JPS6126508B2 - - Google Patents

Info

Publication number
JPS6126508B2
JPS6126508B2 JP54057012A JP5701279A JPS6126508B2 JP S6126508 B2 JPS6126508 B2 JP S6126508B2 JP 54057012 A JP54057012 A JP 54057012A JP 5701279 A JP5701279 A JP 5701279A JP S6126508 B2 JPS6126508 B2 JP S6126508B2
Authority
JP
Japan
Prior art keywords
glass fiber
rotor
fiber bundle
knife
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54057012A
Other languages
Japanese (ja)
Other versions
JPS55149144A (en
Inventor
Tomoji Takura
Takashi Takehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Fiber Glass Co Ltd
Original Assignee
Fuji Fiber Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Fiber Glass Co Ltd filed Critical Fuji Fiber Glass Co Ltd
Priority to JP5701279A priority Critical patent/JPS55149144A/en
Publication of JPS55149144A publication Critical patent/JPS55149144A/en
Publication of JPS6126508B2 publication Critical patent/JPS6126508B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • C03B37/16Cutting or severing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高品質の切断されたガラス繊維を能
率良く製造する事ができるその製造法に関する。 現在、切断されたガラス繊維は、各種強化プラ
スチツクス製品の強化材、ガラスペーパー等の不
織布原材料等として多量に使用されている。 切断されたガラス繊維の従来の製造法として
は、ゴム、合成樹脂等からなるローラー部と、こ
のローラーに対峙圧接しつつ回転する一定の間隔
でナイフ刃先を設けたバレル部から構成される切
断装置のローラー部とバレル部の接合部にガラス
繊維を供給する方法がある。この製造法は、ガラ
ス繊維をナイフ刃先で折り曲げて切断しているた
め、製造中に、刃先の摩耗、ローラー面とバレル
面の接圧のバランス崩れ等により、ミスカツトが
生じ、所定の長さより長いものが含有されやすい
という問題を有する。また、切断されたガラス繊
維中に、ゴム合成樹脂等のローラーがナイフ刃先
で刻まれることによつて生じるそれらの切り屑が
必ず含まれるという問題点をも有している。この
ように、所定の長さより切断長さの長いミスカツ
トガラス繊維を各種強化プラスチツクス製品の強
化材として用いる場合、その成形時に樹脂とガラ
ス繊維の混練作業性が悪くなり、また一方、この
ガラス繊維を用いて、抄造法等によりガラスペー
パー等を作成する場合、分散媒体中でのガラス繊
維の分散状態が大巾に悪くなり、均質なガラスペ
ーパーが得られにくくなるという欠点を有する。
また、ガラス繊維中にゴム、合成樹脂等の切り屑
が含有されると、このガラス繊維で強化した強化
プラスチツクス製品およびこのガラス繊維を原材
料としたガラスペーパー等は汚れを生じたり、電
気絶縁性が悪くなるという致命的欠点をも有す
る。 最近、このミスカツトと切り屑含有の問題を解
決できる繊維切断技術、すなわち、放射状に配置
された複数のナイフ刃先を有し強制駆動されるロ
ーターに繊維束を巻きつけつつ前記ナイフ刃先と
一定の間隔をもつて設けた回転自在な押えローラ
ーによりローターに巻きつけた繊維束をナイフ刃
先に押し付けて切断する方法、が開発されている
が、この切断方法により、ガラス繊維を切断する
場合、ガラス繊維は有機繊維に比べ、極めて硬度
が高いため、ナイフ刃先およびナイフそのものの
破壊が生じやすく、極めて切断作業性が悪く実質
的に製造する事が不可能であるという問題点を有
する。 本発明者等は、切断作業性の良い製造条件を見
いだすべく鋭意検討した結果、限られた条件下で
のみ、製造可能である事を見いだし本発明に到つ
た。すなわち、放射状に配置された複数のナイフ
刃先を有し、強制駆動されるローターにガラス繊
維束を巻きつけつつ、前記ナイフ刃先と一定の間
隔をもつて設けた回転自在な押えローラーにより
ローターに巻き付けたガラス繊維束をナイフ刃先
に押し付けて切断するに際して、ガラス繊維束を
合計で200〜50000テツクスの範囲で供給し、か
つ、ローターを周速度で5〜300mの範囲で回転
せしめる事により、製造能率よく、ミスカツト部
分およびゴム、合成樹脂等の切屑を含有しない、
高品質の切断されたガラス繊維を製造できる事を
見いだした。 本発明の製造法において、合計で200テツクス
より小さいガラス繊維束を供給する場合、供給量
が少な過ぎ、しかも、ローターの最大周速度に限
界(周速度を300m/分より速くするとナイフ刃が
頻繁に破壊し、ナイフ刃の交換に時間を費やす)
があるため、製造量があがらない。また、合計で
50000テツクスより多いガラス繊維束を供給する
場合、いかにローターの周速度を下げても、切断
に無理がかかりナイフ刃の破壊が頻繁におこり、
ナイフ刃の交換に時間を費やし、かえつて製造量
があがらなくなるので、ガラス繊維の供給量は、
合計で200〜50000テツクスの範囲、より好ましく
は500〜20000テツクスの範囲が望ましい。合計で
200〜50000テツクス範囲のガラス繊維束を200〜
10000テツクスの複数本の繊維束に分割してロー
ターに供給する事により、さらに切断作業性がよ
くなる。 本発明の製造法において、回転ローターの周速
度を5m/分より遅くすると、供給ガラス繊維束
量に上限(50000テツクスより多くするとナイフ
刃が頻繁に破壊し、その交換に時間を費やす)が
あるので、生産量があがらなくなり、また、300
m/分より速くすると、前記の通りナイフ刃の破
壊が頻繁におこるので、回転ローターの周速度は
5〜300m/分、より好ましくは50〜150m/分の範
囲が望ましい。 以下実施例および図面で本発明を具体的に説明
する。 実施例 第1図は、本実施例に用いた切断装置の概略平
面図、第2図は、第1図イ―イ′線側面断面図で
ある。 所定の太さのガラス繊維束1を押えてローラー
2と10mmの間隔で放射状にナイフ刃3を有し、強
制駆動されるローター4との間に供給し、所定の
ローター周速度で10時間切断作業を行ない、この
間に切断できたガラス繊維量、ナイフ刃の破壊回
数および切断されたガラス繊維の品質(ミスカツ
ト本数、異物の有無)を点検評価し、その結果を
第1表に示した。また、比較例として、従来のガ
ラス繊維束の切断法(ゴムローラー部と、このロ
ーラーに対峙圧接しつつ回転する10mmの間隔でナ
イフ刃先を設けたバレル部から構成される切断装
置を使用)で10時間連続切断作業をした時の切断
されたガラス繊維の品質(ミスカツト本数、異物
の有無)を評価し、その結果をも第1表に示し
た。
The present invention relates to a method for efficiently producing cut glass fibers of high quality. Currently, cut glass fibers are used in large quantities as reinforcing materials for various reinforced plastic products, raw materials for nonwoven fabrics such as glass paper, and the like. The conventional method for producing cut glass fibers is to use a cutting device that consists of a roller section made of rubber, synthetic resin, etc., and a barrel section that rotates while facing and pressing against the roller and has knife edges provided at regular intervals. There is a method of supplying glass fiber to the joint between the roller part and the barrel part. In this manufacturing method, the glass fiber is cut by bending it with the edge of a knife, so during manufacturing, miscuts may occur due to wear of the blade edge, loss of balance between the contact pressure between the roller surface and the barrel surface, etc. It has the problem that it tends to contain substances. Another problem is that the cut glass fibers always contain chips of rubber and synthetic resin, which are generated when the roller is cut with the edge of the knife. In this way, when miscut glass fibers whose cut length is longer than the specified length are used as reinforcing materials for various reinforced plastic products, the kneading workability of the resin and glass fibers during molding becomes poor; When glass paper or the like is produced using fibers by a papermaking method or the like, there is a drawback that the state of dispersion of the glass fibers in the dispersion medium deteriorates significantly, making it difficult to obtain homogeneous glass paper.
