JPS61265397A - Fluid driving apparatus - Google Patents

Fluid driving apparatus

Info

Publication number
JPS61265397A
JPS61265397A JP10508985A JP10508985A JPS61265397A JP S61265397 A JPS61265397 A JP S61265397A JP 10508985 A JP10508985 A JP 10508985A JP 10508985 A JP10508985 A JP 10508985A JP S61265397 A JPS61265397 A JP S61265397A
Authority
JP
Japan
Prior art keywords
frequency
fluid
pressure sensor
driving
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10508985A
Other languages
Japanese (ja)
Other versions
JPH0578679B2 (en
Inventor
Isao Inui
勲 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10508985A priority Critical patent/JPS61265397A/en
Publication of JPS61265397A publication Critical patent/JPS61265397A/en
Publication of JPH0578679B2 publication Critical patent/JPH0578679B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To maintain the max. working efficiency by controlling the frequency of a driving electric wave by a controller so that the vibration state in the space formed by a case body or the inside of a driving tube by the signal supplied from a pressure sensor installed into the case body or the driving tube. CONSTITUTION:When the Helmholtz's resonance frequency of the captioned apparatus is varied by the variation of the fluid temperature, etc., the frequency of an electric power apparatus 20, namely the vibration frequency of a vibrating plate 13 is kept constant, and the resonance conditions are broken, and the pressure in a space 11 lowers. Therefore, the output signal of a pressure sensor 21 lowers, and the frequency of the electric power apparatus 20 is controlled by a controller 22 through the utilization of the reduction portion of the signal. Therefore, when control is carried out so that the reduction portion of the above-described signal becomes zero, and the level of the output signal of the pressure sensor 21 becomes max., a driving tube 12 vibrates in the accord with the Helmholtz's resonance frequency, and the driving efficiency of fluid can be maintained to the max.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は気体や液体等の流体を搬送するための流体駆
動装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION This invention relates to a fluid drive device for conveying fluids such as gases and liquids.

従来の技術 安価な流体駆動装置を得るためには往復運動を駆動源に
することが望ましい。往復運動を駆動源とした第2図に
示す装置は、容積Vなる空間11と断面画人、長さLな
る駆動管12とでヘルムホルツの共鳴条件を満たしてお
り、空間11を抱含する筐体1oに取付けた振動板13
を(1)式で求められる周波数10で駆動すると、駆動
管12内部の柱状流体19はあたかも一体であるかのよ
うに図中左右方向に激しく振動運動を行う。
2. Description of the Related Art In order to obtain an inexpensive fluid drive device, it is desirable to use reciprocating motion as the drive source. The device shown in FIG. 2, which uses reciprocating motion as a driving source, satisfies the Helmholtz resonance condition with a space 11 with a volume of V, a cross-sectional image, and a drive tube 12 with a length L. Vibration plate 13 attached to body 1o
When driven at a frequency of 10 determined by equation (1), the columnar fluid 19 inside the drive tube 12 vibrates violently in the horizontal direction in the figure as if it were a single body.

空間11と駆動管12とで構成される共鳴器の共鳴周波
数10は (1)式で求められる。
The resonant frequency 10 of the resonator composed of the space 11 and the drive tube 12 is determined by equation (1).

ここにCは流体の音速、πは円周率、αは修正係数を示
す。
Here, C is the sound velocity of the fluid, π is pi, and α is the correction coefficient.

柱状流体19が右側に動く時、駆動管12の入口近辺の
流体は右方向に駆動される。柱状流体19が左側に動く
過程では発生する負圧によって入口近傍の外側で静止し
ていた流体が図の曲線で示すように、管内に吸い込まれ
、次に柱状流体19が再び右方向に動く時に右方向に駆
動される。その結果、運転開始後、数サイクルで図の矢
印で示すような流れが形成される。駆動管12の入口近
傍では流れは乱れているが、少し下流では図の直線で示
すように、脈動の少いほぼ一定した流速の流れが形成さ
れる。したがって往復運動をする振動板を駆動源としな
がら平滑装置を必要とせず滑らかな流れが得られるとと
もに電動機等による回転駆動源のような大きな回転慣性
を有していないから応答性のよい流量制御を行うことが
できる。
When the columnar fluid 19 moves to the right, the fluid near the inlet of the drive tube 12 is driven to the right. During the process in which the columnar fluid 19 moves to the left, the fluid that has been stationary outside near the inlet is sucked into the pipe by the negative pressure generated, as shown by the curve in the figure, and then when the columnar fluid 19 moves to the right again. Driven to the right. As a result, a flow as shown by the arrow in the figure is formed within a few cycles after the start of operation. Although the flow is turbulent near the inlet of the drive pipe 12, slightly downstream, as shown by the straight line in the figure, a flow with a substantially constant flow velocity with little pulsation is formed. Therefore, using a reciprocating diaphragm as the drive source, a smooth flow can be obtained without the need for a smoothing device, and since it does not have large rotational inertia like a rotary drive source such as an electric motor, responsive flow control can be achieved. It can be carried out.

