JPS61265402A - Feed water controller for nuclear power plant - Google Patents

Feed water controller for nuclear power plant

Info

Publication number
JPS61265402A
JPS61265402A JP60108701A JP10870185A JPS61265402A JP S61265402 A JPS61265402 A JP S61265402A JP 60108701 A JP60108701 A JP 60108701A JP 10870185 A JP10870185 A JP 10870185A JP S61265402 A JPS61265402 A JP S61265402A
Authority
JP
Japan
Prior art keywords
water supply
pump
valve
water
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60108701A
Other languages
Japanese (ja)
Inventor
晃 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60108701A priority Critical patent/JPS61265402A/en
Publication of JPS61265402A publication Critical patent/JPS61265402A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Non-Electrical Variables (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は原子力プラントの給水制御装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a water supply control device for a nuclear power plant.

〔発明の技術的背景〕[Technical background of the invention]

第3図は従来の給水制卸装置の概略構成を示すもので、
この給水制御装置は原子炉圧力容器1への給水流ff1
2を適正に制即し、原子炉圧力容器1内の冷却水水位3
を一定にかつ安定に保つものである。すなわち、この給
水制御装置は上記給水流量2.冷却水水位3および主蒸
気流量4をそれぞれ給水流l検出器5.水位検出器6.
主蒸気流量検出器7で検出し、これらを主制御演算部8
で演算して操作端である給水調節弁12.13および蒸
気加減弁15で電動機駆動機駆動給水ポンプ17および
タービン駆動給水ポンプ18の各吐出流量をIll I
llすることにより、原子炉圧力容器1内の冷却水水位
3を一定に保つように構成されている。
Figure 3 shows the schematic configuration of a conventional water supply control device.
This water supply control device controls the water supply flow ff1 to the reactor pressure vessel 1.
2 to properly control the cooling water level 3 in the reactor pressure vessel 1.
is kept constant and stable. That is, this water supply control device controls the water supply flow rate 2. The cooling water level 3 and the main steam flow rate 4 are measured by a feed water flow detector 5. Water level detector6.
Detected by the main steam flow rate detector 7, these are detected by the main control calculation unit 8
The discharge flow rates of the motor-driven water supply pump 17 and the turbine-driven water supply pump 18 are calculated using the water supply control valve 12.13 and the steam control valve 15, which are operating ends.
By doing so, the cooling water level 3 within the reactor pressure vessel 1 is kept constant.

具体的には水位検出器6で検出された冷が氷水位3は設
定値と比較された模、給水水流量2と主蒸気流14との
偏差を加算して主制御演算部8へ入力される。この主制
御演算部8では上記の入力に対して比例十積分の演算を
実行し、その結果をそれぞれ切替器io、’+iを介し
て前記給水間り弁12.13#よび蒸気加減弁15へ供
給している。これらの給水調節弁12.13および蒸気
加減弁15は前記電動機駆動給水ポンプ(以下、M/D
給水ポンプと略称する)17およびタービン駆動給水ポ
ンプ(以下、T/D給水ポンプと略称する)18の各吐
出流量を制御するもので、主制御演算部8からの信号に
より弁開度が調整されるようになっている。なお、図中
14はガバナ、16はポンプ駆動用タービンを示す。
Specifically, the cold water level 3 detected by the water level detector 6 is compared with a set value, and the deviation between the feed water flow rate 2 and the main steam flow 14 is added and input to the main control calculation unit 8. Ru. This main control calculation unit 8 executes proportional and integral calculations for the above inputs, and sends the results to the water supply gap valves 12, 13# and the steam control valve 15 via switchers io and '+i, respectively. supplying. These water supply control valves 12, 13 and steam control valve 15 are connected to the motor-driven water supply pump (hereinafter referred to as M/D).
It controls the discharge flow rate of each of the water supply pump (hereinafter referred to as the water supply pump) 17 and the turbine-driven water supply pump (hereinafter referred to as the T/D water supply pump) 18, and the valve opening degree is adjusted by a signal from the main control calculation unit 8. It has become so. In addition, in the figure, 14 indicates a governor, and 16 indicates a pump driving turbine.

