JPS6126494B2 - - Google Patents

Info

Publication number
JPS6126494B2
JPS6126494B2 JP8193578A JP8193578A JPS6126494B2 JP S6126494 B2 JPS6126494 B2 JP S6126494B2 JP 8193578 A JP8193578 A JP 8193578A JP 8193578 A JP8193578 A JP 8193578A JP S6126494 B2 JPS6126494 B2 JP S6126494B2
Authority
JP
Japan
Prior art keywords
calcium
potassium silicate
potassium
water
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8193578A
Other languages
Japanese (ja)
Other versions
JPS5510424A (en
Inventor
Genji Taga
Teruo Oikawa
Yoshiaki Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP8193578A priority Critical patent/JPS5510424A/en
Priority to US06/054,810 priority patent/US4277457A/en
Priority to GB7923656A priority patent/GB2031393B/en
Priority to DE19792927444 priority patent/DE2927444A1/en
Priority to FR7917768A priority patent/FR2434117A1/en
Publication of JPS5510424A publication Critical patent/JPS5510424A/en
Priority to US06/125,186 priority patent/US4294810A/en
Publication of JPS6126494B2 publication Critical patent/JPS6126494B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は珪酸カリウムと水溶性カルシウム化合
物とを特定条件下に加圧水熱反応させて行なう新
規な繊維状珪酸カルシウムカリウムの製造方法に
関する。 従来2酸化珪素とカルシウム化合物との反応は
種々研究されている。その代表的なものは建材に
最も広く利用されるゾーノトライト或いはトバモ
ライトよりなる珪酸カルシウムである。 しかしながら珪酸カルシウムカリウム化合物に
ついてはほとんど提案されていない。 本発明者等は長年珪酸カルシウム化合物の合成
につき鋭意研究を重ねてきた結果、珪酸カリウム
とカルシウム化合物とより新規な繊維状珪酸カル
シウムカリウムを工業的に有利に製造出来ること
を見出し本発明を完成するに至つた。即ち、 本発明は珪酸カリウムと水溶性カルシウム化合
物とを、これらの原料中のK2OがXモル、SiO2
Yモル及びCaOがZモルとするとき反応によつて
カリウム塩が副生する場合は下記(A)式まで、また
反応によつてカリウム塩が副生しない場合は下記
(B)式で算出した原料仕込み係数Tが1.0〜2.5とな
り且つX/Zが1.5〜6となるように仕込み、珪
酸カリウムと水溶性カルシウム化合物とを加圧下
水熱反応させることを特徴とする繊維状珪酸カル
シウムカリウムの製造方法である。 ここで T=9Y−32Z/9X−12Z (A) T=9Y−32Z/9X−3Z (B) であり、X,Y,Zは当然正数、また(A),(B)式に
おける分母、分子も後述の実施例でも示すように
夫々正数である。 本発明で得られる繊維状珪酸カルシウムカリウ
ムの繊維形態は原料の種類、原料混合比、反応条
件等によつて異なり一概に限定することができな
いが20〜300μ或いはそれ以上の繊維長になりう
る。またアスペクト比(繊維長/直径)は50〜
200の範囲のものが一般的である。 本発明で得られる珪酸カルシウムカリウムが繊
維状の形態であることは顕微鏡例えば走査形電子
顕微鏡で簡単に確認できる。また同電子顕微鏡に
より繊維状であると共に結晶性であり針状結晶と
して存在することが判明するが結晶性であること
はX線回折によつてより明確になる。 また本発明で得られる珪酸カルシウムカリウム
の一般式は化学分析することにより、ほぼ
3K2O・9CaO・32SiO2・mH2O(但しmは0〜20
の正数である)と推定される。 なお、一般に、各種結晶の一般式は化学分析に
よつて特定できるのが通常である。しかし、本発
明の対象とする珪酸塩等は、次の理由から正確な
一般式は求め難く係数に多少の変動があることを
前提にして推定し得るにとどまる。 その1は固溶限界以下においては結晶の中に分
離困難な不純物が組み込まれる場合が多々みられ
ること。 その2は、イオン交換能を有する結晶は、各イ
オンがイオン交換平衡に従つて結晶中に含まれる
ためpH、液組成によつて組成が変化することで
ある。例えば本発明において推定される一般式に
おいて、Kの1一部がNaやCaと、またCaの一部
がNaやKなどとイオン交換する例などがあげら
れるこのように珪酸塩の一般式が特定し難いこと
は例えば特開昭51−114397号にも 0.9±0.2M2/nO:A2O3:2.5±0.5SiO2・0
〜8H2O (但しMは金属カチオン及びnはその原子価) その他の記載がみられることからも理解される。
また、本発明で得られる繊維状珪酸カルシウムカ
リウムは次のような性質を有する。即ち該珪酸カ
ルシウムカリウムを加熱すると250〜300℃で結晶
水が離脱する。しかしながらこの結晶水は上記温
度より低い温度で水分と接触させると結晶水が復
水する。 従つて、本発明で得られる珪酸カルシウムカリ
ウムは、結晶水の数にかかわらず、同一の構造で
あり、結晶水は所謂フツ石水としての性質を有す
る。 この現象は本発明の珪酸カルシウムカリウムの
特異なもので、結晶水を離脱させたものは乾燥剤
としての用途を有する。また該珪酸カルシウムカ
リウムから結晶水を離脱させた後更に加熱すると
約800℃以上でガラス状となり元の繊維状の形態
を消失する。 本発明の珪酸カルシウムカリウムはその中に含
まれるK2Oに基因してイオン交換能を発揮する。
即ち繊維状カルシウムカリウムを例えば塩化ナト
リウム水溶液と接触させるとK2OがNa2Oにイオ
ン交換される。この性質は前記珪酸カルシウムカ
リウムが有する独特のものでイオン交換体として
の用途に広く利用出来る。 本発明においては原料として珪酸カリウムと水
溶性カルシウム化合物を用いる。珪酸カリウムは
一般にK2O・nsiO2で示されて公知の化合物であ