発明が解決しようとする問題点 ところが、本装置の流体の駆動原理はへルムホルツの共
鳴現象によるが、ヘルムホルツの共鳴現象は流体の温度
変化等によって共鳴周波数が変化しやすいため、振動板
の駆動電源17の周波数が一定のままであると共鳴現象
から外れ出し、流体の駆動効率が低下する。また、往復
運動の駆動源は一般的に回転式の駆動源に比べて仕事効
率が悪いものである。
Problems to be Solved by the Invention However, the driving principle of the fluid in this device is based on the Helmholtz resonance phenomenon, but the resonant frequency of the Helmholtz resonance phenomenon tends to change due to changes in the temperature of the fluid, etc. If the frequency of 17 remains constant, it will deviate from the resonance phenomenon and the fluid driving efficiency will decrease. Further, reciprocating drive sources generally have lower work efficiency than rotary drive sources.

したがってこの従来例の流体駆動装置では流体の温度変
化等によって仕事効率が低下する欠点を有しており、振
動板の駆動周波を常に共鳴周波数に一致させて仕事効率
を最大に保つことが必要である。
Therefore, this conventional fluid drive device has the disadvantage that the work efficiency decreases due to changes in fluid temperature, etc., and it is necessary to keep the work efficiency at its maximum by always matching the driving frequency of the diaphragm to the resonance frequency. be.

問題点を解決するための手段 本発明は上記問題点を解決するために空間を形成する筐
体または駆動管に圧力センサを装置して流体の振動状態
を検出し、その信号によって振動板の駆動周波数を制御
する制御装置を駆動電源に設けたものである。
Means for Solving the Problems In order to solve the above problems, the present invention detects the vibration state of the fluid by installing a pressure sensor in the casing or drive pipe that forms the space, and uses the signal to drive the diaphragm. The drive power source is equipped with a control device that controls the frequency.

作用 この技術手段によって前記筐体または駆動管に取り付け
だ圧力センサからの信号で、筐体で形成する空間または
駆動管の内部の振動状態が最大になるように、駆動電源
の周波数を制御装置で制御すれば、ヘルムホルツの共鳴
現象が最大条件で維持されていることになり仕事効率も
最大に保てることになる。
Operation: By using this technical means, the frequency of the drive power source is controlled by the control device so that the vibration state inside the space formed by the housing or the drive tube is maximized based on the signal from the pressure sensor attached to the housing or the drive tube. If controlled, the Helmholtz resonance phenomenon will be maintained at maximum conditions, and work efficiency will also be maintained at its maximum.

実施例 第1図は本発明の一実施例を示す横断面図で、筐体1o
の内部に圧力センサ21を装着しである。
Embodiment FIG. 1 is a cross-sectional view showing an embodiment of the present invention.
A pressure sensor 21 is installed inside.

圧力センサ21で検出した圧力信号は接続ケーブル23
を介して制御装置22に伝えられる。制御装置22は電
源装置2oと電気的につながっている0 その他の構成2作用は第2図に示す従来例と同じである
。次にこの装置について説明する。この装置を始動する
と従来例について説明したように駆動管12内の柱状流
体19は激しい振動運動を行う。このことはそれに応じ
て空間11の内部でも激しい圧力振動が発生しているこ
とを意味している。圧力センサ21によってこの圧力振
動の様子を検出する。今、流体の温度等の変化が原因と
なってこの装置のへルムホルッの共鳴周波数が変化した
とすると、それにもかかわらず電源装置2゜の周波数す
なわち振動板13の振動周波数が一定のままであると共
振条件がくずれて空間11内の圧力が低下する。したが
って圧力センサ21の出力信号が低下するため、この信
号の低下分を利用して制御装置22によシミ源装置2o
の周波数を制御し、前記信号の低下分が零になるように
、または圧力センサ21の出力信号のレベルが最大にな
るように制御すれば常に振動板12はへルムポルツの共
鳴周波数に一致して振動していることになり、流体の駆
動効率も最大に維持されていることになる。
The pressure signal detected by the pressure sensor 21 is sent to the connection cable 23.
The information is transmitted to the control device 22 via. The control device 22 is electrically connected to the power supply device 2o.The other functions of the configuration 2 are the same as those of the conventional example shown in FIG. Next, this device will be explained. When this device is started, the columnar fluid 19 within the drive tube 12 undergoes a violent oscillating motion, as described in the conventional example. This means that intense pressure oscillations are occurring within the space 11 as well. The pressure sensor 21 detects this pressure vibration. Now, if the Helmholt resonant frequency of this device changes due to a change in the temperature of the fluid, etc., the frequency of the power supply device 2°, that is, the vibration frequency of the diaphragm 13, remains constant despite this. The resonance condition is broken and the pressure in the space 11 decreases. Therefore, since the output signal of the pressure sensor 21 decreases, this decrease in signal is used to control the control device 22 to control the stain source device 2o.
If the frequency of the diaphragm 12 is controlled so that the drop in the signal becomes zero or the level of the output signal of the pressure sensor 21 is maximized, the diaphragm 12 always matches the Helmpoltz resonance frequency. This means that the fluid is vibrating, and the fluid driving efficiency is maintained at its maximum.