前記M/D給水ポンプ17およびT/D給水ポンプ18
は高圧復水ポンプ21から吐出された復水を給水吸込み
ヘッダー20から吸込み、これを給水吐出ヘッダー19
を介して原子炉圧力容器1へ給水するもので、上記給水
吐出ヘッダー19に並列に接続されている。また、これ
らの給水ポンプ17.18はプラントの運転状態(負荷
)に応じて適宜選定されるようになっており、各給水ポ
ンプ17,18と給水吐出ヘッダー19との間には給水
ポンプから吐出された冷却水を復水器(図示せず)へ戻
す給水ポンプ再循環系23.24が接続されている。こ
れらの再循環系23.24は給水ポンプの小流量運転時
にポンプの動力損失が熱に変わり、これによって上昇す
る給水温度を規定温度以下に抑えるためのもので、各給
水ポンプ再循環系23.24には再循環流量調整弁25
゜26が設けられている。これらの再循環流量調整弁2
5.26はM10給水ポンプ17及びT10給水ポンプ
18の各吸込み部に設置された吸込み流量検出器27.
28からの信号により弁開度が制御復水器への再循環流
量を制御するように構成されている。なお、前記高圧復
水ポンプ21の下流には低圧復水ポンプ22が直列に接
続されている。また前記給水調節弁12はプラントの起
動時にのみ使用され、その後は全問状態となっている。
The M/D water pump 17 and the T/D water pump 18
The condensate discharged from the high-pressure condensate pump 21 is sucked through the water supply suction header 20, and this is transferred to the water supply discharge header 19.
It supplies water to the reactor pressure vessel 1 via the water supply discharge header 19, and is connected in parallel to the water supply discharge header 19. In addition, these water supply pumps 17 and 18 are appropriately selected depending on the operating state (load) of the plant, and between each of the water supply pumps 17 and 18 and the water supply discharge header 19, there is a discharge pipe from the water supply pump. A water pump recirculation system 23,24 is connected which returns the cooled water to a condenser (not shown). These recirculation systems 23 and 24 are used to suppress the power loss of the pump when the water pump is operating at a small flow rate to heat, which increases the temperature of the water supply below a specified temperature. 24 is a recirculation flow rate adjustment valve 25
゜26 is provided. These recirculation flow regulating valves 2
5.26 is a suction flow rate detector 27 installed at each suction part of the M10 water supply pump 17 and the T10 water supply pump 18.
The signal from 28 is configured to cause the valve opening to control the recirculation flow rate to the control condenser. Note that a low-pressure condensate pump 22 is connected in series downstream of the high-pressure condensate pump 21. Further, the water supply control valve 12 is used only at the time of starting up the plant, and after that, it is in the full state.

したがって、運転中におけるM/D給水ポンプ17の給
水制御は給水111ffi弁13により行われる。
Therefore, water supply control of the M/D water supply pump 17 during operation is performed by the water supply 111ffi valve 13.

また前記給水調節弁12.13および蒸気加減弁15は
切替器10.11を手動操作器9側へ接続することによ
りそれぞれ手動操作ができるようになっている。
Further, the water supply control valve 12.13 and the steam control valve 15 can be manually operated by connecting the switching device 10.11 to the manual operating device 9 side.

〔背景技術の問題点〕[Problems with background technology]

