JPS61265311A - Method and device for superintending life expectancy of high temperature structure - Google Patents

Method and device for superintending life expectancy of high temperature structure

Info

Publication number
JPS61265311A
JPS61265311A JP10377485A JP10377485A JPS61265311A JP S61265311 A JPS61265311 A JP S61265311A JP 10377485 A JP10377485 A JP 10377485A JP 10377485 A JP10377485 A JP 10377485A JP S61265311 A JPS61265311 A JP S61265311A
Authority
JP
Japan
Prior art keywords
temperature
steam
thermal strain
crack
damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10377485A
Other languages
Japanese (ja)
Inventor
Shigeo Sakurai
茂雄 桜井
Hiroshi Miyata
寛 宮田
Sadao Umezawa
梅沢 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10377485A priority Critical patent/JPS61265311A/en
Publication of JPS61265311A publication Critical patent/JPS61265311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To prevent a structure from breaking down beforehand by calculating the life span of a machine member according to the changing amount of minute damage on the surface of the member so as to control a steam control valve and steam temperature. CONSTITUTION:A signal from a metal temperature detector 11 mounted on a steam turbine casing is input to a thermal strain arithmetic and logica unit 12 in order to calculate thermal strain on the surface of the casing. Comparing this thermal strain with the prescribed value by a judging device 13, when it is above the prescribed value, a signal is transmitted to a steam temperature controller 14 so as to operate a boiler 16 toward the direction of dropping steam temperature while valve opening is reduced by a steam control valve controller 15. Also, crack progress speed is calculated by an arithmetic and logic unit 19 according to a signal from a crack progress detector 18 mounted on the inner surface of the casing, damage level is assessed by the judging device 13 and the life span up to limited crack size is figured out in order to control opening of the control valve and stream temperature.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、機械構造物の寿命評価法に係り、特に高温に
おいて繰返し負荷、あるいは、負荷変動を受ける機械構
造物に好適な余寿命評価法と寿命監視装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for evaluating the lifespan of mechanical structures, and particularly a method and method for evaluating the remaining life of mechanical structures that are subjected to repeated loads or load fluctuations at high temperatures. Relating to a lifespan monitoring device.

〔発明の背景〕[Background of the invention]

高温環境下で繰返し負荷を受ける機械構造物として、例
えば、蒸気タービンは、起動停止による熱応力の繰返し
、あるいは、運転中に負荷変動をその部材に受けるため
、部材には、繰返し負荷による疲労損傷と高温下の一定
負荷によるクリープ損傷を同時に受ける。この結果、部
材には疲労とクリープ負荷による損傷が累積して、部材
中に巨視的なき裂が生じて構造的な健全性が損なわれる
慣れがある。このような場合、構造物として強度的な寿
命評価を行い監視を行っておかないと機器の破損やそれ
に伴うプラントの大事故につながる危険性がある。特に
、ロータ、ケーシングや各種弁における強度上の寿命監
視を行うことは重要である。
For example, a steam turbine is a mechanical structure that is subjected to repeated loads in a high-temperature environment, and its members are subject to repeated thermal stress due to startup and stoppages, or load fluctuations during operation, resulting in fatigue damage to the members due to repeated loads. and creep damage due to constant load under high temperature. As a result, the component has a tendency to accumulate damage due to fatigue and creep loading, causing macroscopic cracks in the component and compromising its structural integrity. In such cases, if the life of the structure is not evaluated and monitored, there is a risk of damage to the equipment and a major accident at the plant. In particular, it is important to monitor the lifespan of rotors, casings, and various valves in terms of their strength.

従来の構造設計では、ロータやケーシングについてはク
リープ強度を基準として十分な安全率を設定して、その
強度信頼性を高いものとしていた。
In conventional structural design, a sufficient safety factor was set for the rotor and casing based on the creep strength to ensure high strength reliability.

従って、従来は機器の寿命評価は行なわれずにプラント
の運転が行われていた。しかし現在、長期間稼働中の火
力発電プラントが数多く存在し、また、それらの部材の
材料劣化の問題も重なり、ロータやケーシングなどに対
する高精度な余寿命評価技術が強く要請されている。
Therefore, in the past, plants were operated without evaluating the lifespan of equipment. However, at present, there are many thermal power plants that have been operating for long periods of time, and there is also the problem of material deterioration of these components, so there is a strong demand for highly accurate remaining life evaluation technology for rotors, casings, etc.

