JPS6126560A - Zirconia ceramics - Google Patents

Zirconia ceramics

Info

Publication number
JPS6126560A
JPS6126560A JP59145609A JP14560984A JPS6126560A JP S6126560 A JPS6126560 A JP S6126560A JP 59145609 A JP59145609 A JP 59145609A JP 14560984 A JP14560984 A JP 14560984A JP S6126560 A JPS6126560 A JP S6126560A
Authority
JP
Japan
Prior art keywords
tetragonal
crystals
monoclinic
powder
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59145609A
Other languages
Japanese (ja)
Other versions
JPH0132185B2 (en
Inventor
健一郎 宮原
嶽本 正基
斉藤 康男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain TM KK
Original Assignee
Toshiba Monofrax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Monofrax Co Ltd filed Critical Toshiba Monofrax Co Ltd
Priority to JP59145609A priority Critical patent/JPS6126560A/en
Publication of JPS6126560A publication Critical patent/JPS6126560A/en
Publication of JPH0132185B2 publication Critical patent/JPH0132185B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はジルコニアセラミックスに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to zirconia ceramics.

〔従来の技術〕[Conventional technology]

従来よシジルコニアは高耐食性高温材料として使用され
ているが、その変態に伴う破滅的な膨張収縮を防止また
は軽減するために、安定化元素を固溶させたいわゆる安
定化ジルコニアまたは部分安定化ジルコニアとしたもの
が一般的である。この安定化ジルコニアまたは部分安定
化ジルコニアは熱的に安定な構造である等軸晶と単斜晶
との複合よシなシ、熱衝撃特性に優れてはいるが、機械
的応力に対しては十分な強度を有していなかった。
Conventionally, sizirconia has been used as a highly corrosion-resistant high-temperature material, but in order to prevent or reduce the catastrophic expansion and contraction that accompanies its transformation, so-called stabilized zirconia or partially stabilized zirconia, in which stabilizing elements are dissolved in solid solution, is used. It is common that This stabilized zirconia or partially stabilized zirconia is a composite of equiaxed and monoclinic crystals with a thermally stable structure, and has excellent thermal shock properties, but is resistant to mechanical stress. It did not have sufficient strength.

これに対し最近では、準安定の正方晶ジルコニアよシな
るセラミックが研究・開発され、機械的応力に強く、か
つ靭性に富む材料として注目されている。
In contrast, recently, metastable ceramics such as tetragonal zirconia have been researched and developed, and are attracting attention as materials that are resistant to mechanical stress and have high toughness.

この正方晶ジルコニアよシなるセラミックスは、例えば
(1)在来の等軸晶のみからなる安定化ジルコニアセラ
ミックスまたは、単斜晶と等軸晶の混晶よ)なる部分安
定化ジルコニアセラミックスを正方晶が熱的に安定な温
度領域において長時間エージング処理を施した後、急冷
して正方晶を凍結させた9、或いは(2)ジルコニウム
化合物と安定化元素の化合物とを中和共沈・加水分解・
噴霧熱分解せしめて作成されたいわゆる湿式法微粉末を
用いて前記エージングや急冷処理を行わずに造ることが
できる。
Ceramics such as tetragonal zirconia are, for example, (1) stabilized zirconia ceramics consisting only of conventional equiaxed crystals, or partially stabilized zirconia ceramics consisting of mixed crystals of monoclinic and equiaxed crystals. After long-term aging treatment in a thermally stable temperature range, the tetragonal crystals are frozen by rapid cooling (9), or (2) neutralization coprecipitation and hydrolysis of the zirconium compound and the compound of the stabilizing element.・
It can be produced using a so-called wet method fine powder produced by spray pyrolysis without performing the aging or quenching treatment.

しかしながら、上記前者の方法では、小さな試料の作成
は可能であっても、工業材料として使われる程度の大き
さのものは、急冷処理により亀裂が発生することがあり
、また後者の場合には、生成した湿式法微粉末中には、
安定化元素を固溶していないジルコニア粒子が混在する
こと、細かな一次粒子の凝集した比較的固い二次粒子が
形成されていることなど、最終製品の品質や製造工程上
問題となる点も少なくない。
However, although it is possible to prepare small samples with the former method, cracks may occur in samples large enough to be used as industrial materials due to rapid cooling, and in the latter case, In the wet process fine powder produced,
There are also problems with the quality of the final product and the manufacturing process, such as the presence of zirconia particles that do not contain stabilizing elements as a solid solution, and the formation of relatively hard secondary particles that are agglomerated fine primary particles. Not a few.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は工業材料として使われる程度の大きさのものを
急冷処理しても亀裂の発生がなく、安定化元素を固溶し
ていないジルコニア粒子が混在することのないジルコニ
アセラばツクスに関するもので、yzo、、を3.2〜
7重量%含み、残部は実質的にZrO2よシなる組成物
を溶融した後、急冷して得られた正方晶を含有するジル
コニアセラミックスをマルテンサイト変態を起させて単
斜晶ジルコニアを含有する粉体にし、該粉体を常法によ
り成型、焼結する間に、前記単斜晶を再び正方晶に復元
せしめたジルコニアセラミックスに関するものである。
The present invention relates to a zirconia ceramic material that does not crack even if it is rapidly cooled to a size that is suitable for use as an industrial material, and that does not contain zirconia particles that do not contain stabilizing elements as a solid solution. , yzo, , 3.2~
Powder containing monoclinic zirconia by causing martensitic transformation of tetragonal zirconia ceramics obtained by melting and rapidly cooling a composition containing 7% by weight and the remainder being substantially ZrO2. The present invention relates to a zirconia ceramic in which the monoclinic crystal is restored to a tetragonal crystal while the powder is molded and sintered by a conventional method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の点に鑑みてなされたものであシ、本発明
の中心となる技術的思想は、Y2O3を3.2〜7重量
%残部は実質的にZrO2よシなる組成物を溶融した後
、急冷して得た正方晶ジルコニアを含む凝固体を造シ、
正方晶ジルコニアを含む凝固体を破砕および粉砕し、こ
の操作によって、マルテンサイト変態を起こさせて得た
単斜晶ジルコニアを含む粉体とし前記粉体を常法により
成形、焼結する間に前記単斜晶ジルコニアが再び正方晶
に復元せしめられた焼結体よシたるものである。Y2O
3を安定化元素として用いた溶融ジルコニアは公知であ
り、Y2O31モルチ(148重fチ)で、単斜晶と正
方晶の二相組織、3モル%(5,4重量ts)以上で正
方晶と立方晶が存在するとの報告もある。
The present invention has been made in view of the above points, and the central technical idea of the present invention is to melt a composition containing 3.2 to 7% by weight of Y2O3 and the remainder substantially consisting of ZrO2. After that, a solidified body containing tetragonal zirconia was formed by rapid cooling,
A solidified body containing tetragonal zirconia is crushed and crushed, and by this operation, a powder containing monoclinic zirconia obtained by causing martensitic transformation is formed. This is a sintered body in which monoclinic zirconia has been restored to tetragonal form. Y2O
Fused zirconia using 3 as a stabilizing element is known, and has a two-phase structure of monoclinic and tetragonal crystals at 1 mole of Y2O3 (148 folds), and a tetragonal structure at 3 mole% (5.4 wts) or more. There are also reports that cubic crystals exist.