ところで、このようにM/D給水ポンプ17とT/D給
水ポンプ18が並列に設置されている理由は、一方の給
水ポンプがトリップした場合に同容量のバックアップと
するためであり、これは原子力発電プラントの特長でも
ある。そして、一般には25%容量のM/D給水ポンプ
17と50%容量のT/D給水ポンプ18が2台ずつ設
置されており、表−1に示すようにプラントの運転状態
(負荷)に応じて選択され、プラント出力が20%のと
きに給水ポンプを電動機駆動からタービン駆動へ、また
40%のときにT/D給水ポンプ18を1台運転から2
台運転へ切替えて原子炉圧力容器1への給水を行なって
いる。
By the way, the reason why the M/D water pump 17 and the T/D water pump 18 are installed in parallel is to provide a backup of the same capacity in case one of the water pumps trips. This is also a feature of power generation plants. Generally, two 25% capacity M/D water pumps 17 and two 50% capacity T/D water pumps 18 are installed, depending on the operating status (load) of the plant, as shown in Table 1. When the plant output is 20%, the water supply pump is switched from electric motor drive to turbine drive, and when the plant output is 40%, the T/D water pump 18 is switched from operating one unit to two.
Switching to standby operation, water is being supplied to the reactor pressure vessel 1.

立:二り しかしながら、このように給水ポンプを電動機駆動から
タービン駆動へ、あるいはT/D給水ポンプ18を1台
運転から2台運転へ切替える際に給水制御と再循環制御
とが互いに干渉し合い、その結果、給水ポンプの吸込み
流量が変動して原子炉圧力容器1内の冷却水位3を一定
にかつ安定に保つことが困難となる。
However, when switching the water supply pump from electric motor drive to turbine drive, or from operating one T/D water pump 18 to operating two T/D water pumps, water supply control and recirculation control may interfere with each other. As a result, the suction flow rate of the feedwater pump fluctuates, making it difficult to keep the cooling water level 3 in the reactor pressure vessel 1 constant and stable.

以下、−例として給水ポンプを電動機駆動からタービン
駆動へ切替えた場合について説明する。
Hereinafter, as an example, a case will be described in which the water supply pump is switched from electric motor drive to turbine drive.

M/D給水ポンプ17の運転中は給水調節弁13により
原子炉圧力容器1内の冷却水位3が制御されている。こ
の状態から給水ポンプを電動機駆動からタービン駆動へ
切替える場合は、まずT/D給水ポンプ18を起動して
回転数を上げ、その後回転数を一定とする。次にT/D
給水ポンプ18の回転数を手動操作器9により徐々に上
昇させ、T/D給水ポンプ18の吐出圧力を給水吐出ヘ
ッダー19の圧力に近付け(均圧制御)、M/D給水ポ
ンプ18の吐出圧力と等しくするか又はそれより高くす
る。その後、さらにT/D給水ポンプ18の回転数を手
動にて上昇させ、T/D給水ポンプ18の吐出流量を徐
々に増加させる。このとき、M/D給水ポンプ17の給
水制御は自動となっており、T/D給水ポンプ18によ
り流量が増加した分だけ給水調節弁13が絞られ、M/
D給水ポンプ17からの給水流量を減少させる。この流
量調整がさらに進み、T/D給水ポンプ18からの給水
流量とM/D給水ポンプ17からの給水流量が等しくな
った時点で切替器11を手動操作器9側から主制御演算
器8側へ切替える。そして、これと同時に切替器10を
主制御演算器8側から手動操作器9側へ切替えて低下指
令を与える。この低下指令は積分動作が一般的であり、
主制御演算部8は増加要求をT/D給水ポンプ18に与
えることにより切替え完了まで進行する(回転数制御に
移行)。そして、原子炉圧力容器1への給水流量2が完
全にM/D給水ポンプ17からT/D給水ポンプ18に
切替わった時点で、M/D給水ポンプ17の駆動モータ
(図示せず)を停止する。
While the M/D feedwater pump 17 is in operation, the cooling water level 3 in the reactor pressure vessel 1 is controlled by the feedwater control valve 13. When switching the water supply pump from electric motor drive to turbine drive from this state, the T/D water pump 18 is first started to increase the rotation speed, and then the rotation speed is kept constant. Next T/D
The rotation speed of the water supply pump 18 is gradually increased by the manual operation device 9, the discharge pressure of the T/D water supply pump 18 is brought close to the pressure of the water supply discharge header 19 (pressure equalization control), and the discharge pressure of the M/D water supply pump 18 is be equal to or higher than Thereafter, the rotation speed of the T/D water pump 18 is further increased manually, and the discharge flow rate of the T/D water pump 18 is gradually increased. At this time, the water supply control of the M/D water supply pump 17 is automatic, and the water supply control valve 13 is throttled by the amount that the flow rate has increased by the T/D water supply pump 18, and the M/D water supply pump 17 is automatically controlled.
Decrease the water supply flow rate from the D water supply pump 17. When this flow rate adjustment progresses further and the water supply flow rate from the T/D water supply pump 18 and the water supply flow rate from the M/D water supply pump 17 become equal, the switch 11 is moved from the manual operation device 9 side to the main control calculator 8 side. Switch to At the same time, the switch 10 is switched from the main control calculator 8 side to the manual operating device 9 side to give a lowering command. This lowering command is generally an integral action,
The main control calculation unit 8 gives an increase request to the T/D water supply pump 18, thereby proceeding until the switching is completed (shifting to rotation speed control). Then, when the water supply flow rate 2 to the reactor pressure vessel 1 is completely switched from the M/D water supply pump 17 to the T/D water supply pump 18, the drive motor (not shown) of the M/D water supply pump 17 is turned off. Stop.

