JPH0578679B2 - - Google Patents

Info

Publication number
JPH0578679B2
JPH0578679B2 JP60105089A JP10508985A JPH0578679B2 JP H0578679 B2 JPH0578679 B2 JP H0578679B2 JP 60105089 A JP60105089 A JP 60105089A JP 10508985 A JP10508985 A JP 10508985A JP H0578679 B2 JPH0578679 B2 JP H0578679B2
Authority
JP
Japan
Prior art keywords
fluid
drive
space
frequency
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60105089A
Other languages
Japanese (ja)
Other versions
JPS61265397A (en
Inventor
Isao Inui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10508985A priority Critical patent/JPS61265397A/en
Publication of JPS61265397A publication Critical patent/JPS61265397A/en
Publication of JPH0578679B2 publication Critical patent/JPH0578679B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は気体や液体等の流体を搬送するため
の流体駆動装置に関するものである。 従来の技術 安価な流体駆動装置を得るためには往復運動を
駆動源にすることが望ましい。往復運動を駆動源
とした第2図に示す装置は、容積Vなる空間11
と断面積A、長さLなる駆動管12とでヘルムホ
ルツの共鳴条件を満たしており、空間11を抱含
する筐体10に取付けた振動板13を(1)式で求め
られる周波数0で駆動すると、駆動管12内部の
柱状流体19はあたかも一体であるかのように図
中左右方向に複振幅abで振動運動を行う。 空間11と駆動管12とで構成される共鳴器の
共鳴周波数0
INDUSTRIAL APPLICATION FIELD This invention relates to a fluid drive device for conveying fluid such as gas or liquid. Prior Art In order to obtain an inexpensive fluid drive device, it is desirable to use reciprocating motion as the drive source. The device shown in FIG. 2 which uses reciprocating motion as a driving source has a space 11 with a volume of V.
The drive tube 12 with a cross-sectional area of A and a length of L satisfies the Helmholtz resonance condition, and the diaphragm 13 attached to the housing 10 containing the space 11 is driven at a frequency of 0 determined by equation (1). Then, the columnar fluid 19 inside the drive tube 12 vibrates with a double amplitude ab in the horizontal direction in the figure as if it were a single body. The resonance frequency 0 of the resonator composed of the space 11 and the drive tube 12 is