また一方、近年の蒸気タービンの大容量化や電力需要形
態の変化による運用条件の苛酷化により、ロータやケー
シングの損傷の累積が加速され、き裂が進展して板厚を
貫通して重大事故を招く惧れも考えられるようになり、
機器の寿命評価技術が望まれる状況となっている。
On the other hand, in recent years, as the capacity of steam turbines has increased and operating conditions have become more severe due to changes in the form of electricity demand, the accumulation of damage to rotors and casings is accelerating, causing cracks to propagate and penetrate through the plate thickness, resulting in serious accidents. It is now possible to consider the possibility of inviting
The situation is such that equipment life evaluation technology is desired.

しかし、ケーシングやロータに対する有効な余、寿命評
価技術やそれらの寿命監視システムといったものは、は
とんどない現状である。盲−夕やケーシングについての
強度的な寿命や部材の損傷度を算出し、それらを高精度
に監視して評価できれば、プラントの信頼性は大きく向
上すると思われる。しかし、未だ、これを可能にする構
成どして満足なものは提案されていない。ロータについ
ては、ロータ周囲の蒸気温度及びケーシングの内表面温
度の測定により、ロータに発生する熱応力を推定し、そ
の熱応力の変化率や絶対値からタービンの運転を制御す
るシステムが提案されている。
However, there are currently very few effective components for casings and rotors, life evaluation techniques, and life monitoring systems. If the strength lifespan and degree of damage to components of blinds and casings can be calculated, monitored and evaluated with high precision, plant reliability will be greatly improved. However, a satisfactory configuration that makes this possible has not yet been proposed. Regarding the rotor, a system has been proposed that estimates the thermal stress generated in the rotor by measuring the steam temperature around the rotor and the inner surface temperature of the casing, and controls the operation of the turbine from the rate of change and absolute value of the thermal stress. There is.

例えば特開昭50−149804号公報である。For example, Japanese Patent Laid-Open No. 50-149804.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高温において繰返し負荷あるいは変動
負荷によって疲労とクリープ損傷を受ける機械構造物に
おいて、部材表面の微視的な損傷の変化量に基づいて部
材の寿命を算出し、これにより未然に構造物の破損を防
止しプラントの安全性と信頼性を保障し得る機械構造物
の余寿命評価法とその装置を提供することにある。
The purpose of the present invention is to calculate the life of a component based on the amount of change in microscopic damage on the component surface in a mechanical structure that is subject to fatigue and creep damage due to repeated loads or variable loads at high temperatures, and thereby prevent the occurrence of damage. The object of the present invention is to provide a method and device for evaluating the remaining life of mechanical structures that can prevent damage to the structures and ensure the safety and reliability of the plant.

〔発明の概要〕[Summary of the invention]

本発明では、高温クリープ域の繰返し負荷下で寿命の初
期に部材表面に生じる微視的な損傷に着目し、これらの
成長過程を定量的に明らかにすることにより、寿命消費
率を算出し、高温機器の余寿命を評価することを特徴と
する。
In the present invention, we focus on the microscopic damage that occurs on the surface of a component at the beginning of its life under repeated loads in the high-temperature creep region, and calculate the life consumption rate by quantitatively clarifying the growth process of this damage. It is characterized by evaluating the remaining life of high-temperature equipment.

以下、本発明の余寿命評価法の原理について説明する。The principle of the remaining life evaluation method of the present invention will be explained below.