このようにして給水ポンプを電動機駆動からタービン駆
動へ切替える際、各給水ポンプ17゜18の再循環系2
3.24は自動で作動しており、給水流量が増加した分
だけT/D給水ポンプ18の再循環系24は流量を減少
させ、T/D給水ポンプ18の吸込み流量を一定に保っ
ている。ところが、T/D給水ポンプ18の再循環流量
が減少すると、給水吸込みヘッダー20の下流には高圧
復水ポンプ21と低圧復水ポンプ22が直列に設置され
ているため、上記復水ポンプ21.22の吐出圧力が上
昇してT/D給水ポンプ18の回転数が一定であっても
、吸込み流量が増加することになる。この吸込み流量の
増加分は再循環流lの減少分に比べて大きいため、再び
再循環系24にフィードバック(この場合正帰還)され
、T/D給水ポンプ18の流量111J III系(蒸
気加減弁15またはガバナ14)が主制御演算部8の修
正動作を待たずに発散方向に動作する。そして、これが
給水1IIIIIl系に外乱として働き、M/D給水ポ
ンプ17からT/D給水ポンプ18への切替えができな
くなる。
When switching the water supply pump from electric motor drive to turbine drive in this way, the recirculation system 2 of each water supply pump 17 and 18
3.24 is automatically operated, and the recirculation system 24 of the T/D water pump 18 decreases the flow rate by the amount that the water supply flow rate increases, thereby keeping the suction flow rate of the T/D water pump 18 constant. . However, when the recirculation flow rate of the T/D water supply pump 18 decreases, since the high pressure condensate pump 21 and the low pressure condensate pump 22 are installed in series downstream of the water supply suction header 20, the condensate pump 21. Even if the discharge pressure of the T/D water pump 18 increases and the rotational speed of the T/D water pump 18 remains constant, the suction flow rate increases. Since this increase in the suction flow rate is larger than the decrease in the recirculation flow l, it is fed back again to the recirculation system 24 (positive feedback in this case), and the flow rate 111J of the T/D feed water pump 18 is 15 or the governor 14) operates in the divergent direction without waiting for the correction operation of the main control calculation unit 8. This acts as a disturbance on the water supply system, making it impossible to switch from the M/D water pump 17 to the T/D water pump 18.

この現象を第4図を参照してさらに詳細に説明すると、
M/D給水ポンプ17の単独運転時に原子炉圧力容器1
へ供給される給水流量はQAとなっており、その時の吐
出圧力(給水吐出ヘッダー19)はPとなっている。こ
の状態からT/D給水ポンプ18が起動され、均圧制−
が行われるとT/D給水ポンプ18の回転数r1と再循
環流量調整弁26の絞り損失aとの交点(給水出始め点
)にてT/D給水ポンプ18からの給水が開始される。
This phenomenon will be explained in more detail with reference to FIG.
Reactor pressure vessel 1 during independent operation of M/D feed water pump 17
The water supply flow rate supplied to is QA, and the discharge pressure (water supply discharge header 19) at that time is P. From this state, the T/D water pump 18 is started, and pressure equalization is controlled.
When this is performed, water supply from the T/D water pump 18 is started at the intersection of the rotational speed r1 of the T/D water pump 18 and the throttling loss a of the recirculation flow rate adjustment valve 26 (water supply start point).