本発明者郷によるとY2O3−ZrO2組成溶融物を徐
冷した場合には単斜晶と等軸晶、急冷した場合には単斜
晶と正方晶よりなる凝固体を得た。
According to the inventor Go, when a Y2O3-ZrO2 composition melt was slowly cooled, a solidified body consisting of monoclinic crystals and equiaxed crystals was obtained, and when rapidly cooled, a solidified body consisting of monoclinic crystals and tetragonal crystals was obtained.

したがって、前記の公知事実社試料中に徐冷部分と急冷
部分が共に存在するものでワラたと推定することができ
る。
Therefore, it can be presumed that both the slowly cooled portion and the rapidly cooled portion were present in the above-mentioned sample.

本発明者等はY2O33,2重量%以下では急冷体中に
十分な量のマルテンサイト変態に関与する正方晶が生成
せず、機械的強度も十分でなく、また、粉砕粉の焼結性
は不良であった。
The present inventors have found that if Y2O3 is less than 3.2% by weight, a sufficient amount of tetragonal crystals involved in martensitic transformation will not be formed in the rapidly cooled body, and the mechanical strength will not be sufficient, and the sinterability of the pulverized powder will be poor. It was defective.

Y2OB5.2〜7重量%の範囲においてL1急冷体は
十分な量の正方晶を°含有し、厚さ1+wの薄板急冷体
は指で折るのは困難な程度の強度を有した。
In the range of 5.2 to 7% by weight of Y2OB, the L1 quenched body contained a sufficient amount of tetragonal crystals, and the thin plate quenched body with a thickness of 1+w had such strength that it was difficult to break it with fingers.

急冷体を破砕粉砕した場合、正方晶はマルテンサイト変
態により単斜晶に変夛、比較的粒度のそろった二次粒子
を含まない易焼結性の粉体となる。
When the rapidly cooled body is crushed and crushed, the tetragonal crystal changes to monoclinic crystal due to martensitic transformation, resulting in an easily sinterable powder that does not contain secondary particles and has a relatively uniform particle size.

粉体の粒度は3μm以下であることが望ましい。The particle size of the powder is preferably 3 μm or less.

Y2O3が7重量%以上では急冷体は略100%正方晶
よシなシ、粉砕に伴う機械的応力によっても単斜晶が殆
んど生成せず、結局急冷体中の大部分の正方晶は、マル
テンサイト変態に寄与し得ないものとなる。
When Y2O3 is 7% by weight or more, the quenched body is almost 100% tetragonal, and almost no monoclinic crystals are formed even by the mechanical stress caused by crushing, and in the end most of the quenched body is tetragonal. , it cannot contribute to martensitic transformation.

マルテンサイト変態に寄与する正方晶と寄与しない正方
晶の区別およびその生成機構は明らかではない。現象的
に杜徐冷すれば等軸晶として存在すべき部分が急冷によ
り正方晶となった場合、機械的応力を受妙ても、この正
方晶はマルテンサイト変態して単斜晶に変ること社ない
。逆にマルテンサイト変態に寄与できる正方晶は徐冷体
では、単斜晶として存在すべきものであると言うことが
できる。
The distinction between tetragonal crystals that contribute to martensitic transformation and tetragonal crystals that do not, and the mechanism of their formation, are not clear. Phenomenologically, if a part that should exist as an equiaxed crystal if it is slowly cooled, becomes a tetragonal crystal due to rapid cooling, the tetragonal crystal will undergo martensitic transformation and change to a monoclinic crystal even if it is subjected to mechanical stress. There is no company. Conversely, it can be said that the tetragonal crystal that can contribute to martensitic transformation should exist as a monoclinic crystal in a slowly cooled body.

本発明において、徐冷とは略18klの溶融体を黒鉛製
の型に鋳造後、直ちに型から除去し、アルミナ微粉中に
埋没して徐冷する如き操作を言い、急冷とは溶融体を黒
鉛板上に約1.5 onの厚さに流し出した後、別の冷
却した黒鉛板上に移し換えて急冷する如き操作を言う。
In the present invention, slow cooling refers to an operation such as casting approximately 18 kl of the molten material into a graphite mold, immediately removing it from the mold, immersing it in fine alumina powder, and slowly cooling it. This refers to an operation in which the material is poured onto a plate to a thickness of about 1.5 on, then transferred onto another cooled graphite plate and rapidly cooled.

前記徐冷操作では常温までの冷却時間は一昼夜を要し、
急冷操作では、数時間以内で終了する。
In the slow cooling operation, the cooling time to room temperature takes all day and night,
Rapid cooling operations can be completed within a few hours.

〔実施例〕〔Example〕

実施例 本発明において使用したジルコニア原料は南アフリカ産
のノブライト鉱を塩化精製処理したものを用い(ZrO
299%以上)、Y2O3は工業用試薬を用いた。また
溶融は300 KVA単相アーク炉を用いた。また、徐
冷体、急冷体のXa回折は粉砕試料に依らず、研磨面を
用いた。これは粉砕試料の調整を行うとマルテンサイト
変態により、相変化が起るため、これをさける試料調整
法を検討した結果によるものである。研磨d1200メ
ツシュのダイアモンドグラインダーによった。X@回折
では、各相とそのピークの積分強度を測定してその割合
を求めた。
Example The zirconia raw material used in the present invention was obtained by chlorinating and refining Nobulite ore from South Africa (ZrO
299% or more), and an industrial reagent was used for Y2O3. A 300 KVA single phase arc furnace was used for melting. Moreover, the Xa diffraction of the slowly cooled body and the rapidly cooled body did not depend on the pulverized sample, but used a polished surface. This is due to the fact that phase change occurs due to martensitic transformation when a pulverized sample is prepared, so we investigated a sample preparation method that would avoid this. Polishing was performed using a D1200 mesh diamond grinder. In X@ diffraction, the integrated intensity of each phase and its peak was measured and the ratio thereof was determined.

表−1には実施例と実験例を併記したもので、試料1〜
6は実施例である。
Table 1 lists examples and experimental examples, including samples 1 to 1.
6 is an example.

本発明の一つは、ジルコニアセラばツクスは急冷体であ
り、準安定正方晶を含み、これが機械的応力を受けて、
単斜型に変態することを特徴とし、本発明の他の一つは
、機械的応力を加えて粉砕し、正方−単斜の変態を経過
させた粉体であり、その特徴は易焼結性の均一な粒径の
粉体にある。
One of the aspects of the present invention is that zirconia ceramics is a quenched body and contains metastable tetragonal crystals, which when subjected to mechanical stress,
Another aspect of the present invention is a powder that is pulverized by applying mechanical stress and undergoes a tetragonal-monoclinic transformation, which is characterized by easy sintering. It is a powder with uniform particle size.

実施例1〜6及び実験例A−Dの組成について、特公昭
58−4271に示される如き、セラミック・7アイノ
々−取付用のセラミック・ピンを、黒鉛型を用いて鋳造
した。黒鉛板は、厚み50簡の黒鉛板を用い、前記急冷
条件を満足する十分な大きさを有してお)急冷体は鋳造
後1時間以内に常゛温に達した。
Regarding the compositions of Examples 1 to 6 and Experimental Examples A to D, ceramic pins for mounting ceramic 7-in-ones as shown in Japanese Patent Publication No. 58-4271 were cast using a graphite mold. The graphite plate used was a graphite plate having a thickness of 50 mm and had a sufficient size to satisfy the above-mentioned quenching conditions.) The quenched body reached room temperature within 1 hour after casting.