第3図は、タービンの主蒸気管などの構造材であるオー
ステナイトステンレス鋼の650CVcおける低サイク
ル疲労寿命を示し、平滑丸棒試験片のき裂発生時点と破
断寿命を明らかにしたものである。このように、結晶粒
径程度の大きざである0、05mの微小なき裂に着目す
ると破断寿命が早期に発生している。この結果、破断に
至る寿命の大半が微小なき裂の成長過程であることが分
かり、この過程を定量的に把握できれば寿命評価の精度
は大きく向上するものと思われる。そこで、この微小な
i裂の成長挙動を示した結果が第4図である。き裂の成
長が指数関数的であるので、縦軸VCはき裂長さの対数
、横軸には繰返し数をとって示した。いずれの負荷ひず
み範囲でも、成長過程は図中で直線で良く近似できる。
Figure 3 shows the low cycle fatigue life at 650 CVc of austenitic stainless steel, which is a structural material for main steam pipes of turbines, etc., and clarifies the time point at which cracks occur and the life at rupture of a smooth round bar test piece. In this way, when focusing on microscopic cracks of 0.05 m, which are about the size of crystal grains, the rupture life occurs at an early stage. As a result, it was found that most of the lifespan leading to fracture is the growth process of minute cracks, and if this process can be quantitatively understood, the accuracy of lifespan evaluation will be greatly improved. FIG. 4 shows the growth behavior of this minute I-crack. Since crack growth is exponential, the vertical axis VC is the logarithm of the crack length, and the horizontal axis is the number of repetitions. In any load strain range, the growth process can be well approximated by a straight line in the figure.

ところで、高温において、疲労寿命は負荷ひずみ速度や
負荷波形に依存することが知られている。これらについ
て調べた結果が第5図である。顕著なりリープ損傷が生
じる引張保持波形や低速高速の鋸歯状三角波形でも破損
までの寿命の大半は、微小なき裂の成長過程に費やされ
ている。このように実機条件である高温下の遠心力や内
圧の一定負荷を受ける場合の部材の損傷であるクリープ
と起動停止の繰返しに起因する疲労損傷が重畳する条件
下でも、微小なき裂の長さの対数log2aと繰返し数
Nとの間VCは直線関係が成立する。すなわち、次式が
得られる。
Incidentally, it is known that fatigue life depends on the load strain rate and load waveform at high temperatures. Figure 5 shows the results of the investigation. Even in tensile-holding waveforms and low-speed, high-speed sawtooth triangular waveforms that cause significant limp damage, most of the life until failure is spent in the growth process of minute cracks. In this way, even under conditions in which creep, which is damage to components under constant loads of centrifugal force and internal pressure under high temperatures, which is the actual machine condition, and fatigue damage caused by repeated starting and stopping are combined, the length of minute cracks is small. A linear relationship is established between the logarithm log2a of VC and the number of repetitions N. That is, the following equation is obtained.

log 2a = C,N          =(1
)従って、微小なき裂の進展速度は、 da/dN = C’ a         ・−・(
2)式(2)で、初期き裂長さとして結晶粒径をとシ、
2a(、= 0.05+ms 最終き裂長さとして実験
値、2at :’ 10txxzとして両辺積分すれば
、定数C′ゝ\ は C’  = Z3N/Nf−N。
log 2a = C, N = (1
) Therefore, the growth rate of a small crack is da/dN = C' a ・−・(
2) In equation (2), if the initial crack length is taken as the grain size,
2a(, = 0.05+ms Final crack length is the experimental value, 2at:' 10txxz, and if both sides are integrated, the constant C'ゝ\ is C' = Z3N/Nf-N.

ところで、き裂発生寿命N0 は、全寿命の早期にき裂
発生するためN。=Oとする。従って、新しくき裂長さ
と寿命比との関係として、 1ag2a = Z3N/Nf +log2ao ”(
3)この式の意味することに、き裂長さが求まれば、寿
命比N/N f 、  すなわち、寿命消費率(損傷量
)が求まるということである。この(3)式に基づいて
稽々の条件下の高温(#h?イクル疲労試験における微
小なき裂と寿命比の関係を示したものが第6図である。
By the way, the crack initiation life N0 is N because cracks occur early in the entire life. =O. Therefore, as a new relationship between crack length and life ratio, 1ag2a = Z3N/Nf + log2ao ”(
3) This equation means that if the crack length is determined, the life ratio N/N f , that is, the life consumption rate (damage amount) can be determined. Figure 6 shows the relationship between minute cracks and life ratio in a high-temperature (#h?cycle) fatigue test under unreasonable conditions based on equation (3).

多種類の負荷条件にもかかわらず、Factorof2
のばらつきの範囲に実験データが納まり(3)式の関係
が成立つことが確かめられる。そこで、本発明は、この
新しい事実に基づいて考案されるに至った。
Despite various load conditions, Factorof2
It is confirmed that the experimental data falls within the range of variation, and the relationship of equation (3) holds true. Therefore, the present invention was devised based on this new fact.