そして、このとき高圧復水ポンプ21と低圧復水ポンプ
22は吐出圧力P1にて運転される。
At this time, the high pressure condensate pump 21 and the low pressure condensate pump 22 are operated at the discharge pressure P1.

この状態でM/D給水ポンプ17からT/D給水ポンプ
18への切替えを行なうが、T/D給水ポンプ18によ
る給水流量が発生すると吸込み流量が増加するため、再
循環流量調整弁26は絞られる。これによりT/D給水
ポンプ18の再循環流量はQaからQo (絞り損失が
増大して抵抗曲線がaからbに移行する。)へ変化し、
このときの変化量(ΔQ−)分だけ高圧及び低圧復水ポ
ンプ21.22の吐出圧力がPlからP2へ上昇する。
In this state, the M/D water supply pump 17 is switched to the T/D water supply pump 18, but when the water supply flow rate from the T/D water pump 18 occurs, the suction flow rate increases, so the recirculation flow rate adjustment valve 26 is restricted. It will be done. As a result, the recirculation flow rate of the T/D water pump 18 changes from Qa to Qo (the throttling loss increases and the resistance curve shifts from a to b).
The discharge pressure of the high-pressure and low-pressure condensate pumps 21 and 22 increases from Pl to P2 by the amount of change (ΔQ-) at this time.

そして、この高圧及び低圧復水ポンプ21,22の吐出
圧力が上昇した分(Δqゝ)だけT/D給水給水ポンプ
ロ転数が一定(rr )にもかかわらず吐出圧力が増加
(r2)L/、その結果給水流lがQDまで増加するこ
とになる。そして、これと共に吸込み流量も同様に増加
するため再循環流量弁26はさらに絞られ、ついには全
閉状態となる。
Even though the rotation speed of the T/D water supply pump is constant (rr), the discharge pressure increases (r2) L/ , which results in an increase in the feedwater flow l to QD. At the same time, the suction flow rate also increases, so the recirculation flow valve 26 is further throttled and finally becomes fully closed.

以上の繰り返しによりT/D給水ポンプ18の給水流量
は切替え点流量QAまで増加するため、給水ポンプの切
替えを行なうためには高圧及び低圧復水ポンプ21.2
2の吐出圧力が増加した分だけT/D給水ポンプ18の
回転数を引下げ、給水流量を減少させなくてはならない
。この場合、T/D給水ポンプ18の再循環流量が設定
値以下となり、再循環流量調整弁24が開動作し、最終
的には全開状態となるため、給水制卸と再循環制御とが
干渉し合う。これはT/D給水ポンプ18と給水吐出ヘ
ッダー19間の系統損失が非常に小さいため、高圧及び
低圧復水ポンプ21,22の吐出圧力変化に対する給水
流量の変化が大きいために生ずる。
By repeating the above, the water supply flow rate of the T/D water supply pump 18 increases to the switching point flow rate QA, so in order to switch the water supply pump, the high pressure and low pressure condensate pumps 21.2
The rotation speed of the T/D water supply pump 18 must be lowered by the amount that the discharge pressure of No. 2 has increased, and the water supply flow rate must be reduced. In this case, the recirculation flow rate of the T/D water supply pump 18 falls below the set value, and the recirculation flow rate adjustment valve 24 opens and eventually becomes fully open, causing interference between water supply control and recirculation control. We share each other. This occurs because the system loss between the T/D water supply pump 18 and the water supply discharge header 19 is very small, so the change in the water supply flow rate with respect to the change in the discharge pressure of the high-pressure and low-pressure condensate pumps 21 and 22 is large.