実施例1−6の組成のセラミックピンは外観上亀裂のな
い健全な鋳造体であったのに対し、実験例A−Dの組成
によるものは、2〜3個の破片に分割されて、健全な形
状のものを得ることができなかった。
The ceramic pins with the compositions of Examples 1-6 were apparently sound cast bodies with no cracks, whereas the ceramic pins with the compositions of Experiments A-D were broken into two to three pieces and were not sound. I couldn't get something with a certain shape.

急冷体の破砕は、ショークラッシャーを用い、次いでス
タンプミル、ぜ−ルミルを用いて3μm以下まで粉砕し
た。
The quenched body was crushed using a show crusher, and then crushed to 3 μm or less using a stamp mill and a gel mill.

得られた粉体についてX線回折により、各相の割合を求
めた。これを表−2に示す。
The ratio of each phase of the obtained powder was determined by X-ray diffraction. This is shown in Table-2.

表−1および表−2を比較して、粉砕によりマルチンサ
イト変態を起こして、正方晶から単斜晶に変ったことが
試料1〜6において明瞭に認められる。
Comparing Tables 1 and 2, it is clearly recognized in Samples 1 to 6 that the pulverization caused martinsite transformation and the tetragonal crystals changed to monoclinic crystals.

次に前記粉体を50X50X6mの板材に1 ト:y/
cm”の圧力下で、2ノ々−プレス成形し、1400’
C〜1600℃で2時間大気中で加熱し、焼結体を得た
Next, the powder was placed on a 50 x 50 x 6 m plate.
2-hole press molding under a pressure of 1400'
A sintered body was obtained by heating at 1600° C. for 2 hours in the air.

焼結体中のジルコニアの相構成、密麿、三点曲げ強度を
測定し、これを表−3に示す。
The phase structure, density, and three-point bending strength of zirconia in the sintered body were measured, and the results are shown in Table 3.

〔効果〕〔effect〕

機械的応力を受けて、準安定正方晶よシ単斜晶へ変換し
たZrO2を含む粉体を、成形焼成して得た焼結体は再
び熱処理を受けて、単斜晶から正方晶へ焼き戻される一
方、粉体中のマルテンサイト変態に関与しない正方晶は
焼結体中では等軸晶へ転化している。
The sintered body obtained by shaping and firing the powder containing ZrO2, which has been transformed from metastable tetragonal to monoclinic under mechanical stress, is heat-treated again and transformed from monoclinic to tetragonal. On the other hand, the tetragonal crystals in the powder that do not participate in martensitic transformation are converted into equiaxed crystals in the sintered body.

表−1〜3から急冷体中の正方晶の割合、この急冷体を
粉砕した粉中の単斜晶の割合、この粉砕粉を成形焼成し
て得た焼結体中の正方晶の割合が解り、焼結体の曲げ強
度を第1図に示す。
From Tables 1 to 3, the proportion of tetragonal crystals in the quenched body, the proportion of monoclinic crystals in the powder obtained by pulverizing this quenched body, and the proportion of tetragonal crystals in the sintered body obtained by shaping and firing this pulverized powder are determined. Figure 1 shows the bending strength of the sintered body.