実際vc (3)式の関係を用いる場合、次式のように
曹き直して考える。すなわち、 log2a/2ao= 2.3N/Nf    ”・(
4)このことは、初期き裂の大きさ2ao が予め分か
つていれば、それからの成長量を求めることにより(4
)式の関係から損傷量(N/Nf)が求まることととな
る。
When actually using the relationship of vc (3), it can be rearranged as shown in the following equation. That is, log2a/2ao= 2.3N/Nf ”・(
4) If the initial crack size 2ao is known in advance, then by calculating the amount of growth from then on, (4)
) The amount of damage (N/Nf) can be found from the relationship of the equation.

ところで、微小なき裂の進展速度については、従来から
用いられている破壊力学のパラメータによっては評価で
きないため、ここで、全ひずみ幅Δεtとき裂の進展速
度の関係を求めると第7図のように一義的な関係が得ら
れる。き裂進展速度は、種々のき裂の形状に適用できる
ように、無次元化して表わしている。この関係から、負
荷ひずみ量が分かれば、き裂進展速度がわかり損傷量の
成長速度が求まる。
By the way, since the propagation rate of minute cracks cannot be evaluated using conventionally used fracture mechanics parameters, the relationship between the total strain width Δεt and the crack propagation rate is calculated as shown in Figure 7. A unique relationship is obtained. The crack growth rate is expressed in a dimensionless manner so that it can be applied to various crack shapes. From this relationship, if the amount of applied strain is known, the crack propagation rate can be determined, and the growth rate of the damage amount can be determined.

本発明の特徴は、微小なき裂の成長速度と部材の損傷量
との関係に基づいて機械構造物の寿命を評価し、これに
より運転条件を制御し、未然に構造物の破損を防止する
ことにある。
The feature of the present invention is to evaluate the life of a mechanical structure based on the relationship between the growth rate of minute cracks and the amount of damage to the member, and thereby to control operating conditions and prevent damage to the structure. It is in.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を具体的に説明する。 Examples of the present invention will be described in detail below.

第1図に示すのは、高圧段蒸気タービンであるが、本発
明の一実施例を蒸気タービンの余寿命管理シ゛1 ス′テムに適用したものを示す。蒸気タービンは、図示
のように、上ケーシング−及び下ケーシング2より成っ
ている。高温高圧の主蒸気5は、加減弁室3を通シ、初
段翼部4に入る。その後、高圧段を通り、高圧排気6と
して再熱器(図示せず)に入シ、ここで再び高温高圧に
加熱された後、再熱蒸気7として中圧段に入る。中圧段
を通過した後、蒸気の大部分は中圧排気として低圧段に
行き、残りは抽気9としてケーシング外に出る。
FIG. 1 shows a high-pressure stage steam turbine, and shows one embodiment of the present invention applied to a steam turbine remaining life management system. As shown, the steam turbine consists of an upper casing and a lower casing 2. The high-temperature, high-pressure main steam 5 passes through the control valve chamber 3 and enters the first stage blade section 4 . Thereafter, the steam passes through the high pressure stage and enters a reheater (not shown) as high pressure exhaust 6, where it is again heated to high temperature and pressure, and then enters the intermediate pressure stage as reheated steam 7. After passing through the intermediate pressure stage, most of the steam goes to the low pressure stage as intermediate pressure exhaust, and the rest exits the casing as bleed air 9.

このようなケーシングは、高温高圧の蒸気にでらされる
機械構造物であって、起動停止時には過大な熱応力が部
材に加わる。また、この繰返しによる疲労損傷及び高瀉
下での電圧負荷によるクリープ損傷を同時に受ける。そ
こで、第2図に示すような寿命管理システムを熱応力が
厳しく負荷されるケーシングに適用する。11は、ケー
シングのメタ/I/湛度検出器で、この検出器出力を熱
ひすみ演算部12によリケーシングの熱ひずみを、例え
ば、次式により計算する。
Such a casing is a mechanical structure that is exposed to high-temperature, high-pressure steam, and excessive thermal stress is applied to the members when the casing is started or stopped. In addition, it simultaneously suffers fatigue damage due to this repetition and creep damage due to voltage load under high displacement conditions. Therefore, a life management system as shown in FIG. 2 is applied to casings that are subjected to severe thermal stress. Reference numeral 11 denotes a casing meta/I/filling degree detector, and the output of this detector is sent to a thermal strain calculating section 12 to calculate the thermal strain of the casing, for example, using the following equation.