る。 該珪酸カリウムのSiO2/K2Oモル比は特に限定
されず公知のものが利用出来る。一般に該
SiO2/K2Oモル比は2.5〜3.7のものが最も好適に
使用される。また水溶性カルシウム化合物は後述
する加圧水熱条件下に溶解するものであれば特に
限定されない。即ち溶解度が小さいものであつて
も繊維状珪酸カルシウムカリウムが生成すれば、
該珪酸カルシウムカリウムに反応したカルシウム
化合物に見合う量が溶解するので必ずしも全てが
反応前の反応系液に溶解する必要はない。一般に
好適に使用される水溶性カルシウム化合物を例示
すると水酸化カルシウム酸化カルシウム、塩化カ
ルシウム、、硝酸カルシウム、硫酸カルシウム等
のカルシウム化合物である。しかしながら水に不
溶性カルシウム化合物例えば炭酸カルシウムを用
いる場合は後述するような反応時間では繊維状物
の生成を認めることが出来ないので好ましくな
い。 本発明に於ける珪酸カリウムと水溶性カルシウ
ム化合物との反応は一般に原料である珪酸カリウ
ムと水溶性カルシウム化合物を室温下に水溶液に
溶解又はスラリー状で調整するが予め珪酸カリウ
ムと水溶性カルシウム化合物とを別々に適当な濃
度に調整したものを混合して加圧水熱条件下に反
応させればよい。水溶液中の原料濃度は特に限定
されるものではないが、一般には珪酸カリウムが
0.3〜2.0モル/、水溶性カルシウム化合物が0.1
〜0.4モル/程度の範囲で用いるのが最も好適
である。原料の混合によつて室温下でも一般には
白色の沈澱を生ずるが通常はそのまま水熱反応に
供すればよい。 本発明に於ける珪酸カリウムと水溶性カルシウ
ム化合物との混合割合は繊維状珪酸カルシウムカ
リウムが生成する割合であれば特に限定されな
い。一般に珪酸カリウムの量は反応に必要とする
量より過剰に存在させるように選ぶのが好まし
く、該過剰量の珪酸アルカリについては水溶性カ
ルシウム化合物の種類、反応条件等に応じて決定
されるものであるから予め決定するのがよい。最
も広く利用される該混合割合は次のように決定す
ると好適である。即ち本発明の原料中水溶性カル
シウム化合物はほぼ100%繊維状珪酸カルシウム
カリウムの生成に消化される。このことは後述す
る実施例でも明らかであるが反応によつて生成し
た繊維状珪酸カルシウムカリウムを別したあと
の液中にカルシウム成分がほとんど認められな
いことで明白となる。従つてカルシウム成分はほ
ぼ100%前記珪酸カルシウムカリウムを形成する
ものと考えて原料仕込の組成を決定することが出
来る。 また珪酸カリウムは前記した如くSiO2/K2Oモ
ル比が種々の値となりうるが、一般に原料として
使用するのは特定のSiO2/K2Oモル比を有するも
のであろう。例えばSiO2/K2Oモル比が3.5のも
のを原料として用いる場合は自ら珪酸カリウムの
使用量によつてSiO2モル数及びK2Oモル数が決定
する。従つて以下に説明する原料仕込み組成比は
簡単に決定されうる。本発明の実施に際し原料中
のK2OがXモル、SiO2がYモル及びCaOがZモル
とするとき反応によつてカリウム塩が副生する場
合は下記(A)式で、また反応によつてカリウム塩が
副生しない場合は下記(B)式で計算した原料仕込み
係数Tが1.0〜2.5好ましくは1.2〜1.9となり且つ
X/Zが1.6〜6となるように珪酸カリウム及び
水溶性カルシウム化合物を仕込むのがよい。 T=9Y−32Z/9X−12Z (A) T=9Y−32Z/9X−3Z (B) 上記反応によつてカリウム塩が副生する場合と
は水溶性カルシウム化合物として塩化カルシウ
ム、硝酸カルシウム、硫酸カルシウム等を用いる
時で陰イオンがカリウムと反応して塩化カリウ
ム、硝酸カリウム、硫酸カリウム等を副生する場
合である。また該反応によつてカリウム塩が副生
しない場合とは水溶性カルシウム化合物として水
酸化カルシウム、酸化カルシウム等を用いる時で
ある。 前記原料仕込み係数Tが前記した下限値より小
さい場合は反応時間が数日乃至拾数日かかり工業
的に好適でない傾向にあり、逆に前記上限値より
大きくなると繊維状珪酸カルシウムカリウムは生
成するが結晶性の副生成物であるK2O・4SiO2
H2Oが多量副生する傾向があり、繊維状珪酸カル
シウムカリウムとの分離が難しくなる場合があ
る。また原料中の珪酸カリウムは前記した如く繊
維状珪酸カルシウムカリウムの生成に必要な量よ
り過剰に存在させるのが好ましい。一般に該過剰
量は原料中のK2O/CaOモル比即ち前記x/zが
1.6〜6好ましくは2〜4の範囲となる如く選ぶ
のが好ましい。該X/Zが上記下限値より小さい
場合は繊維状珪酸カルシウムカリウムの生成速度
がおそく工業的に不利になる場合がある。また逆
に該X/Zが前記上限値より大きい場合は目的生
成物である繊維状珪酸カルシウムカリウムは得ら
れるが未反応の珪酸カリウムの回収量が多くなり
装置面でも不利になるので工業的には有利とは云
えない。 前記に原料仕込み係数T及び原料中のK2O/
CaOモル比につき好適な基準を説明したが、これ
らの数値は原料の種類、反応条件等によつて異な
り一概に決定出来るものではない。従つて予め原
料の種類、反応条件等によつて好適な値を決定し
て実施するのがよい。更に具体的に前記原料仕込
み割合の決定について1例を挙げて説明すると次
のようにして決定すればよい。原料に使用する珪
酸カリウムのSiO2/K2Oモル比が明らかである場
合は該珪酸カリウムの使用量によつて原料中の
SiO2モル(前記Yモル)とK2Oモル(前記Xモ
ル)が決定する。次いで水溶性カルシウム化合物
の種類を決定することにより原料仕込み係数Tの
算出式(A)式又は(B)式のいずれを適用するか決定す
る。また水溶性カルシウム化合物のCaOモル(前
記Zモル)はX/Zが1.6〜6の範囲から適宜決
定出来るので、この関係を満足ししかも前記原料
仕込み係数Tが1.0〜2.5好ましくは1.2〜1.9とな
るように水溶性カルシウム化合物の使用量を決定
すればよい。また前記した如く水溶性カルシウム
化合物はほぼ全ての量が繊維状珪酸カルシウムカ
リウムに消化されることが明らかであるので該珪
酸カルシウムカリウムを得る量を決定すれば必要
とする水溶性カルシウム化合物の量は決定する。
即ち原料中の必要とするCaOモル(前記Nモル)
が決定する。次いでK2O/CaOモル比即ちX/Z
の値を適宜決定する。今仮りにK2O/CaOモル比
が3となるように設定すれば必要なK2Oモルが決
定される。該K2Oは原料である珪酸カリウムにの
み由来するものであるから前記原料仕込み係数T
の算出式に応じて珪酸カリウム中のSiO2モルを
算出出来る。この結果より使用する珪酸カリウム
のSiO2/K2Oモル比を決定し、使用珪酸カリウム
を決めればよい。 前記の如く決定した原料の仕込み割合で仕込ん
だ水溶液は加圧下水熱反応させることによつて繊
維状珪酸カルシウムカリウムが得られる。 該水熱反応に於ける反応温度はあまりに低いと
反応時間が極端に長くなる場合があり逆に温度が