【化】 (1)式で求められる。 ここにCは流体の音速、πは円周率、αは修正
係数を示す。 この柱状流体19の振動運動によつて第二の駆
動源が構成される。直径18mm、長さが160mmの駆
動管で共鳴周波数135Hzの例では、abは約10mmで
あつた。柱状流体19が図の右方向、aからbに
動くとき駆動管12のab部分の流体は右方向に
駆動される。柱状流体19が右側最大振幅bの位
置に至ると、次にbからaの左方向の運動に変わ
る。柱状流体19が左に移動するにつれて、駆動
管12の入口部分に負圧が発生するが、右方向に
駆動された流体は慣性力で、駆動管12の軸心に
沿つて右方向に流れ続ける。 その結果、駆動管12の端部に発生した負圧部
分には、駆動管12の入口端部の全円周域から、
周囲近傍の流体が流れ込む。柱状流体19が左方
向に動くにつれて、この周囲の流体も流れ込み続
ける。柱状流体19は、左側最大振幅の位置aに
到達すると、再び右方向に運動方向を変える。こ
の時周囲より流れ込んだ流体は、柱状流体19部
分に流れ込むことなく右方向に駆動され図中、曲
線Aで示すように流れ、さらにBの流れとなる。
この様子はストロボスコープと煙とで観測するこ
とが出来る。 駆動管ab部分に流れ込んだ流体が右方向に駆
動されBの流れになる過程では、駆動管12の周
囲近傍の流体は、Bの流れの粘性力により、一部
が右方向に流れるものと考えられる。この伴流の
流れの状態及び駆動管12の出口直近の流れの状
態は、観測が難しく十分には解明できていない。 以降同じ過程が繰り返されることにより、駆動
管12の軸心にそう右方向の連続的な流れが形成
される。駆動管12の軸心上、出口bの下流方向
(右方向)5cm位置で流速を測定すると、平均流
速3.4m/secに対して流速変動が+0.8m/secで、
脈動の少ない一定流速の右方向の流れが形成され
ていることが確認された。 この流体駆動装置は、流れを運転開始後数サイ
クルで形成することができ、非常に応答性の高い
流れを得ることが出来る。また、往復運動をする
振動板13を第一駆動源として、駆動管12内部
の柱状流体19の往復運動として形成される第二
の駆動源を直接的な駆動源としながら、平滑装置
を必要とせず滑らかな流れが得られるとともに電
動機等による回転駆動源のような大きな回転慣性
を有していないから応答性のよい流量制御を行う
ことができる。 発明が解決しようとする問題点 ところが、本装置の流体の駆動原理はヘルムホ
ルツの共鳴現象によるが、ヘルムホルツの共鳴現
象は流体の温度変化等によつて共鳴周波数が変化
しやすいため、振動板の駆動電源17の周波数が
一定のままであると共鳴現象から外れ出し、流体
の駆動効率が低下する。また、往復運動の駆動源
は一般的に回転式の駆動源に比べて仕事効率が悪
いものである。 したがつてこの従来例の流体駆動装置では流体
の温度変化等によつて仕事効率が低下する欠点を
有しており、振動板の駆動周波を常に共鳴周波数
に一致させて仕事効率を最大に保つことが必要で
ある。 問題点を解決するための手段 本発明は上記問題点を解決するために空間を形
成する筐体または駆動管に圧力センサを装置して
流体の振動状態を検出し、その信号によつて振動
板の駆動周波数を制御する制御装置を駆動電源に
設けたものである。 作用 この技術手段によつて前記筐体または駆動管に
取り付けた圧力センサからの信号で、筐体で形成
する空間または駆動管の内部の振動状態が最大に
なるように、駆動電源の周波数を制御装置で制御
すれば、ヘルムホルツの共鳴現象が最大条件で維
持されていることになり仕事効率も最大に保てる
ことになる。 実施例 第1図は本発明の一実施例を示す横断面図で、
筐体10の内部に圧力センサ21を装着してあ
る。圧力センサ21で検出した圧力信号は接続ケ
ーブル23を介して制御装置22に伝えられる。
制御装置22は電源装置20と電気的につながつ
ている。 その他の構成、作用は第2図に示す従来例と同
じである。次にこの装置について説明する。この
装置を始動すると従来例について説明したように
駆動管12内の柱状流体19は激しい振動運動を
行う。このことはそれに応じて空間11の内部で
も激しい圧力振動が発生していることを意味して
いる。圧力センサ21によつてこの圧力振動の様
子を検出する。今、流体の温度等の変化が原因と
なつてこの装置のヘルムホルツの共鳴周波数が変
化したとすると、それにもかかわらず電源装置2
0の周波数すなわち振動板13の振動周波数が一
定のままであると共振条件がくずれて空間11内
の圧力が低下する。したがつて圧力センサ21の
出力信号が低下するため、この信号の低下分を利
用して制御装置22により電源装置20の周波数
を制御し、前記信号の低下分が零になるように、
または圧力センサ21の出力信号のレベルが最大
になるように制御すれば常に振動板12はヘルム
ホルツの共鳴周波数に一致して振動していること
になり、流体の駆動効率も最大に維持されている
ことになる。 発明の効果 本発明は往復運動をする駆動源を用いながら流
速の脈動成分の少い安定した流量で、しかも流量
の制御性の良い流れの特性を維持し、常に最大仕
事効率で使用できる流体駆動装置を安価に提供で
きる。
[C] Calculated using equation (1). Here, C is the sound velocity of the fluid, π is pi, and α is the correction coefficient. The vibration motion of this columnar fluid 19 constitutes a second driving source. In an example of a drive tube with a diameter of 18 mm and a length of 160 mm and a resonance frequency of 135 Hz, ab was approximately 10 mm. When the columnar fluid 19 moves to the right in the figure, from a to b, the fluid in the ab portion of the drive tube 12 is driven to the right. When the columnar fluid 19 reaches the position of the maximum amplitude b on the right side, the movement changes from b to a to the left. As the columnar fluid 19 moves to the left, negative pressure is generated at the inlet of the drive tube 12, but the fluid driven rightward continues to flow rightward along the axis of the drive tube 12 due to inertial force. . As a result, the negative pressure generated at the end of the drive tube 12 has the following effects:
Fluid from the surrounding area flows in. As the columnar fluid 19 moves to the left, the surrounding fluid also continues to flow in. When the columnar fluid 19 reaches the position a of maximum amplitude on the left side, it changes its direction of motion to the right again. At this time, the fluid flowing in from the surroundings is driven to the right without flowing into the columnar fluid 19 portion, and flows as shown by curve A in the figure, and then becomes a flow B.
This situation can be observed using a stroboscope and smoke. In the process in which the fluid that has flowed into the drive tube AB section is driven to the right and becomes the flow B, it is assumed that part of the fluid near the drive tube 12 flows to the right due to the viscous force of the flow B. It will be done. The state of the flow of this wake and the state of the flow in the immediate vicinity of the exit of the drive pipe 12 are difficult to observe and have not been fully elucidated. Thereafter, by repeating the same process, a continuous flow is formed in the right direction around the axis of the drive tube 12. When the flow velocity was measured at a position 5 cm downstream (to the right) of outlet b on the axis of the drive pipe 12, the flow velocity fluctuation was +0.8 m/sec with respect to the average flow velocity of 3.4 m/sec.