〔発明の目的〕[Purpose of the invention]

本発明は上記の問題点を解決するためになされたもので
、その目的は給水ポンプの切替時に給水制御と再循環制
御との干渉を防止できる給水制御装置を提供することに
ある。
The present invention has been made to solve the above problems, and its purpose is to provide a water supply control device that can prevent interference between water supply control and recirculation control when switching the water supply pump.

〔発明の概要〕[Summary of the invention]

本発明は上記の目的を達成するために、給水吐出ヘッダ
ーにタービン駆動給水ポンプとタービン駆動給水ポンプ
を給水吐出ヘッダーに並列に接続した給水制御装置にお
いて、上記タービン駆動給水ポンプの吐出ラインに第1
の開閉弁を設置するとともに電動機駆動給水ポンプの吐
出ラインに第2の開閉弁を設置し、かつ上記第1の開閉
弁の上流側と第2の開閉弁の下流側とを第3の開閉弁を
介して接続したことを特徴とするものである。
In order to achieve the above object, the present invention provides a water supply control device in which a turbine-driven water supply pump and a turbine-driven water supply pump are connected in parallel to the water supply discharge header, in which a first line is connected to the discharge line of the turbine-driven water supply pump.
At the same time, a second on-off valve is installed in the discharge line of the electric motor-driven water supply pump, and a third on-off valve is connected between the upstream side of the first on-off valve and the downstream side of the second on-off valve. It is characterized by being connected via.

〔発明の実施例〕[Embodiments of the invention]

以下、第1図および第2図を参照して本発明の一実施例
を説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は本発明による給水制御[l装置の一実施例を示
す図で、図中第3図と同一部分には同一符号を付し、重
複部分の説明は省略する。本実施例が従来例と異なる点
は、T/D給水ポンプ18の吐出ラインに第1の開閉弁
31を設置するとともにM/D給水ポンプ17の吐出ラ
インに第2の開閉弁32を設置し、かつ上記第1の開閉
弁31の上流側と第2の開閉弁32の下流側とを第3の
開閉弁33を介して接続したことである。
FIG. 1 is a diagram showing an embodiment of the water supply control device according to the present invention. In the figure, the same parts as in FIG. This embodiment differs from the conventional example in that a first on-off valve 31 is installed in the discharge line of the T/D water pump 18, and a second on-off valve 32 is installed in the discharge line of the M/D water pump 17. , and the upstream side of the first on-off valve 31 and the downstream side of the second on-off valve 32 are connected via the third on-off valve 33.

次に上記構成による作用について説明する。Next, the effect of the above configuration will be explained.

M/Dポンプ17の単独運転時は第1および第3の開閉
弁31.33を全開とし、給水調節弁13にて給水制御
を行なう。この状態から給水ポンプを電動機駆動からタ
ービン駆動へ切替える場合は、まずT/D給水ポンプ1
8を起動して回転数を上げ、その後回転数を一定に保つ
。なお、このとき再循環系24の再循環流量調整弁26
は全開となっており、T/D給水ポンプ18は再循環運
転を行なっている。次にこの状態で第2の開閉弁32を
徐閉し、第3の開閉弁33を徐開する。
When the M/D pump 17 is operating independently, the first and third on-off valves 31 and 33 are fully opened, and the water supply control valve 13 controls the water supply. When switching the water supply pump from electric motor drive to turbine drive from this state, first
8 and increase the rotation speed, then keep the rotation speed constant. In addition, at this time, the recirculation flow rate adjustment valve 26 of the recirculation system 24
is fully open, and the T/D water supply pump 18 is performing recirculation operation. Next, in this state, the second on-off valve 32 is gradually closed, and the third on-off valve 33 is gradually opened.

これによりT/D給水ポンプ18から吐出された冷却水
は第3の開閉弁33を通り、給水調節弁12を経て給水
吐出ヘッダー19へ供給される。
As a result, the cooling water discharged from the T/D water supply pump 18 passes through the third on-off valve 33 and is supplied to the water supply discharge header 19 via the water supply control valve 12.