Additionally, if chips of rubber, synthetic resin, etc. are contained in glass fibers, reinforced plastic products reinforced with glass fibers and glass paper made from glass fibers may become stained or have electrical insulating properties. It also has the fatal drawback of worsening. Recently, a fiber cutting technique that can solve this problem of miscutting and chip inclusion has been developed, in which the fiber bundle is wound around a force-driven rotor having a plurality of radially arranged knife edges, and the fiber bundle is kept at a certain distance from the knife edges. A method has been developed in which the fiber bundle wound around the rotor is pressed against the knife edge using a rotatable pressure roller installed with a rotor. Since it has extremely high hardness compared to organic fibers, it has problems in that the knife edge and the knife itself are easily destroyed, and the cutting workability is extremely poor, making it virtually impossible to manufacture. The inventors of the present invention have conducted intensive studies to find manufacturing conditions that provide good cutting workability, and have found that manufacturing is possible only under limited conditions, leading to the present invention. That is, the glass fiber bundle is wound around a rotor that has a plurality of radially arranged knife edges and is forcibly driven, and is then wrapped around the rotor by a rotatable presser roller provided at a constant distance from the knife edges. When cutting glass fiber bundles by pressing them against the knife edge, production efficiency is improved by supplying a total of 200 to 50,000 tex of glass fiber bundles and rotating the rotor at a circumferential speed of 5 to 300 m. Does not contain miscut parts or chips of rubber, synthetic resin, etc.
It has been discovered that high quality cut glass fibers can be produced. In the manufacturing method of the present invention, when supplying glass fiber bundles smaller than 200 tex in total, the amount supplied is too small and the maximum circumferential speed of the rotor is limited (if the circumferential speed is higher than 300 m/min, the knife blade will frequently destroy it and spend time replacing the knife blade)
Because of this, production volume does not increase. Also, in total
When supplying a glass fiber bundle of more than 50,000 tex, no matter how much you reduce the peripheral speed of the rotor, cutting will be strained and the knife blade will frequently break.
The amount of glass fiber supplied will be
A total range of 200 to 50,000 tex, more preferably 500 to 20,000 tex is desirable. in total
200~200~50000 tex range glass fiber bundles
By dividing the fibers into multiple fiber bundles of 10,000 tex and feeding them to the rotor, cutting efficiency is further improved. In the manufacturing method of the present invention, if the circumferential speed of the rotor is lower than 5 m/min, there is an upper limit to the amount of glass fiber bundles supplied (if it is higher than 50,000 tex, the knife blade will break frequently and it will take time to replace it). Therefore, the production volume will not increase, and 300
If the speed is faster than m/min, the knife blade will frequently break as described above, so the peripheral speed of the rotor is desirably in the range of 5 to 300 m/min, more preferably 50 to 150 m/min. The present invention will be specifically explained below with reference to Examples and drawings. Embodiment FIG. 1 is a schematic plan view of a cutting device used in this embodiment, and FIG. 2 is a side sectional view taken along the line E--I' in FIG. A glass fiber bundle 1 of a predetermined thickness is held down and fed between a roller 2 and a forcibly driven rotor 4 having knife blades 3 radially spaced at 10 mm intervals, and cut for 10 hours at a predetermined rotor circumferential speed. During the work, the amount of glass fibers that could be cut, the number of times the knife blade broke, and the quality of the cut glass fibers (number of miscuts, presence of foreign matter) were inspected and evaluated, and the results are shown in Table 1. In addition, as a comparative example, a conventional method for cutting glass fiber bundles (using a cutting device consisting of a rubber roller section and a barrel section equipped with knife edges at 10 mm intervals that rotates while facing and pressing against the roller) The quality of the cut glass fibers (number of miscuts, presence of foreign matter) was evaluated after continuous cutting for 10 hours, and the results are also shown in Table 1.