単安定正方晶を含む急冷体を粉砕し、単斜晶へ変態せし
めた粉砕粉は易焼結性で1400℃〜1500℃の比較
的低い焼結温度でも十分な密度を達成し得ると共に高い
曲げ強度を得ることができる。
The pulverized powder obtained by pulverizing a rapidly solidified body containing a monostable tetragonal crystal and transforming it into a monoclinic crystal is easily sinterable and can achieve sufficient density even at a relatively low sintering temperature of 1400°C to 1500°C, and is highly bendable. You can gain strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は曲げ強度を示すグラフ 手続補正書 昭和59年9月12日 昭和59年 特許  願第145609号3、 補正を
する者 事件との関係   特許出願人 4、代 理 人 〒160電話03−354−4084
6、 補正により増加する発明の数   なし別紙の如
く訂正する。 訂  正  明  細  書 1、発明の名称 ジルコニアセラミックス 2、Ivj許請求の範囲 (11Y2O33,2〜7重量%残部は実質的にZrO
2よシなる組成物を溶融した後急冷して得た正方晶を含
有するV固体を破砕・粉砕して、この操作によってマル
テンサイト変態を起こさせて得た単斜晶ジルコニアを含
有する粉体粉を常法により成型・焼結する間に前記単斜
晶が再び正方晶に復元せしめられることを特徴とするジ
ルコニアセラミックス。 (21Y2O33,2〜7重量%残部は実質的にZrO
2よシなる組成物を溶融した後急冷して得た機械的応力
により単斜型に変態し得る準安定正方晶を含む特許請求
の範囲第1項記載のジルコニアセラミックス。 (3)特許請求の範囲第2項記載のジルコニアセラミッ
クスに機械的応力を加えて単斜型に変態した易焼結性の
特許請求の範囲第1項記載のジルコニアセラミックス。 3、発明の詳細な説明 〔産業上の利用分野〕 本発明はジルコニアセラミックスに関する。 〔従来の技術〕 従来よりジルコニアは高耐食性高温材料として使用され
ているが、その変態に伴う破滅的な膨張収縮を防止また
は軽減するために、安定化元素を固溶させたいわゆる安
定化ジルコニアまたは部分安定化ジルコニアとしたもの
が一般的である。この安定化ジルコニアまたは部分安定
化ジルコニアは熱的に安定な構造である等軸晶と単斜晶
との複合よりなり、熱衝撃特性に優れてはいるが、機械
的応力に対しては十分な強度を有していなかった。 これに対し最近では、゛準安定の正方晶ジルコニアより
なるセラミックが研究・開発され、機械的応力に強く、
かつ靭性に富む材料として注目されている。 この正方晶ジルコニアよりなるセラミックスは、例えば
(1)在来の等軸晶のみからなる安定化ジルコニアセラ
ミックスまたは、単斜晶と等軸晶の混晶よりなる部分安
定化ジルコニアセラミックスを正方晶が熱的に安定な温
度領域において長時間エージング処理を施した後、急冷
して正方晶を凍結させたり、或いは(21uルコニウム
化合物と安定化元素の化合物とを中和共沈・加水分解・
噴霧熱分解せしめて作成されたいわゆる湿式法微粉末を
用いて前記エージング華急冷処理を行わずに造ることが
できる。 しかしながら、上記前者の方法では一小さな試料の作成
に可能であっても、工業材料として使わわる程度の大き
さのものは、急冷処理により亀裂が発生することがあり
、また後者の場合には、生成した湿式法微粉末中には、
安定化元素を固溶していないジルコニア粒子が混在する
こと、細かな一次粒子の凝集した比較的固い二次粒子が
形成されていることなど、最終製品の品質や製造工程上
問題となる点も少なくない。 〔発明が解決しようとする問題点〕 本発明は工業材料として使われる程度の大きさめものを
急冷処理しても亀裂の発生がなく、安定化元素を固溶し
ていないジルコニア粒子が混在することのないジルコニ
アセラミックスに関するもので、Y2O3を3.2〜7
重量%含み、残部は実質的にZrO2よりなる組成物を
溶融した後、急冷して得られた正方晶を含有するジルコ
ニアセラミックスをマルテンサイト変態を起させて単斜
晶ジルコニアを含有する粉体にし、該粉体な常法により
成型、焼結する間に、前記単斜晶を再び正方晶に復元せ
しめたジルコニアセラミックスに関するものである。 〔問題点を解決するための手段〕 本発明は上記の点に鑑みてなされたものであり、本発明
の中心となる技術的思想は、Y2O3を3.2〜7重量
%残部は実質的にZrO2よりなる組成物を溶融した後
、急冷して得た正方晶ジルコニアを含む凝固体を造シ、
正方晶ジルコニアを含む凝固体を破砕および粉砕し、こ
の操作によって、マルテンサイト変態を起こさせて得た
単斜晶ジルコニアを含む粉体とし前記粉体を常法により
成形、焼結する間に前記単斜晶ジルコニアが再び正方晶
に復元せしめらi]た焼結体よりなるものである。Y2
O3を安定化元素として用いた溶融ジルコニアは公知で
あり、Y2O31モル%(1,8重量%)で、単斜晶と
正方晶の二相組織、3モル%(5,4重量%)以下で正
方晶と立方晶が存在するとの報告もある。 本発明者等によるとY2O3−ZrO2組成溶融物を徐
冷した場合には単斜晶と等軸晶、急冷した場合には単斜
晶と正方晶よりなる凝固体を得た。 したがって、前記の公知事実は試料中に徐冷部分と急冷
部分が共に存在するものであったと推定することができ
る。 本発明者等は720332重量%以下では急冷体中に十
分な量のマルテンサイト変態に関与する正方晶が生成せ
ず、機械的強度も十分でなく、また、粉砕粉の焼結性は
不良であった。 Y2O33,2〜7重量%の範囲においては、急冷体は
十分な惜の正方晶を含有し、厚さ1j1mlの薄板急冷
体は指で折るのは困難な程度の強度を有した。 急冷体を破砕粉砕した場合、正方晶はマルテンサイト変
態により単斜晶に変シ、この時体積膨張を伴なうので、
内部に歪が蓄積された高活伯状態となり、得られる粉体
は品焼結性のもので、かつ湿式法粉体のような一次粒子
の固く凝集した二次粒子を形成しない。粉体の粒度は3
μm以下であることが望ましい。このマルテンサイト変
態により生成した単斜晶を含む粉体を原料に作製された
焼結体はこの単斜晶が逆転移して生成した準安定正方晶
を含む高エネルギー状態であり、従ってその破壊強度は
十分に大きい。 Y2O3が7重量−以上では急冷体は略100%正方晶
よシなり、粉砕に伴う機械的応力によっても単斜晶が殆
んど生成せず、結局急冷イ4中の大部分の正方晶は、マ
ルテンサイト変態に富力し得ないものとなる。 マルテンサイト変態に寄与する正方晶と寄与しプエい正
方晶の区別およびその生成機構は明らかではない。現象
的には徐冷すれば等軸晶として存在すべき部分が急冷に
より正方晶となった場合、機械的応力を受けても、この
正方晶はマルテンサイト変態[7て単斜晶に変ることは
ない。逆にマルテンサイト変態に寄与できる正方晶は徐
冷体では、単斜晶として存在すべきものであると言うこ
とができる。 以上述べたように本願発明者は、単に正方晶を多く含め
ば良いとは考えておらず、 (1)凝固材V(おいては正方晶が多いものが望ましい
が、その正方晶はマルテンサイト変態して単斜晶に変り
得るものである必要がある。(100チ正方晶でもこの
変態が少なければ駄目である。)(2)  粉体におい
ては凝固体中の正方晶がマルテンサイト変態して生成し
た単斜晶をよシ多く含むものが望ましい。 (3)焼結体においては粉体中の単斜晶が逆転移して生
成した準安定正方晶を多く含むものが望ましい。 この三点の条件を満たすことが本発明にとって必須条件
であシ、本発明のY2O3含有量が3.2〜7重−惜チ
としたのはこのような理由による。 本発明において、徐冷とは略18に7の溶融体を黒鉛製
の型に鋳造後、直ちに型から除去し、アルミナ微粉中に
埋没E7て徐冷する如き操作を言い、急冷とは溶融体を
黒鉛機上に約i、 5 /TRIのjjFさに流し出し
た後、別の冷却した黒鉛板上に移し、換えて急冷する如
き操作を言う。前記徐冷操作では常温までの冷却時間超
−昼夜を要12、急冷操作では、前記徐冷操作では溶融
体の凝固開始/ン・ら常温までの冷却時間は24時間以
上要し、急冷操作では、24時間より少ない時間で終了
するが10時間以下がより好ま【7い。また急冷操作は
上記、のようた方法の他に溶融体の細流を高速回転して
いる回転物に当てる、あるいはエアのジェット流を吹き
当てるという数秒(又はそれ以下)で常温まで冷却する
ような方法でも行うことができる。 〔実施例〕 実施例 本発明において使用したジルコニア原料は南アフリカ産
のバデライト鉱を塩化精製処理し7たものを用い(Zr
O299%以上) 、Y2O3は工業用試薬を用いた。 また溶、融は300 KVA単相アーク炉な用いた。徐
冷体は前記方法を用い、鋳造後手で触わることのできる
温度になるまで30時間を要して作製され、急冷体は黒
鉛板上に溶融体を2〜3crnの厚さに流し出す方法で
凝固開始から5時間で手で触われる温度まで冷却して作
製した。また、徐冷体、急冷体のX線回折は粉砕試料に
依らず、研磨面を用いた。これは粉砕試料の調整を行う
とマルテンサイト変態により、相変化が起るため、これ
をさける試料調整法を検討した結果によるものである。 研磨は1200メツシユのダイアモンドグラインダーに
よった。X線回折の結果は、徐冷体ではY2O3含有量
の低い場合、単斜晶+等軸晶から成り、Y2O3含有量
が増加するに従って等軸晶が増加し、Y2O37,9重
量%以上では等軸晶100%となり、急冷体ではY2O
3含有量の低い場合単斜晶子正方晶から成シ、Y2O3
含有量の増加に従って正方品が増加し、Y2O34,5
重量%以上では正方晶100%となることが示された。 またX線回折により各相の定量を行なった。この定量は
単斜晶(111) 。 (111)回折線の積分強度1m(111) 、 Im
(111)、正方晶(111)回折線の積分強度It(
1111、等軸品(1111回折線の積分強度Ic (
111)を測定し、 flarvieとN1chols
onにより示された次式を用いて行なった。 徐冷体 X100(体積係)  ・・・・・・・・・・・・(1
)X100  (体債チ)  ・・・・・・・・・・・
・(2)急冷体 X100   (体積%) ・・・・・・・・・・・(
3)X100  (体積%) ・・・・・・・・・・・
・(4)この測定結果を表1に示した。 表−1には実M’4 (+・と実験例を併記したもので
、試料1へ6は実施例である。 本発明の一つは、ジルコニアセラミックスは急冷体であ
り、準安定正方晶を含み、これが機械的応力を受けて、
中斜型に変態することを特徴とし、本発明の他の一つは
、機械的応力を加えて粉砕し、正方−単斜の変態を経過
させた粉体であり、その特徴は易焼結性の均一な粒径の
粉体にある。 実施例1〜6及び実験例A〜Dの組成について特公昭5
8−4271に示される如き、セラミック・ファイバー
取付用のセラミック・ピンを、黒鉛型を用いて鋳造した
。黒鉛板は、厚み50闘の黒鉛板を用い、前記急冷条件
を満足する十分な大きさを有し、てふ・り急冷体は鋳造
後1時間以内に常温に達した。 実施例1−6の組成のセラミックビンは外観上亀裂のな
い健全な鋳造体であったのに対し、実験例A−Dの組成
によるものは、2〜3個の破片に分割されて、健全な形
状のものを得ることができなかった。 急冷体の破砕は、ショークラッシャーを用い、次いでス
タンプミル、?−ルミルを用いて3μm以下まて粉砕1
−だ。 得られた粉体についてX線回折により、構成相の同定を
行なったところ、全ての組成物について単斜晶子正方晶
より成っていたが、Y2O3含有量の増加に従って単斜
晶量は減少する傾向があった。 相の定量を前に述べたGarvie −N1c)+ol
sonO式(3)。 (4)を用いて行なった。これを表−2に示す。 表−1および表−2を比較して、粉砕によりマルテンサ
イト変態を起こして、正方晶から単斜晶に変ったことが
試料1〜6においても明瞭に認められる。この急冷凝固
体中の正方晶がマルテンサイト変態を起こして生成した
単斜晶量を表−2に併記したが、Y2O33,4〜7.
1重量%(実施例1〜6)の範囲でその生成量は20体
積チ以上であシ特にY2O34,0〜5.0重量%の範
囲では最大量となる。 次に前記粉体を50X50X6酎の板材に1トン/dの
圧力下で、ラバープレス成形し、1550Cで2時間大
気中で加熱し、焼結体を得た。焼結体中のジルコニアの
相構成、密度、三点的は強度を測定し、これを表−3に
示す。 X線回折によるとY2O3含有量2.0〜3.4重量%
の範囲では単斜晶子正方晶であシ、Y2O3含有量が多
くなるに従って正方晶量が増加しY2O32,2重量%
では100チ正方晶となる。その後Y2O3の増加に伴
なって等軸晶が生成し、Y2O3が増加するとその量も
増加した。相の定量は単斜晶子正方晶のものはGarv
ie−Nicholson (7)式(31、(41を
用いて行なったが、正方晶子等軸晶の場合、両者の(1
11)回折線が極めて近接して分離できないのでGar
vie −N1cholsonの式はそのまま使用でき
ない。 従って本発明ではこの二相の定量をGarvie−Ni
cholsonの式が導ひかれた時、単斜晶(111)
 、 (111)回折線の積分強度の含量はそれが高温
に加熱された時、正方晶又は等軸晶に転移するがその転
移正方晶、又は等軸晶の積分強度IH(111)に等し
いという仮定をしたという原点の考えに立ち帰り、下目
1“に示す仮定のもとに行なった。すなわち正方晶(3
11)、 (113)と等軸晶(311)の回折線はそ
れぞれ分離しておシその積分強度値を測定することがで
きるので、正方晶(311)、 (113)回折線の積
分強度の含量は高温において正方晶から転移する等軸晶
(311)回折線の積分強度に等しいと仮定してX10
0   (体積チ) 等軸晶量=100−正方晶量(体積チ)の式で定量され
た。ここでIi (311) 、 It (113) 
。 Ic(311)はそれぞれ正方晶(311) 、 (1
13)回折線の等軸晶(3111回折線の積分強度値で
ある。焼結体中に生成する等軸晶は急冷凝固体中の正方
晶で破砕粉砕によりマルチンサイト変態を起こさずその
まま粉体中に正方晶として残留したものが転移生成した
ものと考えられるが、一方正方晶は上記粉体中のマルテ
ンサイト変態により生成した単斜晶が逆転移し、て生成
したものと一部粉体中の正方晶がそのまま正方晶として
残ったものであると考えられ、この両者は量的に区別で
きる。表−3にはこの粉体中の単斜晶が逆転移して生成
した正方晶の量を併記し、だが、Y2O3含有量3.4
〜5.0重量%の範囲の組成物で大きな値となシ、これ
は焼結体の曲げ強度の大きさと大体対応している。 以上本発明について述べてきたが、急冷凝固体中の正方
晶量、粉体中のマルテンサイト変態により生成した単斜
晶量、焼結体中の単斜晶が逆転移して生成した正方晶量
とY2O3含有量との関係を図1K7j−すが1本発明
が3.2〜7重量%の範囲Y2O3を含むジルコニア質
組成物において達成されることが同図に示されている。 次にカーゼン板急冷よシ早い速度で冷却凝固されたもの
について述べる。Y2O3の含有量が4.0重−f?:
 %になるように配合された精製バデライト鉱と工業用
イツトリア粉末との混合物をカーがン電極アーク炉で溶
融し、溶融体の細流を亜音速の圧縮エアで吹き飛げした
ものと、この細流を300Orpmで回転している直径
300nの円盤に当てて2種類の凝固体を得た。この時
の冷却速度は凝固開始から常温に達するのに数秒程度で
ある。この凝固体はエアで吹き飛ばしたものが中空球状
で回転円盤に当てたものがフレーク状を呈していた。こ
れら凝固体および凝固体を前記同様に粉砕して得た粉体
、およびこの粉体を原料として作製したジルコニアセラ
ミックスの相構成と、セラミックスの三点的は強度とを
測定したところ表−4の如き結果が得られた。 この結果は圧縮エア急冷、回転円盤急冷とも前に示した
カーダン板急冷に比べ幾分急冷が効き凝固体中の正方晶
量が多いものの、この凝固体から得られる粉体、焼結体
はほぼ同様な特徴を有し、この焼結体を5NP432の
形状にrjk形したバイトチップは鋳鉄の荒削りに使用
した時従来からのアルミナ質のものに比ベチツビングを
起こしにくく、より高速重切削に適していた。 このように本願発明は急冷凝固体を用いて達成されるの
であり、溶融物の凝固開始から24時間以上を要する徐
冷体を用いた場合、同じ範囲のY2O3を含む組成物で
も本願発明に示した効果は得られず、凝固体の強度も弱
く正方晶を含まないのでこの凝固体から得られる粉体中
にはマルテンサイト変態により生成した単斜晶が含まれ
ず、従って歪エネルギーを多く含む高活性状態が達成さ
れにくく焼結性が悪いので、この粉体から作製される焼
結体は逆転移正方晶を含まず、かつ曲は強度も低い。 〔効果〕 機械的応力を受けて、準安定正方晶より単斜晶へ変換し
たZrO2を含む粉体な、成形焼成して得た焼結体は再
び熱処理を受けて、単斜晶から正方晶へ焼き戻される一
方、粉体中のマルテンサイト変態に関与しない正方晶は
焼結体中では等中凸へ転化している。 表−1〜3および第1図から急冷体中の正方晶の割合、
この急冷体を粉砕した粉中の単斜晶の割合、この粉砕粉
を成形焼成して得た焼結体中の逆転移により生成した正
方晶の割合が解シ、焼結体の曲げ強度を第1図に示す。 準安定正方晶を含む急冷体を粉砕し、単斜晶へ変態せし
めた粉砕粉は易焼結性で十分な密度を達成し得ると共に
高い曲は強度を得ることができる。 4、図面の簡単な説明 第1図け、凝固体、粉体、焼結体の相構成(体積係)を
示すグラフ、第2図は曲げ強度を壓すグラフ。 嬰榔ン0h摩ぺ)
Figure 1 is a graph showing bending strength Procedural amendment September 12, 1980 Patent application No. 145609 3, Relationship with the case of the person making the amendment Patent applicant 4, agent Address: 160 Telephone 03- 354-4084
6. Number of inventions increased by amendment None. Corrected as shown in the attached sheet. Amendment Statement 1, Title of Invention Zirconia Ceramics 2, Ivj Claims (11Y2O33, 2 to 7% by weight balance is substantially ZrO
2. Powder containing monoclinic zirconia obtained by crushing and pulverizing a V solid containing tetragonal crystals obtained by melting and rapidly cooling a different composition, and causing martensitic transformation through this operation. A zirconia ceramic characterized in that the monoclinic crystal is restored to a tetragonal crystal while the powder is molded and sintered by a conventional method. (21Y2O33, 2 to 7% by weight the remainder is substantially ZrO
2. The zirconia ceramic according to claim 1, comprising a metastable tetragonal crystal that can be transformed into a monoclinic type by mechanical stress obtained by melting and then rapidly cooling the composition. (3) The easily sinterable zirconia ceramic according to claim 1, which is obtained by applying mechanical stress to the zirconia ceramic according to claim 2 and transforming into a monoclinic shape. 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to zirconia ceramics. [Prior Art] Zirconia has traditionally been used as a highly corrosion-resistant high-temperature material, but in order to prevent or reduce the catastrophic expansion and contraction associated with its transformation, so-called stabilized zirconia or Partially stabilized zirconia is commonly used. This stabilized zirconia or partially stabilized zirconia is composed of a composite of equiaxed crystals and monoclinic crystals, which have a thermally stable structure, and has excellent thermal shock properties, but has insufficient resistance to mechanical stress. It had no strength. In contrast, recently, ceramics made of metastable tetragonal zirconia have been researched and developed, which are resistant to mechanical stress and