高い場合は熱エネルギーの損失だけでなく耐圧容
器の製作などが高価になるので経済的ではなくな
る。一般には150〜250℃の範囲で選ぶのが最も好
適である。反応圧力は一般に反応温度に於ける蒸
気圧で実施すれば十分で、通常は密封容器例えば
オートクレーブ中で実施するのが好ましい。この
ような条件下での反応であれば通常は10時間〜20
時間程度の反応時間で繊維状珪酸カルシウムカリ
ウムが得られる。 前記加圧下水熱反応させて得た繊維状珪酸カル
シウムカリウムは過することにより分離出来
る。過分離された繊維状珪酸カルシウムカリウ
ムは必要に応じて水洗後乾燥して製品とすればよ
い。また繊維状珪酸カルシウムカリウムを別分
離した液は未反応の珪酸カリウムを含むのでそ
のまま又は他の副生成物を除去して1部又は全部
を原料として循環使用することが出来る。一般に
水溶性カルシウム化合物として水酸化カルシウム
又は酸化カルシウムを用いる場合は副生成物が通
常生成しないのでそのまま循環することが出来る
が水溶性カルシウム化合物として塩化カルシウ
ム、硝酸カルシウム、硫酸カルシウム等を用いる
と前記した如くカリウム塩が副生する。該カリウ
ム塩が副生する場合は原料として液を循環する
に先きだちこれらのカリウム塩を除去するのが好
ましい。該カリウム塩の除去手段は特に限定的で
はなく公知の手段を採用すればよい。例えば副生
するカリウム塩が硫酸カリウム、硝酸カリウム等
の場合は溶解度以下になるように冷却することに
より別する方法も採用出来る。 前記目的物である繊維状珪酸カルシウムカリウ
ムを別した後の液を循環使用する場合は循環
液中に含まれる珪酸カリウム中のSiO2/K2Oモル
比を調整する必要がある場合がある。 この場合は一般に2酸化珪素或いは2酸化珪素
含有物質を添加することによつて調整するとよ
い。該2酸化珪素は一般に含水珪酸即ち湿式法で
製造される2酸化珪素(通称ホワイトカーボン)
が好適に使用され、2酸化珪素含有物質としては
白土が好適である。 本発明を更に具体的に説明するため以下実施例
を挙げて説明するが本発明はこれらの実施例に限
定されるものではない。 実施例 1 1.0モル/の珪酸カリウム(SiO2/K2Oモル
比2.5)水溶液(100cc)と0.25モル/の消石灰
スラリー(100cc)を、大気圧下25℃で混合し
た。この場合の前記(B)式より算出した原料仕込み
係数Tは1.76で、K2O/CaOモル比は4.0であ
る。混合と同時に白色の沈澱を生じたが、そのま
まオートクレーブに入れ密閉し、200℃の温度下
に20時間反応させた。 反応物は過し、イオン交換水100ccで3回く
りかえして水洗した後100℃で8時間乾燥させ
た。この乾燥物の収量は、8.5gであつた。得ら
れた生成物はX線回折によつて結晶性であること
が確認された。得られた生成物をJISR3101に基
いて化学分析した結果は、K2O9.2% CaO16.4
% SiO262.6% H3O11.7%であつた。この結果
からほぼ3K2O・9CaO・32SiO・20H2Oと推定さ
れる。又結晶1gを0.5N―NaOH水溶液で80℃1
時間加熱処理を行なつても、液中に殆ど何も溶け
ず、この結果からこの結晶の中に不定形のシリカ
等の不純物が含有されていないことが明白であ
る。又、この結晶を、電子顕微鏡写真(日本電子
(株)製、JSM―50A(商品名))で200倍に拡大
して写した結果は第1図に示す通りであつた。第
1図から明らかなように、長さ約200μ、巾2μ
の繊維状結晶であることが明白である。このもの
の熱分析の結果150℃付近のブロードな吸熱ピー
クと250℃付近のシヤープな吸熱ビークと820℃付
近の吸熱ピークが確認された。又、脱水は2段階
で起り150℃、210℃で結晶水が離脱することがわ
かつた。また前記反応物を過したときの液を
分析した結果珪酸カリウムの存在が確認出来たが
カルシウム成分はほとんど含まれていなかつた。 実施例 2 実施例1における原料比、反応条件を第1表に
示すように変化させた以外は、実施例1と同様に
実施した。その結果は、第1表に示す通りであ
る。尚いずれの場合も仕込みのCaOは0.025モル
で仕込全容積は200ccとした。
The present invention relates to a novel method for producing fibrous calcium potassium silicate in which potassium silicate and a water-soluble calcium compound are subjected to a pressurized hydrothermal reaction under specific conditions. Conventionally, various studies have been conducted on the reaction between silicon dioxide and calcium compounds. A typical example is calcium silicate made of zonotrite or tobermorite, which are most widely used as building materials. However, hardly any calcium potassium silicate compounds have been proposed. As a result of extensive research into the synthesis of calcium silicate compounds for many years, the present inventors have discovered that potassium silicate, calcium compounds, and a newer fibrous calcium potassium silicate can be industrially advantageously produced, and have completed the present invention. It came to this. That is, the present invention involves the reaction between potassium silicate and a water-soluble calcium compound, when K 2 O in these raw materials is X moles, SiO 2 is Y moles, and CaO is Z moles, a potassium salt is produced as a by-product. If the reaction does not produce potassium salt as a by-product, then use the formula (A) below.