etc =a(Tm  TS ) ここで、6ton、ケーシング表面の熱ひずみ、αけ、
ケーシング材料の線膨張係数% Tmは、ケーシングの
板厚方向の平均塩度、Tsはケーシング表面温度である
。T s r Tmは、蒸気温度を計測することによっ
ても計算され、etcを求めることができる。
etc = a (Tm TS) where 6 tons, thermal strain on the casing surface, α ke,
Linear expansion coefficient % of the casing material Tm is the average salinity in the thickness direction of the casing, and Ts is the casing surface temperature. T s r Tm can also be calculated by measuring the steam temperature, etc.

このようにして計算されたケーシング表面熱ひずみは、
判定器13で先に示した第7図のひずみとき裂進展速度
との関係により判定され、規定値以下あれば、何らの制
御機mは働かないものとする。この規定値は部材のき裂
進展量が、設計寿命内で充分に小さく、問題にならない
ほどの進展速度の場合で、いわゆる材料の疲労限に和尚
する熱ひずみである。ところで、算出されたひずみが、
規定値よりも大きくなれば、判定器13よシ蒸気温度制
御装filll 4Vc抑制信号を送シ蒸気温度を低く
する方向に操作制御する。同時に蒸気加減弁の開度を制
御する制御装置15により開度の抑制を図る。制御量が
忠実に実行されたかどうかは、たえず、メタル温度の検
出による熱ひずみの算出によりたえず監視され、適切な
運転条件に設定されるようにする。ところが、このよう
に適切に熱ひずみが制御すれていても、負荷変動及び起
動停止の繰返しにより、部材の表面には前述のように微
小なき裂が発生成長する。18は、ケーシング内面に設
けた、例えば、電気ポテンシャ/I/法を利用したクラ
ックゲージのようなき裂進展検出装置で、この検出出力
は、予め設けた初期き裂からの成長量Δaと、熱ひずみ
の変動を計測することにより求まる負荷変動回数ΔNの
比によってき裂進展速度演算器19でき裂進展速度とし
て算出される。
The casing surface thermal strain calculated in this way is
The determination is made by the determination unit 13 based on the relationship between the strain and the crack propagation speed shown in FIG. 7, and if it is less than the specified value, no controller m is activated. This specified value is a thermal strain that is within the so-called fatigue limit of the material when the amount of crack growth in the member is sufficiently small within the design life and the growth rate is high enough not to cause any problems. By the way, the calculated strain is
If the temperature exceeds the specified value, the determiner 13 operates and controls the steam temperature control device to control the 4Vc suppression signal in a direction to lower the temperature of the steam being sent. At the same time, the opening degree is suppressed by the control device 15 that controls the opening degree of the steam control valve. Whether the controlled variable has been faithfully executed is constantly monitored by calculating thermal strain by detecting metal temperature, and setting appropriate operating conditions. However, even if the thermal strain is appropriately controlled in this manner, due to load fluctuations and repeated starting and stopping, minute cracks develop and grow on the surface of the member as described above. Reference numeral 18 denotes a crack growth detection device such as a crack gauge using the electric potential/I/method, which is installed on the inner surface of the casing. The crack growth rate is calculated by the crack growth rate calculator 19 based on the ratio of the number of load fluctuations ΔN found by measuring the strain fluctuations.