It is attracting attention as a material with high toughness. Ceramics made of this tetragonal zirconia are, for example, (1) stabilized zirconia ceramics made only of conventional equiaxed crystals, or partially stabilized zirconia ceramics made of a mixed crystal of monoclinic crystals and equiaxed crystals. After aging treatment for a long time in a stable temperature range, the tetragonal crystals are frozen by rapid cooling, or (neutral coprecipitation, hydrolysis, and
It can be produced by using a so-called wet method fine powder produced by spray pyrolysis without performing the aging and quenching treatment. However, even if the former method is possible to prepare a small sample, if the sample is large enough to be used as an industrial material, cracks may occur during the rapid cooling process, and in the latter case, In the wet process fine powder produced,
There are also problems with the quality of the final product and the manufacturing process, such as the presence of zirconia particles that do not contain stabilizing elements as a solid solution, and the formation of relatively hard secondary particles that are agglomerated fine primary particles. Not a few. [Problems to be solved by the invention] According to the present invention, cracks do not occur even when a glass of a size suitable for use as an industrial material is rapidly cooled, and zirconia particles with no stabilizing element dissolved therein are mixed. This relates to zirconia ceramics with no Y2O3 of 3.2 to 7
% by weight, the remainder being substantially ZrO2, and then rapidly cooled to cause martensitic transformation of the obtained tetragonal zirconia ceramic to form a powder containing monoclinic zirconia. This invention relates to a zirconia ceramic in which the monoclinic crystal is restored to a tetragonal crystal while the powder is molded and sintered by a conventional method. [Means for Solving the Problems] The present invention has been made in view of the above points, and the central technical idea of the present invention is that Y2O3 is 3.2 to 7% by weight, the remainder being substantially After melting a composition made of ZrO2, a solidified body containing tetragonal zirconia obtained by rapidly cooling is produced.
A solidified body containing tetragonal zirconia is crushed and crushed, and by this operation, a powder containing monoclinic zirconia obtained by causing martensitic transformation is formed. It is a sintered body in which monoclinic zirconia has been restored to a tetragonal structure. Y2
Fused zirconia using O3 as a stabilizing element is known, and has a two-phase structure of monoclinic and tetragonal crystals at 1 mol% (1.8% by weight) of Y2O3 and 3 mol% (5.4% by weight) or less. There are also reports that there are tetragonal and cubic crystals. According to the present inventors, when a Y2O3-ZrO2 composition melt was slowly cooled, a solidified body consisting of monoclinic crystals and equiaxed crystals was obtained, and when rapidly cooled, a solidified body consisting of monoclinic crystals and tetragonal crystals was obtained. Therefore, it can be inferred that the above-mentioned known fact indicates that both a slowly cooled portion and a rapidly cooled portion were present in the sample. The present inventors have found that if the content is less than 720332% by weight, a sufficient amount of tetragonal crystals involved in martensitic transformation will not be formed in the quenched body, the mechanical strength will not be sufficient, and the sinterability of the pulverized powder will be poor. there were. In the range of 2 to 7% by weight of Y2O3, the quenched body contained a sufficient amount of tetragonal crystals, and the quenched body of a thin plate with a thickness of 1j1 ml had such strength that it was difficult to break it with fingers. When the rapidly cooled body is crushed and crushed, the tetragonal crystal transforms into monoclinic crystal due to martensitic transformation, which is accompanied by volume expansion.
It becomes a highly active state with internal strain accumulated, and the resulting powder is sinterable and does not form secondary particles that are tightly aggregated primary particles like wet method powder. Particle size of powder is 3
It is desirable that it is less than μm. A sintered body made from a powder containing monoclinic crystals produced by this martensitic transformation is in a high energy state containing metastable tetragonal crystals produced by reverse transition of monoclinic crystals, and therefore has a high fracture strength. is large enough. When Y2O3 is more than 7% by weight, the quenched body becomes almost 100% tetragonal, and almost no monoclinic crystals are produced even by the mechanical stress caused by crushing, and in the end most of the quenched body is tetragonal. , it becomes impossible to enrich the martensitic metamorphosis. The distinction between the tetragonal crystals that contribute to the martensitic transformation and the tetragonal crystals that contribute to the martensitic transformation and the mechanism of their formation are not clear. Phenomenologically, if a part that should exist as an equiaxed crystal by slow cooling becomes a tetragonal crystal by rapid cooling, even if subjected to mechanical stress, this tetragonal crystal undergoes martensitic transformation [7] and changes to a monoclinic crystal. There isn't. Conversely, it can be said that the tetragonal crystal that can contribute to martensitic transformation should exist as a monoclinic crystal in a slowly cooled body. As stated above, the inventors of the present application do not believe that it is sufficient to simply include a large number of tetragonal crystals; It needs to be able to transform into a monoclinic crystal. (Even a 100-inch tetragonal crystal is useless if this transformation is small.) (2) In powder, the tetragonal crystal in the solidified body transforms into martensitic crystal. (3) In the sintered body, it is desirable that the powder contains a large amount of metastable tetragonal crystals produced by reverse transition of the monoclinic crystals in the powder. These three points It is an essential condition for the present invention to satisfy the following conditions, and it is for this reason that the Y2O3 content of the present invention is set to 3.2 to 7 times. After casting the molten material in 18 to 7 into a graphite mold, it is immediately removed from the mold and slowly cooled by immersing it in fine alumina powder. This refers to an operation in which after pouring into a JJF of /TRI, it is transferred to another cooled graphite plate and then rapidly cooled.The slow cooling operation requires more than 12 days and nights to cool down to room temperature, while the rapid cooling operation In the slow cooling operation, it takes 24 hours or more to cool the melt from the start of solidification to normal temperature, and in the rapid cooling operation, it takes less than 24 hours, but preferably 10 hours or less. In addition to the above-mentioned methods, quenching operations can also be carried out by applying a trickle of the molten material to a rotating object that is rotating at high speed, or by blowing a jet stream of air to cool it down to room temperature in a few seconds (or less). [Example] The zirconia raw material used in the present invention was obtained by subjecting baddellite ore from South Africa to chlorination and refining treatment (Zr
O2 99% or more), Y2O3 used an industrial reagent. A 300 KVA single-phase arc furnace was used for melting and melting. The slowly cooled body is produced by using the above method and takes 30 hours to reach a temperature that can be touched by hand after casting, and the rapidly cooled body is produced by pouring the molten body onto a graphite plate to a thickness of 2 to 3 crn. 5 hours after the start of solidification, it was cooled to a temperature that could be touched by hand. Furthermore, X-ray diffraction of the slowly cooled body and the rapidly cooled body was performed using a polished surface, regardless of the crushed sample. This is due to the fact that phase change occurs due to martensitic transformation when a pulverized sample is prepared, so we investigated a sample preparation method that would avoid this. The polishing was done using a 1200 mesh diamond grinder. The results of X-ray diffraction show that the slowly cooled body consists of monoclinic + equiaxed crystals when the Y2O3 content is low, and as the Y2O3 content increases, the equiaxed crystals increase, and when Y2O3 content is 7.9% by weight or more, equiaxed crystals are formed. It becomes 100% axial crystal, and in the rapidly cooled body, Y2O
When the 3 content is low, it is formed from monoclinic tetragonal crystals, Y2O3
As the content increases, the number of square items increases, and Y2O34,5
It was shown that when the weight percentage is higher than 100%, the tetragonal crystal structure becomes 100%. Furthermore, each phase was quantified by X-ray diffraction. This quantification is for monoclinic (111). (111) Integrated intensity of diffraction line 1 m (111), Im
(111), integrated intensity of tetragonal (111) diffraction line It(
1111, equiaxed product (integrated intensity Ic of 1111 diffraction line
111), flavie and N1chols