It is characterized by charging the raw materials so that the raw material charging coefficient T calculated by formula (B) is 1.0 to 2.5 and X/Z is 1.5 to 6, and causing potassium silicate and a water-soluble calcium compound to undergo a hydrothermal reaction under pressure. This is a method for producing fibrous calcium potassium silicate. Here, T=9Y-32Z/9X-12Z (A) T=9Y-32Z/9X-3Z (B), and X, Y, and Z are of course positive numbers, and the denominators in equations (A) and (B) , the numerator is also a positive number, as shown in the examples below. The fiber form of the fibrous calcium potassium silicate obtained in the present invention varies depending on the type of raw materials, raw material mixing ratio, reaction conditions, etc., and cannot be absolutely limited, but it can have a fiber length of 20 to 300 μm or more. Also, the aspect ratio (fiber length/diameter) is 50~
200 range is common. The fact that the calcium potassium silicate obtained in the present invention is in a fibrous form can be easily confirmed using a microscope, such as a scanning electron microscope. Further, the same electron microscope reveals that it is fibrous and crystalline, existing as needle-shaped crystals, but the fact that it is crystalline becomes clearer by X-ray diffraction. In addition, the general formula of calcium potassium silicate obtained in the present invention was determined by chemical analysis to be approximately
3K 2 O・9CaO・32SiO 2・mH 2 O (however, m is 0 to 20
is a positive number). In general, the general formula of each type of crystal can be determined by chemical analysis. However, for the silicates and the like that are the object of the present invention, it is difficult to obtain an accurate general formula for the following reasons, and it can only be estimated on the assumption that there are some fluctuations in the coefficients. The first is that impurities that are difficult to separate are often incorporated into the crystal below the solid solubility limit. The second reason is that the composition of a crystal having ion exchange ability changes depending on the pH and liquid composition, since each ion is contained in the crystal according to the ion exchange equilibrium. For example, in the general formula estimated in the present invention, there are examples where part of K is ion-exchanged with Na or Ca, and part of Ca is ion-exchanged with Na or K. In this way, the general formula of silicate is For example, in JP-A-51-114397, it is difficult to specify: 0.9±0.2M 2 /nO: A 2 O 3 : 2.5±0.5SiO 2.0
~8H 2 O (where M is a metal cation and n is its valence) It is also understood from other descriptions.
Moreover, the fibrous calcium potassium silicate obtained by the present invention has the following properties. That is, when the calcium potassium silicate is heated, water of crystallization is separated at 250 to 300°C. However, when this water of crystallization is brought into contact with moisture at a temperature lower than the above temperature, the water of crystallization condenses. Therefore, the calcium potassium silicate obtained in the present invention has the same structure regardless of the number of crystal waters, and the crystal waters have properties as so-called fluorite water. This phenomenon is unique to the calcium potassium silicate of the present invention, and the product from which water of crystallization has been removed can be used as a desiccant. Furthermore, if the calcium potassium silicate is further heated after the water of crystallization is removed, it becomes glassy at about 800° C. or higher and loses its original fibrous form. The calcium potassium silicate of the present invention exhibits ion exchange ability due to the K 2 O contained therein.
That is, when fibrous calcium potassium is brought into contact with, for example, an aqueous sodium chloride solution, K 2 O is ion-exchanged into Na 2 O. This property is unique to the calcium potassium silicate and can be widely used as an ion exchanger. In the present invention, potassium silicate and a water-soluble calcium compound are used as raw materials. Potassium silicate is a well-known compound generally represented by K 2 O.nsiO 2 . The SiO 2 /K 2 O molar ratio of the potassium silicate is not particularly limited, and any known one can be used. generally applicable
A SiO 2 /K 2 O molar ratio of 2.5 to 3.7 is most preferably used. Further, the water-soluble calcium compound is not particularly limited as long as it dissolves under pressurized hydrothermal conditions described below. In other words, if fibrous calcium potassium silicate is produced even if the solubility is low,
Since an amount corresponding to the calcium compound reacted with the calcium potassium silicate is dissolved, it is not necessary that all of the calcium compound is dissolved in the reaction system liquid before the reaction. Examples of water-soluble calcium compounds that are generally preferably used include calcium hydroxide, calcium oxide, calcium chloride, calcium nitrate, and calcium sulfate. However, when a water-insoluble calcium compound such as calcium carbonate is used, it is not preferable because the formation of fibrous substances cannot be observed during the reaction time described below. In the reaction between potassium silicate and a water-soluble calcium compound in the present invention, the raw materials potassium silicate and water-soluble calcium compound are generally dissolved in an aqueous solution at room temperature or prepared in the form of a slurry. They may be adjusted to appropriate concentrations separately, mixed together, and reacted under pressurized hydrothermal conditions. The raw material concentration in the aqueous solution is not particularly limited, but potassium silicate is generally used.