そして、切替器10を主制御演算部8から手動操作器9
へ切替えて均圧制神を行なった後、給水ポンプをM/D
給水ポンプ17からT/D給水ポンプ18へ切替える。
Then, the switch 10 is transferred from the main control calculation section 8 to the manual operation device 9.
After switching to and performing pressure equalization, turn the water supply pump to M/D.
The water supply pump 17 is switched to the T/D water supply pump 18.

このときT/D給水ポンプ18の再循環流量が第2図に
示す如<QaからQcに変化し、T/D給水ポンプ18
の吐出圧JJがrlからr2に変化するが、給水!li
1箇弁12ICより絞り制御を行なっているためT/D
給水ポンプ18の給水流量はQo’ となるが、Qo’
=Q日であるため吸込み流lの増加とはならない。その
結果、再循環系24への流lフィードバックとしては発
散することなく適正に制御される。そして、M/D給水
ポンプ17からT/D給水ポンプ18への切替え完了後
、第1の開閉弁31を徐開にしてT/D給水ポンプ18
の回転数を主演算制御部8により制御することにより原
子炉圧力容器1内の冷却水位3は一定にかつ安定に保た
れる。
At this time, the recirculation flow rate of the T/D water pump 18 changes from <Qa to Qc as shown in FIG.
The discharge pressure JJ changes from rl to r2, but water supply! li
T/D because throttle control is performed from 1 valve 12 IC
The water supply flow rate of the water supply pump 18 is Qo', but Qo'
= Q day, so the suction flow l does not increase. As a result, the flow feedback to the recirculation system 24 is appropriately controlled without divergence. After the switching from the M/D water pump 17 to the T/D water pump 18 is completed, the first on-off valve 31 is gradually opened and the T/D water pump 18
The cooling water level 3 in the reactor pressure vessel 1 is kept constant and stable by controlling the rotation speed of the reactor pressure vessel 1 by the main calculation control unit 8.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、タービン駆動給水ポ
ンプの吐出ラインに第1の開閉弁を設置プるとともに電
動機駆動給水ポンプの吐出ラインに第2の開閉弁を設置
し、かつ上記第1の開閉弁の上流側と第2の開閉弁の下
流側とを第3の開閉弁を介して接続したことにより、給
水ポンプの切替時に給水制御と再循環制御との干渉を防
止でき、原子炉圧力容器内の冷却水位を常に一定にかつ
安定に保つことができる。
As described above, according to the present invention, the first on-off valve is installed in the discharge line of the turbine-driven water supply pump, and the second on-off valve is installed in the discharge line of the motor-driven water supply pump, and the first on-off valve is installed in the discharge line of the motor-driven water supply pump. By connecting the upstream side of the on-off valve and the downstream side of the second on-off valve via the third on-off valve, interference between water supply control and recirculation control can be prevented when switching the feed water pump, and the reactor The cooling water level inside the pressure vessel can always be kept constant and stable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例を示し、第1図
は本発明に係る給水制御装置の要部を示す構成図、第2
図は給水流量と吐出圧力との関係を示す線図、第3図お
よび第4図は従来例を示し、第3図は給水制御装置の概
略構成図、第4図は給水流量と吐出圧力との関係を示す
線図である。 1・・・原子炉圧力容器、5・・・給水流量検出器。 6・・・水位検出器、7・・・主蒸気流量検出器、8・
・・主制御演算部、12.13・・・給水調節弁、15
・・・蒸気加減弁、17・・・M/D給水ポンプ、18
・・・T/D給水ポンプ、19・・・給水吐出ヘッダ+
、25.26・・・再循環弁、31・・・第1の開閉弁
。 32・・・第2の開閉弁、33・・・第3の開閉弁。 出願人代理人 弁理士 鈴江武彦 1i12 図
1 and 2 show one embodiment of the present invention, FIG. 1 is a configuration diagram showing the main parts of the water supply control device according to the present invention, and FIG.
The figure is a diagram showing the relationship between the water supply flow rate and discharge pressure, Figures 3 and 4 show conventional examples, Figure 3 is a schematic diagram of the water supply control device, and Figure 4 is a diagram showing the relationship between the water supply flow rate and discharge pressure. FIG. 1... Reactor pressure vessel, 5... Water supply flow rate detector. 6...Water level detector, 7...Main steam flow rate detector, 8.
・・Main control calculation unit, 12.13 ・・Water supply control valve, 15
...Steam control valve, 17...M/D water supply pump, 18
...T/D water supply pump, 19...water supply discharge header +
, 25.26... Recirculation valve, 31... First on-off valve. 32... Second on-off valve, 33... Third on-off valve. Applicant's agent Patent attorney Takehiko Suzue 1i12 Figure