このようにして計算されたき裂進展速度Δa/ΔNは、
判定器13で損傷量の成長速度として、予め設定した限
界き裂寸法と比較はれ、また、式(4)vcよシ損傷度
が評価される。これらの値は、20に示す警報表示装置
により、モニタされる。さらに、判定器13では、現時
点でのき裂成長速度から限界き裂寸法までの寿命評価が
なされ所定使用期間で、もし、限界き裂寸法に達しなけ
れば、制御信号は出さないが、過度に損傷を受け、限界
き裂寸法に対し裕度が少なければ、き裂進展速度を小さ
くするために、熱ひずみを抑制すべく、蒸気温度制御装
置14及び蒸気加減弁開度制御装置に抑制信号を出すも
のとする。この基本として、第7図の2勢ひずみとき裂
進展速度の関係が用いられるこ、、\ とになる。このような制#aけ、熱ひずみの算出と微小
なき裂の進展速度の計測により時々刻々行うことで、運
転条件が変わっても精度の高い寿命管理ができる。
The crack growth rate Δa/ΔN calculated in this way is
The determining device 13 compares the growth rate of the damage amount with a preset critical crack size, and evaluates the degree of damage according to equation (4)vc. These values are monitored by an alarm display device shown at 20. Furthermore, the determiner 13 performs a life evaluation from the current crack growth rate to the critical crack size, and if the critical crack size is not reached within a predetermined period of use, no control signal will be issued, but if excessive If the damage occurs and there is little margin for the critical crack size, a suppression signal is sent to the steam temperature control device 14 and the steam control valve opening control device in order to suppress thermal strain in order to reduce the crack growth rate. shall be issued. As a basis for this, the relationship between double force strain and crack propagation rate shown in Figure 7 is used. By performing such control from time to time by calculating thermal strain and measuring the growth rate of minute cracks, highly accurate life management can be performed even when operating conditions change.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、未然に構造物の破損を防止し、プラン
トの安全性と信頼性を確保できる。
According to the present invention, damage to structures can be prevented and safety and reliability of the plant can be ensured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の蒸気タービンの断面図、第
2図は本発明の蒸気タービンの寿命監視装置を示す図、
第3図から!7図は本発明の詳細な説明する図である。 11・・・メタル温度検出器、12・・・熱ひすみ演算
部、18・・・き裂進展検出装置、19・・・き裂進展
速度演算器、13・・・判定器、14・・・蒸気温度制
御装置、15・・・蒸気加減弁制御装置、16・・・ボ
イラ、17・・・タービン。
FIG. 1 is a sectional view of a steam turbine according to an embodiment of the present invention, and FIG. 2 is a diagram showing a life monitoring device for a steam turbine according to the present invention.
From Figure 3! FIG. 7 is a diagram for explaining the present invention in detail. DESCRIPTION OF SYMBOLS 11... Metal temperature detector, 12... Thermal strain calculation part, 18... Crack growth detection device, 19... Crack growth rate calculator, 13... Judgment device, 14... - Steam temperature control device, 15... Steam control valve control device, 16... Boiler, 17... Turbine.

Claims (1)

【特許請求の範囲】 1、繰返し負荷あるいは変動負荷を受ける高温構造物の
余寿命監視方法において、 部材の表面温度と平均温度により前記部材の表面に生じ
る熱ひずみを計算し、前記熱ひずみが規定値よりも大き
ければ、適切な熱ひずみの大きさに制御するように蒸気
加減弁及び蒸気濃度を調整し、さらに記部材表面に設け
た微小き裂の成長検出器により進展速度を計測し、前記
部材の損傷度と余寿命を前記熱ひずみと微小なき裂の進
展速度の関係から算出し、所定期間内に損傷度を設定値
内におさえ込むように前記蒸気加減弁及び蒸気温度を制
御することを特徴とする高温構造物の余寿命監視方法。 2、繰返し負荷あるいは変動負荷を受ける高温構造物の
余寿命監視装置において、 部材の表面の温度とき裂の進展量を検出する検出器と、
前記検出器からの検出値によつて熱ひずみと負荷変動回
数当りのき裂進展速度を算定する演算器と、前記演算器
からの値とあらかじめ求められている許容限界熱ひずみ
値と限界き裂寸法とを比較し、き裂の進展速度から損傷
進行度を設定寿命内におさえこむように判定し、その判
定からタービンおよびボイラの運転制御のための信号を
発する判定器と、この信号により前記ボイラを運転制御
する蒸気温度制御装置と、前記タービンを運転制御する
蒸気加減弁の制御装置とからなることを特徴とする高温
構造物の余寿命監視装置。
[Claims] 1. In a method for monitoring the remaining life of a high-temperature structure subjected to repeated loads or variable loads, the thermal strain occurring on the surface of the member is calculated based on the surface temperature of the member and the average temperature, and the thermal strain is determined by a specified value. If it is larger than the above value, the steam control valve and steam concentration are adjusted to control the thermal strain to an appropriate magnitude, and the growth rate is measured using a microcrack growth detector provided on the surface of the member. Calculating the degree of damage and remaining life of the member from the relationship between the thermal strain and the growth rate of minute cracks, and controlling the steam control valve and steam temperature so as to suppress the degree of damage within a set value within a predetermined period. A method for monitoring the remaining life of high-temperature structures. 2. In a remaining life monitoring device for high-temperature structures subjected to repeated loads or variable loads, a detector that detects the temperature of the surface of a member and the amount of crack growth;
a computing unit that calculates the thermal strain and the crack growth rate per number of load changes based on the detected values from the detector; and a computing unit that calculates the thermal strain and the crack growth rate per number of load changes based on the detected values from the detector, and the values from the computing unit, the allowable limit thermal strain value, and the critical crack value that are determined in advance. A determination device that compares the dimensions and determines the degree of damage progression to be suppressed within a set life based on the crack growth rate, and based on the determination, issues a signal for controlling the operation of the turbine and boiler; 1. A remaining life monitoring device for a high-temperature structure, comprising: a steam temperature control device for controlling the operation of the turbine; and a steam control valve control device for controlling the operation of the turbine.
JP10377485A 1985-05-17 1985-05-17 Method and device for superintending life expectancy of high temperature structure Pending JPS61265311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10377485A JPS61265311A (en) 1985-05-17 1985-05-17 Method and device for superintending life expectancy of high temperature structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10377485A JPS61265311A (en) 1985-05-17 1985-05-17 Method and device for superintending life expectancy of high temperature structure