0.3-2.0 mol/, water-soluble calcium compound 0.1
It is most preferable to use the amount in a range of about 0.4 mol/about. Although a white precipitate is generally formed even at room temperature by mixing the raw materials, it is usually sufficient to subject it to the hydrothermal reaction as it is. The mixing ratio of potassium silicate and water-soluble calcium compound in the present invention is not particularly limited as long as fibrous calcium potassium silicate is produced. Generally, the amount of potassium silicate is preferably selected so that it is present in excess of the amount required for the reaction, and the excess amount of alkali silicate is determined depending on the type of water-soluble calcium compound, reaction conditions, etc. Since there are many, it is best to decide in advance. The most widely used mixing ratio is preferably determined as follows. That is, almost 100% of the water-soluble calcium compound in the raw material of the present invention is digested to produce fibrous calcium potassium silicate. This is clear from the examples described below, and is made clear by the fact that almost no calcium component is observed in the liquid after the fibrous calcium potassium silicate produced by the reaction is separated. Therefore, the composition of the raw materials can be determined by considering that the calcium component forms almost 100% of the calcium potassium silicate. Further, as described above, potassium silicate can have various SiO 2 /K 2 O molar ratios, but those used as raw materials generally have a specific SiO 2 /K 2 O molar ratio. For example, when a material with a SiO 2 /K 2 O molar ratio of 3.5 is used as a raw material, the number of moles of SiO 2 and the number of moles of K 2 O are determined by the amount of potassium silicate used. Therefore, the raw material charging composition ratio described below can be easily determined. When carrying out the present invention, when K 2 O in the raw materials is assumed to be X moles, SiO 2 to Y moles, and CaO to Z moles, if a potassium salt is produced as a by-product in the reaction, the following formula (A) is used. Therefore, when potassium salt is not produced as a by-product, potassium silicate and water-soluble calcium are added so that the raw material charging coefficient T calculated using the following formula (B) is 1.0 to 2.5, preferably 1.2 to 1.9, and X/Z is 1.6 to 6. It is better to prepare a compound. T=9Y-32Z/9X-12Z (A) T=9Y-32Z/9X-3Z (B) When potassium salt is produced as a by-product in the above reaction, calcium chloride, calcium nitrate, and sulfuric acid are used as water-soluble calcium compounds. This is the case when calcium or the like is used and the anion reacts with potassium to produce potassium chloride, potassium nitrate, potassium sulfate, etc. as by-products. Further, the case where potassium salt is not produced as a by-product in the reaction is when calcium hydroxide, calcium oxide, etc. are used as the water-soluble calcium compound. If the raw material charging coefficient T is smaller than the lower limit mentioned above, the reaction time will take several days to a few days, which tends to be unsuitable for industrial use.On the other hand, if it is larger than the upper limit, fibrous calcium potassium silicate will be produced. Crystalline by-product K 2 O・4SiO 2
A large amount of H 2 O tends to be produced as a by-product, and separation from fibrous calcium potassium silicate may be difficult. Further, as described above, it is preferable that the potassium silicate in the raw material be present in an amount in excess of the amount necessary for producing fibrous calcium potassium silicate. Generally, the excess amount depends on the K 2 O/CaO molar ratio in the raw material, that is, the above x/z.
It is preferable to select a value in the range of 1.6 to 6, preferably 2 to 4. If the ratio X/Z is smaller than the above lower limit, the production rate of fibrous calcium potassium silicate may be slow, which may be industrially disadvantageous. On the other hand, if the X/Z is larger than the above upper limit, the target product, fibrous calcium potassium silicate, can be obtained, but the amount of unreacted potassium silicate recovered will be large, which will be disadvantageous in terms of equipment, so it is not suitable for industrial use. cannot be said to be advantageous. In the above, the raw material preparation coefficient T and K 2 O in the raw material /
Although suitable criteria for the CaO molar ratio have been explained, these values vary depending on the type of raw materials, reaction conditions, etc., and cannot be determined unconditionally. Therefore, it is preferable to determine suitable values in advance depending on the type of raw materials, reaction conditions, etc. before carrying out the reaction. More specifically, to explain the determination of the raw material charging ratio by citing one example, it may be determined as follows. If the SiO 2 /K 2 O molar ratio of the potassium silicate used in the raw material is known, the amount of potassium silicate used may vary depending on the amount of potassium silicate used in the raw material.
2 mols of SiO (Y mols above) and 2 mols K 2 O (X mols above) are determined. Next, by determining the type of water-soluble calcium compound, it is determined whether to apply formula (A) or formula (B) for calculating the raw material preparation coefficient T. In addition, since the CaO mole (the above Z mole) of the water-soluble calcium compound can be appropriately determined from the range of X/Z of 1.6 to 6, this relationship is satisfied and the raw material preparation coefficient T is 1.0 to 2.5, preferably 1.2 to 1.9. The amount of water-soluble calcium compound to be used may be determined so as to satisfy the following conditions. Furthermore, as mentioned above, it is clear that almost all of the water-soluble calcium compound is digested into fibrous calcium potassium silicate. decide.
In other words, the required CaO moles in the raw material (the above N moles)
is determined. Then the K 2 O/CaO molar ratio, that is, X/Z
Determine the value of . If we now temporarily set the K 2 O/CaO molar ratio to 3, the required K 2 O mol will be determined. Since the K 2 O is derived only from the raw material potassium silicate, the raw material charging coefficient T
2 moles of SiO in potassium silicate can be calculated according to the calculation formula. Based on this result, the SiO 2 /K 2 O molar ratio of the potassium silicate to be used may be determined, and the potassium silicate to be used may be determined. Fibrous calcium potassium silicate is obtained by subjecting the aqueous solution charged at the ratio of raw materials determined as described above to a hydrothermal reaction under pressure. If the reaction temperature in the hydrothermal reaction is too low, the reaction time may become extremely long; on the other hand, if the temperature is high, not only is there a loss of thermal energy, but the production of a pressure-resistant container becomes expensive, so it is not economical. It disappears. Generally, it is most suitable to select the temperature within the range of 150 to 250°C. It is generally sufficient to carry out the reaction at a vapor pressure at the reaction temperature, and it is usually preferable to carry out the reaction in a sealed container such as an autoclave. Reactions under these conditions usually last for 10 to 20 hours.