発明の効果 本発明は往復運動をする駆動源を用いながら流速の脈動
成分の少い安定した流量で、しかも流量の制御性の良い
流れの特性を維持し、常に最大仕事効率で使用できる流
体駆動装置を安価に提供できる。
Effects of the Invention The present invention provides a fluid drive that uses a reciprocating drive source, maintains a stable flow rate with little pulsation component, maintains flow characteristics with good controllability, and can always be used at maximum work efficiency. The device can be provided at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の流体駆動装置を示す横断面
図、第2図は従来例を示す横断面図である0 10・・・・・・筐体、11・・・・・・空間、12・
・・・・・駆動管、13・・・・・・振動板、20・・
・・・・電源装置、21・・・・・・圧力センサ、22
・・・・・・制御装置、23・・・・・・接続ケーブル
FIG. 1 is a cross-sectional view showing a fluid drive device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a conventional example.・Space, 12・
... Drive tube, 13 ... Vibration plate, 20 ...
...Power supply device, 21...Pressure sensor, 22
...Control device, 23...Connection cable.

Claims (1)

【特許請求の範囲】[Claims] 筐体と前記筐体に連接された駆動管と前記筐体に設けら
れた振動板とでヘルムホルツの共鳴条件を構成し、前記
筐体あるいは駆動管に圧力センサを設け、この圧力セン
サの出力により前記振動板を振動する電源装置の周波数
を制御する制御装置を備えた流体駆動装置。
A casing, a drive tube connected to the casing, and a diaphragm provided on the casing form a Helmholtz resonance condition, a pressure sensor is provided in the casing or the drive tube, and the output of the pressure sensor A fluid drive device including a control device that controls a frequency of a power supply device that vibrates the diaphragm.
JP10508985A 1985-05-17 1985-05-17 Fluid driving apparatus Granted JPS61265397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10508985A JPS61265397A (en) 1985-05-17 1985-05-17 Fluid driving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10508985A JPS61265397A (en) 1985-05-17 1985-05-17 Fluid driving apparatus

Publications (2)

Publication Number Publication Date
JPS61265397A true JPS61265397A (en) 1986-11-25
JPH0578679B2 JPH0578679B2 (en) 1993-10-29

Family

ID=14398188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10508985A Granted JPS61265397A (en) 1985-05-17 1985-05-17 Fluid driving apparatus

Country Status (1)

Country Link
JP (1) JPS61265397A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283877A (en) * 1989-04-21 1990-11-21 Mitsubishi Kasei Corp Vibrator pump and running method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140491A (en) * 1982-02-16 1983-08-20 Matsushita Electric Ind Co Ltd Flow generating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140491A (en) * 1982-02-16 1983-08-20 Matsushita Electric Ind Co Ltd Flow generating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283877A (en) * 1989-04-21 1990-11-21 Mitsubishi Kasei Corp Vibrator pump and running method therefor

Also Published As

Publication number Publication date
JPH0578679B2 (en) 1993-10-29

Similar Documents

Publication Publication Date Title
US4834619A (en) Ducted oscillatory blade fan
US5670709A (en) Transducer for the measurement of attributes of flowable media
JP3122155B2 (en) Drive mechanism
JP3997318B2 (en) Pump control method and control apparatus
JPH01151967A (en) Ultrasonic atomizing apparatus for liquid medium
EP0422065B1 (en) Control unit for a low frequency sound generator
JPS61265397A (en) Fluid driving apparatus
JPS62186077A (en) Driving method for piezoelectric pump
JPS61265398A (en) Fluid driving apparatus
Hasegawa et al. Characteristics of ultrasonic suction pump without moving parts
JP2589675B2 (en) Thin film forming equipment
JPH03182624A (en) Intake structure of internal combustion engine
SU1303770A1 (en) Pneumatic vibration isolator
SU1144090A1 (en) Device for adjusting gas flow speed
SU1023458A1 (en) Vibromotor
JPS61265396A (en) Fluid driving apparatus
JPS62159799A (en) Fluid drive device
SU895549A1 (en) Oscillation hydraulic exciter
KR940005041B1 (en) Active vibration control device of compressor
SU525483A1 (en) Electro-acoustic device
JPH03274418A (en) Ultrasonic sensor
SU1498945A1 (en) Diaphragm compressor
RU2064095C1 (en) Vibropump
KR950026478A (en) Vacuum cleaner
JPH01159472A (en) Device for operating piezoelectric pump