This was carried out using the following formula indicated by on. Annealing body X100 (volume) ・・・・・・・・・・・・(1
)X100 (body bond) ・・・・・・・・・・・・
・(2) Quenched body X100 (volume%) ・・・・・・・・・・・・・(
3)X100 (volume%) ・・・・・・・・・・・・
- (4) The measurement results are shown in Table 1. Table 1 shows actual M'4 (+) and experimental examples, and samples 1 to 6 are examples. One of the aspects of the present invention is that zirconia ceramics is a rapidly solidified body and has a metastable tetragonal structure. containing, which is subjected to mechanical stress,
Another aspect of the present invention is a powder that is pulverized by applying mechanical stress and undergoes a tetragonal-monoclinic transformation, which is characterized by easy sintering. It is a powder with uniform particle size. About the compositions of Examples 1 to 6 and Experimental Examples A to D
Ceramic pins for ceramic fiber attachment, as shown in No. 8-4271, were cast using a graphite mold. The graphite plate used was a graphite plate with a thickness of 50 cm, which had a sufficient size to satisfy the above-mentioned quenching conditions, and the quenched material reached room temperature within 1 hour after casting. The ceramic bottles with the compositions of Examples 1-6 were apparently sound cast bodies with no cracks, whereas the ceramic bottles with the compositions of Experimental Examples A-D were divided into 2 to 3 pieces and were not sound. I couldn't get something with a certain shape. The quenched body is crushed using a show crusher, then a stamp mill, and then a stamp mill. - Grinding to 3 μm or less using Lumir 1
-It is. When the constituent phases of the obtained powders were identified by X-ray diffraction, all compositions were composed of monoclinic tetragonal crystals, but the amount of monoclinic crystals tended to decrease as the Y2O3 content increased. was there. Garvie-N1c)+ol as previously described for phase quantification.
sonO formula (3). (4) was used. This is shown in Table-2. Comparing Tables 1 and 2, it is clearly recognized in Samples 1 to 6 that martensitic transformation occurred due to pulverization and the tetragonal crystals changed to monoclinic crystals. The amount of monoclinic crystals produced by the martensitic transformation of the tetragonal crystals in this rapidly solidified body is also listed in Table 2.
In the range of 1% by weight (Examples 1 to 6), the amount produced is 20 volumes or more, and in particular, in the range of 0 to 5.0% by weight of Y2O3, the amount is maximum. Next, the powder was rubber-pressed into a 50x50x6 plate material under a pressure of 1 ton/d, and heated at 1550C for 2 hours in the air to obtain a sintered body. The phase structure, density, and three-point strength of zirconia in the sintered body were measured, and the results are shown in Table 3. According to X-ray diffraction, Y2O3 content is 2.0-3.4% by weight.
In the range of
Then it becomes a 100-chi tetragonal crystal. Thereafter, as Y2O3 increased, equiaxed crystals were generated, and as Y2O3 increased, the amount thereof also increased. Quantification of phase is Garv for monoclinic tetragonal phase.
ie-Nicholson (7) Equations (31 and (41) were used, but in the case of a tetragonal equiaxed crystal, both (1
11) Since the diffraction lines are very close and cannot be separated, Gar
The formula vie -N1cholson cannot be used as is. Therefore, in the present invention, the determination of these two phases is carried out using Garvie-Ni.
When Cholson's formula is derived, monoclinic (111)
, the content of the integrated intensity of the (111) diffraction line is said to be equal to the integrated intensity IH(111) of the transition tetragonal or equiaxed crystal when it is heated to a high temperature. Returning to the original idea of making assumptions, we carried out the work based on the assumptions shown in "1" below. In other words, the tetragonal (3
11), (113) and equiaxed (311) diffraction lines can be separated and their integrated intensity values can be measured. X10, assuming that the content is equal to the integrated intensity of the equiaxed (311) diffraction line that transitions from tetragonal to high temperature.
0 (volume chi) Equiaxed crystal content = 100 - tetragonal crystal content (volume chi) It was determined by the formula. Here Ii (311), It (113)
. Ic(311) are tetragonal (311) and (1
13) Equiaxed crystals of diffraction lines (This is the integrated intensity value of 3111 diffraction lines. The equiaxed crystals generated in the sintered body are tetragonal crystals in the rapidly solidified body, and when crushed and crushed, they do not undergo martinsite transformation and are turned into powder as they are. It is thought that the tetragonal crystals that remained in the powder were formed by dislocation, but on the other hand, the tetragonal crystals were formed by reverse transition of the monoclinic crystals generated by the martensitic transformation in the powder, and some of the tetragonal crystals were formed by the reverse transition of the monoclinic crystals that were generated by the martensitic transformation in the powder. It is thought that the tetragonal crystals remained as they are, and the two can be quantitatively distinguished.Table 3 shows the amount of tetragonal crystals produced by reverse transition of the monoclinic crystals in this powder. Also written, but Y2O3 content 3.4
A large value is obtained for compositions in the range of ~5.0% by weight, which roughly corresponds to the magnitude of the bending strength of the sintered body. The present invention has been described above; the amount of tetragonal crystals in the rapidly solidified body, the amount of monoclinic crystals generated by martensitic transformation in the powder, and the amount of tetragonal crystals generated by reverse transformation of monoclinic crystals in the sintered body. It is shown in FIG. 1K7j that the present invention is achieved in zirconia compositions containing Y2O3 in the range of 3.2 to 7% by weight. Next, we will discuss the material that was cooled and solidified at a faster rate than the rapid cooling of the Curzen plate. Y2O3 content is 4.0 weight-f? :
A mixture of refined baddellite ore and industrial-grade ittria powder blended at was applied to a disk with a diameter of 300 nm rotating at 300 rpm to obtain two types of coagulated bodies. The cooling rate at this time is about several seconds from the start of solidification to room temperature. This solidified material had a hollow spherical shape when blown with air, and a flaky shape when applied to a rotating disk. The phase composition of these coagulates and powders obtained by crushing the coagulates in the same manner as above, and zirconia ceramics made from these powders as raw materials, as well as the three-point strength of the ceramics, are shown in Table 4. The following results were obtained. This result shows that both compressed air quenching and rotating disk quenching are somewhat more effective at quenching than the cardan plate quenching shown earlier, and although the amount of tetragonal crystals in the solidified body is larger, the powder and sintered body obtained from this solidified body are approximately Having similar characteristics, the rjk-shaped bit tip made of this sintered body in the shape of 5NP432 is less likely to cause betting when used for rough cutting of cast iron compared to conventional alumina-based ones, and is more suitable for high-speed heavy cutting. Ta. In this way, the present invention is achieved by using a rapidly solidified body, and if a slowly cooled body that requires 24 hours or more from the start of solidification of the molten material is used, even a composition containing Y2O3 in the same range can be achieved according to the present invention. However, the strength of the solidified body is weak and it does not contain tetragonal crystals, so the powder obtained from this solidified body does not contain monoclinic crystals generated by martensitic transformation, and therefore it is a highly concentrated powder containing a large amount of strain energy. Since it is difficult to achieve an active state and the sintering properties are poor, sintered bodies made from this powder do not contain reverse transition tetragonal crystals and have low strength. [Effect] The sintered body obtained by molding and firing, which is a powder containing ZrO2 which has been converted from metastable tetragonal to monoclinic due to mechanical stress, is heat-treated again and converted from monoclinic to tetragonal. On the other hand, the tetragonal crystals in the powder, which do not participate in the martensitic transformation, are transformed into equimediate convex crystals in the sintered body. From Tables 1 to 3 and Figure 1, the proportion of tetragonal crystals in the quenched body,
The proportion of monoclinic crystals in the powder obtained by pulverizing this rapidly cooled body, and the proportion of tetragonal crystals generated by reverse transition in the sintered body obtained by shaping and firing this pulverized powder, determine the bending strength of the sintered body. Shown in Figure 1. A pulverized powder obtained by pulverizing a rapidly solidified body containing a metastable tetragonal crystal and transforming it into a monoclinic crystal is easily sinterable and can achieve a sufficient density, as well as high bending strength. 4. Brief explanation of the drawings Figure 1 is a graph showing the phase composition (volume ratio) of solidified bodies, powders, and sintered bodies, and Figure 2 is a graph showing bending strength. 0h mape)