Fibrous calcium potassium silicate can be obtained in a reaction time of about 1 hour. The fibrous calcium potassium silicate obtained by the hydrothermal reaction under pressure can be separated by filtration. The over-separated fibrous calcium potassium silicate may be washed with water and dried as required to obtain a product. Further, since the liquid obtained by separating the fibrous calcium potassium silicate contains unreacted potassium silicate, it can be recycled as it is or after removing other by-products, part or all can be recycled as a raw material. Generally, when calcium hydroxide or calcium oxide is used as a water-soluble calcium compound, no by-products are usually generated and it can be recycled as is, but as mentioned above, calcium chloride, calcium nitrate, calcium sulfate, etc. Potassium salt is produced as a by-product. When the potassium salts are by-produced, it is preferable to remove these potassium salts before circulating the liquid as a raw material. The means for removing the potassium salt is not particularly limited, and any known means may be employed. For example, if the by-product potassium salt is potassium sulfate, potassium nitrate, etc., a separate method may be adopted in which the salt is cooled to below the solubility. When the liquid after separating the target product, fibrous calcium potassium silicate, is recycled, it may be necessary to adjust the SiO 2 /K 2 O molar ratio in the potassium silicate contained in the circulating liquid. In this case, adjustment is generally made by adding silicon dioxide or a silicon dioxide-containing substance. The silicon dioxide is generally hydrated silicic acid, that is, silicon dioxide produced by a wet method (commonly known as white carbon).
is preferably used, and clay is suitable as the silicon dioxide-containing substance. EXAMPLES In order to explain the present invention more specifically, the present invention will be described below with reference to Examples, but the present invention is not limited to these Examples. Example 1 A 1.0 mol/aqueous solution (100 cc) of potassium silicate (SiO 2 /K 2 O molar ratio 2.5) and a 0.25 mol/slaked lime slurry (100 cc) were mixed at 25° C. under atmospheric pressure. In this case, the raw material charging coefficient T calculated from the above formula (B) is 1.76, and the K 2 O/CaO molar ratio is 4.0. A white precipitate was produced at the same time as the mixture was mixed, but the mixture was placed in an autoclave, sealed, and allowed to react at a temperature of 200°C for 20 hours. The reaction product was filtered, washed three times with 100 cc of ion-exchanged water, and then dried at 100°C for 8 hours. The yield of this dried product was 8.5 g. The obtained product was confirmed to be crystalline by X-ray diffraction. The result of chemical analysis of the obtained product based on JISR3101 was K 2 O 9.2% CaO 16.4
% SiO 2 62.6% H 3 O 11.7%. From this result, it is estimated to be approximately 3K 2 O・9CaO・32SiO・20H 2 O. In addition, 1 g of crystals was heated at 80℃1 with 0.5N-NaOH aqueous solution.
Even after the heat treatment was carried out for several hours, almost nothing dissolved in the liquid, and from this result it is clear that the crystals do not contain impurities such as amorphous silica. Further, this crystal was photographed using an electron microscope (manufactured by JEOL Ltd., JSM-50A (trade name)) at a magnification of 200 times, and the result was as shown in FIG. As is clear from Figure 1, the length is approximately 200μ and the width is 2μ.
It is clear that they are fibrous crystals. Thermal analysis of this material confirmed a broad endothermic peak around 150°C, a sharp endothermic peak around 250°C, and an endothermic peak around 820°C. It was also found that dehydration occurs in two stages, with water of crystallization leaving at 150°C and 210°C. Further, as a result of analysis of the liquid obtained by filtering the reaction product, the presence of potassium silicate was confirmed, but almost no calcium component was contained. Example 2 The same procedure as in Example 1 was carried out except that the raw material ratio and reaction conditions in Example 1 were changed as shown in Table 1. The results are shown in Table 1. In each case, the amount of CaO charged was 0.025 mol, and the total volume charged was 200 cc.

【表】 No.7以外は、化学分析の結果から、実施例1
で示される組成と同様な珪酸カルシウムカリウム
であることがわかつた。No.7についてもX線回
折によれば、少量のK2O・4SiO2・H2Oが混入し
ていることが確認されるが主成分は繊維状の珪酸
カルシウムカリウムであることがわかつた。 実施例 3 1.0モル/の珪酸カリウム(SiO2/K2Oモル
比2.0)水溶液(100cc)と0.25モル/の塩化カ
ルシウム水溶液を大気圧下250℃で混合した。こ
の場合の前記(A)式によつて算出した原料仕込み係
数Tは1.67であり、K2O/CaOモル比は4.0であ
つた。混合と同時に白色の沈澱を生じたがそのま
まオートクレーブに入れ密閉し200℃の温度下に
20時間反応させた。後は、実施例1と同様に処理
した結果乾燥物の収量は8.6gであり、電子顕微
鏡による観察によれば、長さ150μの繊維状結晶
が生成していた。なお化学分析により、実施例1
に示される組成と同様であることがわかつた。 実施例 4 実施例3の塩化カルシウムの代りに、硝酸カル
シウムを用いた以外は、実施例3と同様に反応さ
せ処理したところ、収量は8.6gであり、繊維の
長さは120μであつた。この生成物も化学分析に
より、実施例1に示される組成と同様であること
がわかつた。 実施例 5 実施例3の塩化カルシウムの代りに硫酸カルシ
ウムスラリーを用いた以外は、実施例3と同様に
反応させ処理したところ、収量は8.5g、繊維長
は210μであつた。この生成物は、化学分析によ
り実施例に示される組成と同様であることがわか
つた。 実施例 6 実施例3の仕込みモル比を第2表に示すように
変えた以外は、実施例3と同様に反応させ処理し
た。結果は第2表に示した通りであつた。 尚いずれの場合もCaO仕込量は0.025モルで仕
込全容積は200ccとした。No.4以外は化学分析に
より、実施例1に示される組成と同様であること
がわかつた。No.4は、少量のK2O4SiO2H2Oが含
まれていることが確認された。
[Table] From the results of chemical analysis, except No. 7, Example 1
It was found that it was calcium potassium silicate with a composition similar to that shown in . Regarding No. 7, X-ray diffraction confirmed that a small amount of K 2 O・4SiO 2・H 2 O was mixed in, but the main component was found to be fibrous calcium potassium silicate. . Example 3 A 1.0 mol/aqueous solution (100 cc) of potassium silicate (SiO 2 /K 2 O molar ratio 2.0) and a 0.25 mol/aqueous calcium chloride solution were mixed at 250° C. under atmospheric pressure. In this case, the raw material charging coefficient T calculated by the above formula (A) was 1.67, and the K 2 O/CaO molar ratio was 4.0. A white precipitate was formed upon mixing, but the mixture was placed in an autoclave and sealed at a temperature of 200°C.