Publications (1)

Publication Number Publication Date
JPS61265311A true JPS61265311A (en) 1986-11-25

Family

ID=14362789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10377485A Pending JPS61265311A (en) 1985-05-17 1985-05-17 Method and device for superintending life expectancy of high temperature structure

Country Status (1)

Country Link
JP (1) JPS61265311A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100367298B1 (en) * 2000-07-12 2003-01-09 한국전기연구원 Life prediction apparatus of thermoelectric device for generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100367298B1 (en) * 2000-07-12 2003-01-09 한국전기연구원 Life prediction apparatus of thermoelectric device for generator

Similar Documents

Publication Publication Date Title
US6568254B2 (en) Method for monitoring the creep behavior of rotating components of a compressor stage or turbine stage
EP3507663B1 (en) Advanced startup counter module for a valve and actuator monitoring system
JP2008008291A (en) System and method for detecting undesirable operation of turbine
CN109992825A (en) A kind of real-time lifetime estimation method of four main tubes of boiler for considering wall thickness reduction and crossing heat affecting
US5622042A (en) Method for predicting and using the exhaust gas temperatures for control of two and three shaft gas turbines
EP2469098A1 (en) Method and device for predicting the instability of an axial compressor
JPS61265311A (en) Method and device for superintending life expectancy of high temperature structure
JP2003521623A (en) Turbine operating method and turbine plant
CN114528743B (en) Method for calculating dynamic stress monitoring limit value of rotor blade in wide rotating speed range
WO2019135747A1 (en) Probabilistic life evaluation algorithm for gas turbine engine components
JPS58211625A (en) Method for estimating life of high temperature fluid container
JPH0639890B2 (en) Method and apparatus for starting a low pressure turbine having a shrink fit rotor
JPH02294525A (en) Service line monitoring system for gas turbine
JPS6346242B2 (en)
US4104908A (en) Bore stress limit index
JPH0127378B2 (en)
JPH11280410A (en) Observation device for rotor life
JPS63246637A (en) Apparatus for monitoring erosion of turbine blade
JPH08271153A (en) Method and device for detecting water leakage in heating equipment
Chai et al. Static Frequency Test and Leaf Fracture Analysis of Turbine Blades in a Power Plant
JPS61277034A (en) Method for evaluating residual life of machine structure
JPS6067837A (en) Method and apparatus for diagnosing damage to structural member used at high temperature
CN113722946A (en) Creep-fatigue life prediction method and prediction system for steam turbine rotor
SU1043326A1 (en) Method of monitoring the quality of control of power unit modes
JPS61140838A (en) Method for diagnosing structural member