Claims (1)

【特許請求の範囲】[Claims] Y_2O_3 3.2〜7重量%残部は実質的にZrO
_2よりなる組成物を溶融した後急冷して得た正方晶を
含有する凝固体を破砕・粉砕して、この操作によってマ
ルテンサイト変態を起こさせて得た単斜晶ジルコニアを
含有する粉体粉を常法により成型・焼結する間に前記単
斜晶が再び正方晶に復元せしめられることを特徴とする
ジルコニアセラミックス。
Y_2O_3 3.2 to 7% by weight The remainder is substantially ZrO
Powder powder containing monoclinic zirconia obtained by crushing and pulverizing a solidified body containing tetragonal crystals obtained by melting and rapidly cooling a composition consisting of _2, and causing martensitic transformation through this operation. A zirconia ceramic characterized in that the monoclinic crystal is restored to a tetragonal crystal while being molded and sintered by a conventional method.
JP59145609A 1984-07-13 1984-07-13 Zirconia ceramics Granted JPS6126560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59145609A JPS6126560A (en) 1984-07-13 1984-07-13 Zirconia ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59145609A JPS6126560A (en) 1984-07-13 1984-07-13 Zirconia ceramics

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP63315780A Division JPH0214822A (en) 1988-12-13 1988-12-13 Readily sinterable zirconia powder