The reaction was allowed to proceed for 20 hours. After that, the process was carried out in the same manner as in Example 1, and the yield of the dried product was 8.6 g. According to observation using an electron microscope, fibrous crystals with a length of 150 μm were formed. Furthermore, according to chemical analysis, Example 1
It was found that the composition was similar to that shown in . Example 4 The reaction and treatment were carried out in the same manner as in Example 3 except that calcium nitrate was used instead of calcium chloride in Example 3. The yield was 8.6 g and the fiber length was 120 μ. This product was also found to have a similar composition to that shown in Example 1 by chemical analysis. Example 5 The reaction and treatment were carried out in the same manner as in Example 3 except that calcium sulfate slurry was used instead of calcium chloride in Example 3. The yield was 8.5 g and the fiber length was 210 μm. This product was found to have a composition similar to that shown in the Examples by chemical analysis. Example 6 The reaction and treatment were carried out in the same manner as in Example 3, except that the molar ratio of the charge in Example 3 was changed as shown in Table 2. The results were as shown in Table 2. In both cases, the amount of CaO charged was 0.025 mol, and the total volume charged was 200 cc. Chemical analysis revealed that the compositions other than No. 4 were the same as those shown in Example 1. It was confirmed that No. 4 contained a small amount of K 2 O4SiO 2 H 2 O.

【表】 実施例 7 実施例1で反応させた後の液を分析したとこ
ろ0.46モル/の珪酸カリウム(SiO2/K2Oモル
比1.73)水溶液であつた。この液129ccに1.00
モル/の珪酸カリウム(SiO2/K2Oモル比
3.6)水溶液(41cc)を加え均一に混合し、この
溶液を実施例1で用いた反応器に循環した。該反
応器に0.83モル/の消石灰スラリーを混合し
た。その後は実施例1と同様に反応させ処理した
ところ収量は8.4gで繊維の長さは200μであつ
た。化学分析により実施例1に示される組成と同
様であることがわかつた。 実施例 8 実施例1で反応させた後の0.46モル/の珪酸
カリウムSiO2/K2Oモル比1.73)水溶液からなる
液129ccに1.00モル/の珪酸カリウム
(SiO2/K2Oモル比3.0)水溶液(41cc)と含水珪
酸(トクシールGU(商品名)SiO2含有量85%)
1.74gを加えSiO2/K2Oモル比2.5に調整し実施
例1の反応器に循環した。該反応器に0.83モル/
の消石灰スラリーを混合した。このスラリーを
実施例1と同様に反応させ処理したところ収量は
8.6g、繊維長200μの珪酸カルシウムカリウムを
得た。 化学分析により、実施例1に示される組成と同
様であることがわかつた。 実施例 9 実施例8の含水珪酸の代りに白土(SiO2含有
量90%)を用いた他は、実施例8と同様に処理し
たところ収量は8.6gで、繊維長150μの珪酸カル
シウムカリウムを得た。この生成物の化学分析に
より、実施例1に示される組成と同様であること
がわかつた。 実施例 10 実施例1で得られた珪酸カルシウムカリウムを
1gとり、これを10%の食塩水に投じ、撹拌しな
がら10時間保持した。このスラリーを別し、
液中のカリウムを分析したところ、K2O換算0.10
g含まれていることがわかつた。 更に別したケークを10%KCIに投じ、同様に
処理し、液を分析したところNa2O換算0.055g
含まれていることがわかつた。更にケークを10%
NaClに投じ同様に処理し、液を分析したとこ
ろK2O換算0.09g含まれていることがわかつた。
この結果イオン交換していることは明白である。
例えば、組成式3K2O・9CaO・32SiO2・20H2Oの
K2Oの部分が全部交換可能としたときの理論イオ
ン交換能1.96ミリ当量/gであるが、測定値は1
回目1.79ミリ当量/g、2回目1.77ミリ当量/
g、3回目1.61ミリ当量/gであり、ほぼ理論値
に近い値を示した。 実施例 11 酸化カルシウム1.4gを100ccの水に投入した。
このスラリーを実施例1の0.25モル/の水酸化
カルシウムスラリー100ccのかわりに使用した以
外は、実施例1と同様に反応させ処理した。生成
物の化学分析により、実施例に示される組成と同
様であることがわかつた。 顕微鏡の観察により180μの繊維状であること
も確認できた。収量は8.7gであつた。
[Table] Example 7 The solution after the reaction in Example 1 was analyzed and found to be a 0.46 mol/potassium silicate aqueous solution (SiO 2 /K 2 O molar ratio 1.73). 1.00 per 129cc of this liquid
Potassium silicate (SiO 2 /K 2 O molar ratio
3.6) An aqueous solution (41 cc) was added and mixed uniformly, and this solution was circulated to the reactor used in Example 1. 0.83 mol/slaked lime slurry was mixed into the reactor. Thereafter, the reaction was carried out in the same manner as in Example 1, and the yield was 8.4 g, and the fiber length was 200 μm. Chemical analysis revealed that the composition was similar to that shown in Example 1. Example 8 1.00 mol/potassium silicate (SiO 2 /K 2 O mol ratio 3.0) was added to 129 cc of aqueous solution of 0.46 mol/potassium silicate (SiO 2 /K 2 O mol ratio 1.73) after the reaction in Example 1. ) Aqueous solution (41cc) and hydrated silicic acid (Tokusil GU (trade name) SiO 2 content 85%)
1.74 g was added to adjust the SiO 2 /K 2 O molar ratio to 2.5, and the mixture was circulated to the reactor of Example 1. 0.83 mol/
slaked lime slurry was mixed. When this slurry was reacted and treated in the same manner as in Example 1, the yield was
8.6 g of calcium potassium silicate having a fiber length of 200 μm was obtained. Chemical analysis showed the composition to be similar to that shown in Example 1. Example 9 The same procedure as in Example 8 was used except that clay (SiO 2 content: 90%) was used instead of the hydrated silicic acid in Example 8. The yield was 8.6 g. Calcium potassium silicate with a fiber length of 150 μm was Obtained. Chemical analysis of this product showed a composition similar to that shown in Example 1. Example 10 1 g of calcium potassium silicate obtained in Example 1 was taken, poured into a 10% saline solution, and maintained for 10 hours with stirring. Separate this slurry,
When the potassium in the liquid was analyzed, it was found to be 0.10 in terms of K 2 O.