【表】 第1表より、実施例の実験番号1乃至4の製造
条件で製造した場合、比較例の実験番号1および
2の製造条件(本明細書の特許請求の範囲外の製
造条件)で製造した場合より、10時間連続切断作
業実施時の、ナイフ刃の破壊回数が極めて少ない
ために、切断できるガラス繊維量が大巾に多くな
る事がわかる。また、ゴムローラー部とこのロー
ラーに対峙圧接しつつ回転する10mm間隔でナイフ
刃先を設けたバレル部から構成される切断装置を
使用した従来の切断法で切断したガラス繊維に比
べ、実施例の実験番号1乃至4の製造条件で製造
したガラス繊維は、ゴム屑の異物を含まず、ミス
カツト部分も含まない事が分かる。
[Table] From Table 1, when manufactured under the manufacturing conditions of experiment numbers 1 to 4 of the example, under the manufacturing conditions of experiment numbers 1 and 2 of the comparative example (manufacturing conditions outside the scope of claims of this specification). It can be seen that the amount of glass fiber that can be cut is significantly greater than in the case of manufacturing because the number of times the knife blade breaks during continuous cutting work for 10 hours is extremely small. In addition, compared to the glass fibers cut by the conventional cutting method using a cutting device consisting of a rubber roller part and a barrel part with knife blades at 10 mm intervals that rotate while being in pressure contact with the roller, the experiment of the example It can be seen that the glass fibers manufactured under the manufacturing conditions Nos. 1 to 4 do not contain foreign matter such as rubber debris and do not contain miscut portions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例に用いたガラス繊維
切断装置を概略平面図で示したものである。第2
図は、第1図のイ―イ′線側面断面図を示したも
のである。 符号の説明 1…ガラス繊維束、2…押えロー
ラー、3…ナイフ刃、4…ローター、5…刃間の
空間部。
FIG. 1 is a schematic plan view of a glass fiber cutting device used in an example of the present invention. Second
The figure shows a side sectional view taken along the line E--I' of FIG. Explanation of symbols 1... Glass fiber bundle, 2... Press roller, 3... Knife blade, 4... Rotor, 5... Space between blades.