It was confirmed that a rightward flow with a constant velocity and little pulsation was formed. This fluid drive device can form a flow within a few cycles after starting operation, and can obtain a highly responsive flow. In addition, while the reciprocating diaphragm 13 is used as the first drive source and the second drive source formed as the reciprocating movement of the columnar fluid 19 inside the drive tube 12 is used as the direct drive source, a smoothing device is not required. A smooth flow can be obtained, and since it does not have large rotational inertia unlike a rotary drive source such as an electric motor, it is possible to perform flow control with good responsiveness. Problems to be Solved by the Invention However, although the principle of driving the fluid in this device is based on the Helmholtz resonance phenomenon, the resonant frequency of the Helmholtz resonance phenomenon tends to change due to changes in the temperature of the fluid, so it is difficult to drive the diaphragm. If the frequency of the power source 17 remains constant, it will deviate from the resonance phenomenon and the fluid driving efficiency will decrease. Further, reciprocating drive sources generally have lower work efficiency than rotary drive sources. Therefore, this conventional fluid drive device has the disadvantage that the work efficiency decreases due to temperature changes of the fluid, etc., and the work efficiency is kept to the maximum by always matching the driving frequency of the diaphragm to the resonance frequency. It is necessary. Means for Solving the Problems In order to solve the above-mentioned problems, the present invention detects the vibration state of the fluid by installing a pressure sensor in the casing or the drive pipe that forms the space, and uses the signal to detect the vibration state of the diaphragm. The drive power source is equipped with a control device that controls the drive frequency. Effect: By using this technical means, the frequency of the drive power source is controlled by the signal from the pressure sensor attached to the housing or the drive tube so that the vibration state inside the space formed by the housing or the drive tube is maximized. If controlled by a device, the Helmholtz resonance phenomenon will be maintained at maximum conditions, and work efficiency will also be maintained at its maximum. Embodiment FIG. 1 is a cross-sectional view showing an embodiment of the present invention.
A pressure sensor 21 is mounted inside the housing 10. A pressure signal detected by the pressure sensor 21 is transmitted to the control device 22 via the connection cable 23.
The control device 22 is electrically connected to the power supply device 20. Other configurations and operations are the same as the conventional example shown in FIG. Next, this device will be explained. When this device is started, the columnar fluid 19 within the drive tube 12 undergoes a violent oscillating motion as described in the conventional example. This means that intense pressure oscillations are occurring within the space 11 as well. The pressure sensor 21 detects this pressure vibration. Now, if the Helmholtz resonance frequency of this device changes due to a change in the temperature of the fluid, etc., the power supply device 2
If the zero frequency, that is, the vibration frequency of the diaphragm 13 remains constant, the resonance condition collapses and the pressure in the space 11 decreases. Therefore, since the output signal of the pressure sensor 21 decreases, the frequency of the power supply device 20 is controlled by the control device 22 using the decrease in the signal so that the decrease in the signal becomes zero.
Alternatively, if the level of the output signal of the pressure sensor 21 is controlled to be maximum, the diaphragm 12 will always vibrate in accordance with the Helmholtz resonance frequency, and the fluid drive efficiency will also be maintained at its maximum. It turns out. Effects of the Invention The present invention provides a fluid drive that uses a reciprocating drive source, maintains a stable flow rate with little pulsation component, maintains flow characteristics with good controllability, and can always be used at maximum work efficiency. The device can be provided at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の流体駆動装置を示
す横断面図、第2図は従来例を示す横断面図であ
る。 10……筐体、11……空間、12……駆動
管、13……振動板、20……電源装置、21…
…圧力センサ、22……制御装置、23……接続
ケーブル。
FIG. 1 is a cross-sectional view showing a fluid drive device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a conventional example. DESCRIPTION OF SYMBOLS 10... Housing, 11... Space, 12... Drive tube, 13... Vibration plate, 20... Power supply device, 21...
...Pressure sensor, 22...Control device, 23...Connection cable.

