented by The foamable thermoplastic resin composition according to claim 1, which contains an acidic catalyst that promotes decomposition at high temperatures.
JP9826778A 1978-08-14 1978-08-14 Expandable thermoplastic resin composition Granted JPS5525449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9826778A JPS5525449A (en) 1978-08-14 1978-08-14 Expandable thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9826778A JPS5525449A (en) 1978-08-14 1978-08-14 Expandable thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS5525449A JPS5525449A (en) 1980-02-23
JPS6126575B2 true JPS6126575B2 (en) 1986-06-21

Family

ID=14215159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9826778A Granted JPS5525449A (en) 1978-08-14 1978-08-14 Expandable thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS5525449A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340582A (en) * 1986-06-14 1988-02-20 シユトーラ フエルトミユーレ アクチエンゲゼルシヤフト Side edge of ski

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340582A (en) * 1986-06-14 1988-02-20 シユトーラ フエルトミユーレ アクチエンゲゼルシヤフト Side edge of ski

Also Published As

Publication number Publication date
JPS5525449A (en) 1980-02-23

Similar Documents

Publication Publication Date Title
JPS6011975B2 (en) Method for manufacturing polyolefin resin foam sheet
US4278769A (en) Blowing agent concentrate
JPH0329101B2 (en)
JPH062839B2 (en) Method for producing polymer foam
US4183822A (en) Blowing agent composition
US3725317A (en) Nucleation of thermoplastic polymeric foams
US4632942A (en) Resin composition for masterbatch of foaming agent
CA1271295A (en) Polyolefin foam compositions having improved dimensional stability utilizing certain unsaturated nitrogen-containing compounds and process for making same
GB2063881A (en) Foamable thermoplastic polymer blends
US4521487A (en) Particulate polyolefin expansion molding material
CN105585813A (en) Polyacetal resin particle and molded body
JPS6126575B2 (en)
JPS5835614B2 (en) Manufacturing method of polystyrene resin sheet foam
JPH032182B2 (en)
CA1184000A (en) Expandable thermoplastic polymer composition containing thermally decomposable carbonates
JP3012950B2 (en) Blowing agent composition
JPS6339932A (en) Expandable resin composition
WO2005090456A1 (en) Blowing agents for the production of foamed halogen-containing organic plastics
JP4196238B2 (en) Foaming agent composition and method for producing thermoplastic resin foam
JPH0457710B2 (en)
JPH0231087B2 (en) HATSUHOSHASHUTSUSEIKEIYOHORIPUROPIRENSEIKEIZAIRYO
JPS6367494B2 (en)
JPH0449863B2 (en)
KR100200237B1 (en) Forming method of inorganic foaming agent master batch
JPH0114933B2 (en)