Claims (1)

【特許請求の範囲】 1 放射状に配置された複数のナイフ刃先を有
し、強制駆動されるローターにガラス繊維束を巻
きつけつつ、前記ナイフ刃先と一定の間隔をもつ
て設けた回転自在な押えローラーにより、ロータ
ーに巻き付けたガラス繊維束をナイフ刃先に押し
付けて切断するに際して、ガラス繊維束を合計で
200〜50000テツクス(太さの単位で、1000mあた
りのグラム重量を表わす)の範囲で供給し、か
つ、ローターを周速度で5〜300m/分の範囲で回
転せしめる事を特徴とする切断されたガラス繊維
の製造法。 2 ガラス繊維束を200〜10000テツクス範囲の複
数のガラス繊維束に分割して供給する事を特徴と
する特許請求の範囲第1項記載の切断されたガラ
ス繊維の製造法。
[Scope of Claims] 1. A rotatable presser having a plurality of radially arranged knife edges, which is arranged at a constant distance from the knife edges while winding a glass fiber bundle around a forcibly driven rotor. When the roller presses the glass fiber bundle wrapped around the rotor against the knife edge and cuts it, the total amount of the glass fiber bundle is cut.
It is characterized by supplying in the range of 200 to 50,000 tex (a unit of thickness, representing the weight in grams per 1,000 m) and rotating the rotor at a circumferential speed in the range of 5 to 300 m/min. Glass fiber manufacturing method. 2. The method for producing cut glass fibers according to claim 1, characterized in that the glass fiber bundle is divided into a plurality of glass fiber bundles having a size of 200 to 10,000 tex and supplied.
JP5701279A 1979-05-11 1979-05-11 Manufacture of chopped galss fiber Granted JPS55149144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5701279A JPS55149144A (en) 1979-05-11 1979-05-11 Manufacture of chopped galss fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5701279A JPS55149144A (en) 1979-05-11 1979-05-11 Manufacture of chopped galss fiber

Publications (2)

Publication Number Publication Date
JPS55149144A JPS55149144A (en) 1980-11-20
JPS6126508B2 true JPS6126508B2 (en) 1986-06-20

Family

ID=13043520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5701279A Granted JPS55149144A (en) 1979-05-11 1979-05-11 Manufacture of chopped galss fiber

Country Status (1)

Country Link
JP (1) JPS55149144A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6575800B2 (en) * 2015-06-09 2019-09-18 日本電気硝子株式会社 Chopped strand mat and method and apparatus for manufacturing the same, chopped strand mat packing body, and automobile ceiling material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842113A (en) * 1971-10-02 1973-06-19
JPS55130836A (en) * 1979-04-02 1980-10-11 Asahi Fiber Glass Co Ltd Preparation of cut glass fiber for water dispersing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842113A (en) * 1971-10-02 1973-06-19
JPS55130836A (en) * 1979-04-02 1980-10-11 Asahi Fiber Glass Co Ltd Preparation of cut glass fiber for water dispersing

Also Published As

Publication number Publication date
JPS55149144A (en) 1980-11-20

Similar Documents

Publication Publication Date Title
JP2021028432A (en) Manufacturing method and manufacturing apparatus of fiber-reinforced resin molding material
JP2022031341A5 (en)
CN108138383A (en) The manufacturing device and manufacturing method of chopped fiber bundle, the manufacturing device of fiber-reinforced resin moulding material and manufacturing method, carbon fiber bundle cutoff tool and carbon fiber bundle rotary cutter
KR101182870B1 (en) Method and apparatus for removing sheets of fibres from banana plants for the production of paper products
MX2011006891A (en) Nucleoside phosphoramidates.
CN201908163U (en) Knife roller of fiber cutter
US2773789A (en) Crosscut fiber and method for its preparation
DE69512916D1 (en) DEVICE FOR CUTING REINFORCING FIBERS
US4638934A (en) Slitting and dicing machine for fiberglass mat and mats of other brittle abrasive fibers
US4459888A (en) Non-contacting slitter
US4167130A (en) Method for cutting sheet moulding compound reinforcing strands
GB2072083A (en) An extrusion machine for scrap thermoplastics foils and the like
JPH09511799A (en) Wood chip element dividing device
JPS6126508B2 (en)
US2786005A (en) Crosscut woody wafers and structures embodying same
US2305312A (en) Apparatus and process for comminuting fibers
CN108525804A (en) Cutter and material cutting machine structure
CN105483866A (en) Staple fiber cutting-off machine
CN212603670U (en) Carton cardboard cutting equipment with sweeps recovery structure
CN205521820U (en) A novel cutter for thin bamboo strips used for weaving dissects processing
US5044235A (en) Filament cutting machine system
JPS5851899B2 (en) glass chopped strand products
CN215039377U (en) Fiber cutter feeding anti-winding device
CN213859575U (en) Fiber fabric cutting tool bit
CN212218714U (en) Small rough edge comb