Claims (1)

【特許請求の範囲】[Claims] 1 中空容器の内部に振動板を気密に設けて容積
Vなる空間を形成し、前記容積Vなる空間に臨ん
で外部に連通して断面積A、長さLの駆動管を連
接すると共に、前記振動板を駆動するための周波
数可変の電源装置を設けた共鳴系を構成し、前記
容積Vなる空間または前記駆動管の内部に臨んで
圧力センサを設け、前記圧力センサの出力が最大
になるように前記周波数可変の電源装置の周波数
を制御する制御装置を備えたことを特徴とする流
体駆動装置。
1. A diaphragm is airtightly provided inside a hollow container to form a space with a volume V, and a drive pipe having a cross-sectional area A and a length L is connected to the space facing the volume V and communicating with the outside, and A resonance system including a frequency variable power supply device for driving the diaphragm is configured, a pressure sensor is provided facing the space of the volume V or the inside of the drive tube, and the output of the pressure sensor is maximized. A fluid drive device comprising: a control device for controlling the frequency of the frequency variable power supply device.
JP10508985A 1985-05-17 1985-05-17 Fluid driving apparatus Granted JPS61265397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10508985A JPS61265397A (en) 1985-05-17 1985-05-17 Fluid driving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10508985A JPS61265397A (en) 1985-05-17 1985-05-17 Fluid driving apparatus

Publications (2)

Publication Number Publication Date
JPS61265397A JPS61265397A (en) 1986-11-25
JPH0578679B2 true JPH0578679B2 (en) 1993-10-29

Family

ID=14398188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10508985A Granted JPS61265397A (en) 1985-05-17 1985-05-17 Fluid driving apparatus

Country Status (1)

Country Link
JP (1) JPS61265397A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283877A (en) * 1989-04-21 1990-11-21 Mitsubishi Kasei Corp Vibrator pump and running method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140491A (en) * 1982-02-16 1983-08-20 Matsushita Electric Ind Co Ltd Flow generating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140491A (en) * 1982-02-16 1983-08-20 Matsushita Electric Ind Co Ltd Flow generating device

Also Published As

Publication number Publication date
JPS61265397A (en) 1986-11-25

Similar Documents

Publication Publication Date Title
WO2001076762A3 (en) Method of maximizing the mechanical displacement of a piezoelectric nebulizer apparatus
JPH01151967A (en) Ultrasonic atomizing apparatus for liquid medium
JPH11230045A (en) Method and device for controlling diaphragm pump
WO2005010467A3 (en) Vibrating tube mass flow meter
US2725219A (en) Reactor
US3986669A (en) Ultrasonic tubular emulsifier and atomizer apparatus and method
JP2708250B2 (en) Mass flow detector
US4462264A (en) Acoustic flow sensors
JPH0578679B2 (en)
US4468581A (en) Drive circuit for a piezoelectric resonator used in a fluidic gas angular rate sensor
US3190229A (en) Method and apparatus for conveying liquids
Hasegawa et al. Characteristics of ultrasonic suction pump without moving parts
JPS61265398A (en) Fluid driving apparatus
SE457240B (en) AIR-DRIVE POSITIVE AATER COUPLED LOW FREQUENCY SOUND GENERATOR
JPS62159799A (en) Fluid drive device
SU1303770A1 (en) Pneumatic vibration isolator
JPS61265396A (en) Fluid driving apparatus
SU732679A1 (en) Ultrasonic level alarm device for aggressive liquids
SU525483A1 (en) Electro-acoustic device
SU587764A1 (en) Mass flow meter
JPH0146794B2 (en)
SU1144090A1 (en) Device for adjusting gas flow speed
SU504955A1 (en) Device for dynamic calibration of pulsating pressure sensors
SU383015A1 (en) DIRECT CURRENT PRESSURE REGULATOR
SU1054581A1 (en) Vibration pump