Publications (2)

Publication Number Publication Date
JPS6126560A true JPS6126560A (en) 1986-02-05
JPH0132185B2 JPH0132185B2 (en) 1989-06-29

Family

ID=15388992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59145609A Granted JPS6126560A (en) 1984-07-13 1984-07-13 Zirconia ceramics

Country Status (1)

Country Link
JP (1) JPS6126560A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260857A (en) * 1987-04-13 1988-10-27 フォード モーター カンパニー Method of rendering age resistance to zirconia-yttria product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260857A (en) * 1987-04-13 1988-10-27 フォード モーター カンパニー Method of rendering age resistance to zirconia-yttria product

Also Published As

Publication number Publication date
JPH0132185B2 (en) 1989-06-29

Similar Documents

Publication Publication Date Title
US5286685A (en) Refractory materials consisting of grains bonded by a binding phase based on aluminum nitride containing boron nitride and/or graphite particles and process for their production
US20070049484A1 (en) Nanocomposite ceramics and process for making the same
JP5270099B2 (en) Aluminum-titanium oxide-zirconia molten particles
JPH0231031B2 (en)
JPS6117469A (en) Manufacture of minute cordierite
JP3009705B2 (en) Chromium oxide refractories with improved thermal shock resistance
JPS61174165A (en) Alumina-silicon carbide heat-resistant composite sintered body and manufacture
US4579829A (en) Zircon/zirconia refractories
US5296420A (en) Composite refractory materials
JPS5964574A (en) Baddeleyite sinter refractory composition and refractory pr-oduct
Sun et al. Effect of cobalt on properties of vitrified bond and vitrified cubic boron nitride composites
JPS62192480A (en) Abrasive particle and manufacture
JPS6065726A (en) Partially stabilized ziroconia body
JPS6126560A (en) Zirconia ceramics
JPH03122045A (en) Production of machinable ceramics
JPS6126561A (en) Zirconia ceramics
JPS63195163A (en) Manufacture of whisker-reinforced mullite ceramic products
JPH0214822A (en) Readily sinterable zirconia powder
JPH03159956A (en) Production of porous refractory for gas blowing
JP3153637B2 (en) Method for producing calcia clinker
WO1999032417A1 (en) Dense refractories with improved thermal shock resistance
US1713580A (en) of dayton
JPS61256963A (en) High strength alumina sintered body and manufacture
CN107324790A (en) Forsterite-silicon carbide composite ceramic materials and its synthetic method
Suzuki et al. Sintering and microstructure of alumina/mica and spinel/mica composites