Claims (1)

【特許請求の範囲】[Claims] 給水吐出ヘッダーに電動機駆動給水ポンプとタービン駆
動給水ポンプを並列に接続した給水制御装置において、
上記タービン駆動給水ポンプの吐出ラインに第1の開閉
弁を設置するとともに電動機駆動給水ポンプの吐出ライ
ンに第2の開閉弁を設置し、かつ上記第1の開閉弁の上
流側と第2の開閉弁の下流側とを第3の開閉弁を介して
接続したことを特徴とする原子力プラントの給水制御装
置。
In a water supply control device in which a motor-driven water supply pump and a turbine-driven water supply pump are connected in parallel to a water supply discharge header,
A first on-off valve is installed in the discharge line of the turbine-driven water supply pump, and a second on-off valve is installed on the discharge line of the motor-driven water supply pump, and a second on-off valve is installed on the upstream side of the first on-off valve and a second on-off valve. A water supply control device for a nuclear power plant, characterized in that the downstream side of the valve is connected to the downstream side of the valve via a third on-off valve.
JP60108701A 1985-05-21 1985-05-21 Feed water controller for nuclear power plant Pending JPS61265402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60108701A JPS61265402A (en) 1985-05-21 1985-05-21 Feed water controller for nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60108701A JPS61265402A (en) 1985-05-21 1985-05-21 Feed water controller for nuclear power plant

Publications (1)

Publication Number Publication Date
JPS61265402A true JPS61265402A (en) 1986-11-25

Family

ID=14491431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60108701A Pending JPS61265402A (en) 1985-05-21 1985-05-21 Feed water controller for nuclear power plant

Country Status (1)

Country Link
JP (1) JPS61265402A (en)

Similar Documents

Publication Publication Date Title
US4651530A (en) Method and apparatus for feed-water control in a steam generating plant
WO2024120122A1 (en) Method for automatically adjusting steam feed pump near critical point at which recirculation valve is opened
JPS61265402A (en) Feed water controller for nuclear power plant
JP3039874B2 (en) Reactor isolation cooling system
JPS6020192A (en) Controller for output from reactor
JP2645766B2 (en) Power recovery system for steam supply line
JP2632147B2 (en) Combined cycle plant
JPS58178105A (en) Control system of feedwater
JPS6277506A (en) Feedwater controller
JPS61231308A (en) Method of controlling feed pump for nuclear reactor
JPS63302201A (en) Feedwater controller
JPS6239657B2 (en)
JPS62138604A (en) Feedwater controller for nuclear reactor
JPH01244204A (en) Low speed operating device for stand-by water supplying pump turbine
JPS6191405A (en) Feedwater facility in thermal power plant
JPH0245086B2 (en) TAABINKUDOKYUSUIHONPUNOSEIGYOSOCHI
JPS58117305A (en) Controller for pressure change of turbine plant
JPH02262097A (en) Controlling device for turbine driven feed water pump
JPH03241206A (en) Water supplying control device
JPS61272508A (en) Feed water controller for nuclear reactor
JPS6358005A (en) Feedwater flow controller for boiler
JPS59218998A (en) Reactor feedwater device
JPS60145488A (en) Controller for liquid supply system
JPS60200004A (en) Method of controlling feed pump
JPS59217195A (en) Reactor feedwater flowrate control device