It was found that g. The separated cake was then poured into 10% KCI and treated in the same way, and the liquid was analyzed and found to be 0.055g in terms of Na 2 O.
I found out that it was included. Plus 10% more cake
It was poured into NaCl and treated in the same manner, and when the liquid was analyzed, it was found that it contained 0.09 g in terms of K 2 O.
As a result, it is clear that ion exchange is occurring.
For example, the composition formula 3K 2 O・9CaO・32SiO 2・20H 2 O
The theoretical ion exchange capacity is 1.96 milliequivalents/g when all K 2 O parts are exchangeable, but the measured value is 1.
1.79 meq/g for the second time, 1.77 meq/g for the second time
g, 1.61 milliequivalent/g for the third time, which was almost the theoretical value. Example 11 1.4 g of calcium oxide was added to 100 cc of water.
The reaction and treatment were carried out in the same manner as in Example 1, except that this slurry was used in place of 100 cc of the 0.25 mol/calcium hydroxide slurry in Example 1. Chemical analysis of the product showed a composition similar to that shown in the Examples. It was also confirmed by microscopic observation that it was 180μ fibrous. The yield was 8.7g.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面第1図は本発明の繊維状珪酸カルシウ
ムカリウムの電子顕微鏡写真(1000倍)である。
FIG. 1 of the accompanying drawings is an electron micrograph (1000x magnification) of the fibrous calcium potassium silicate of the present invention.

Claims (1)

【特許請求の範囲】 1 珪酸カリウムと水溶性カルシウム化合物と
を、これらの原料中のK2OがXモル、SiO2がYモ
ル及びCcOがZモルとするとき反応によつてカリ
ウム塩が副生する場合は下記(A)式で、また反応に
よつてカリウム塩が副生しない場合は下記(B)式で
算出した原料仕込み係数Tが1.0〜2.5となり且つ
X/Zが1.5〜6となるように仕込み珪酸カリウ
ムと水溶性カルシウム化合物とを加圧下水熱反応
させることを特徴とする繊維状珪酸カルシウムカ
リウムの製造方法。 T=9Y−32Z/9X−12Z (A) T=9Y−32Z/9X−3Z (B) 但し、(A),(B)式においてX,Y,Z、分母、分
子は夫々正数である。 2 反応温度が150〜250℃である特許請求の範囲
第1項記載の方法。 3 水溶性カルシウム化合物が水酸化カルシウム
又は酸化カルシウムである特許請求の範囲第1項
記載の方法。 4 水溶性カルシウム化合物が塩化カルシウム硝
酸カルシウム及び硫酸カルシウムよりなる群から
選ばれた1種のカルシウム化合物である特許請求
の範囲第1項記載の方法。 5 珪酸カリウムと水溶性カルシウム化合物と
を、これらの原料中のK2OがXモル、SiO2がYモ
ル及びCaOがZモルとするとき反応によつて珪酸
カリウムが副生する場合は下記(A)式で、また反応
によつて珪酸カリウムが副生しない場合は下記(B)
式で計算した原料仕込み量Tが1.0〜2.5となり且
つX/Zが1.5〜6となるように仕込み150〜250
℃の加圧下で反応させ、得られる繊維状珪酸カル
シウムカリウムを別し、液の1部又は全部を
そのまま又は副生カリウム塩を除去した後反応系
に循環することを特徴とする繊維状珪酸カルシウ
ムカリウムの製造方法 T=9Y−32Z/9X−12Z (A) T=9Y−32Z/9X−3Z (B) 但し、(A),(B)式においてX,Y,Z、分母、分
子は夫々正数である。
[Claims] 1. Potassium silicate and a water-soluble calcium compound are reacted when K 2 O in these raw materials is X moles, SiO 2 is Y moles, and CcO is Z moles. If potassium salt is produced as a by-product, use the following formula (A), and if no potassium salt is produced as a by-product, use the following formula (B). 1. A method for producing fibrous calcium potassium silicate, which comprises subjecting charged potassium silicate and a water-soluble calcium compound to a hydrothermal reaction under pressure so as to achieve the following. T=9Y-32Z/9X-12Z (A) T=9Y-32Z/9X-3Z (B) However, in formulas (A) and (B), X, Y, Z, denominator, and numerator are each positive numbers. . 2. The method according to claim 1, wherein the reaction temperature is 150 to 250°C. 3. The method according to claim 1, wherein the water-soluble calcium compound is calcium hydroxide or calcium oxide. 4. The method according to claim 1, wherein the water-soluble calcium compound is one type of calcium compound selected from the group consisting of calcium chloride, calcium nitrate, and calcium sulfate. 5 When potassium silicate and a water-soluble calcium compound are reacted, when K 2 O in these raw materials is X mol, SiO 2 is Y mol, and CaO is Z mol, and potassium silicate is produced as a by-product, the following ( In formula A), and if potassium silicate is not produced as a by-product in the reaction, the following (B)
Charge 150 to 250 so that the raw material charge amount T calculated by the formula is 1.0 to 2.5 and X/Z is 1.5 to 6.
A fibrous calcium silicate characterized by reacting under pressure at ℃, separating the obtained fibrous calcium potassium silicate, and circulating part or all of the liquid as it is or after removing by-product potassium salt to the reaction system. Production method of potassium T=9Y-32Z/9X-12Z (A) T=9Y-32Z/9X-3Z (B) However, in formulas (A) and (B), X, Y, Z, denominator, and numerator are respectively It is a positive number.
JP8193578A 1978-07-07 1978-07-07 Fibrous calcium potassium silicate and production thereof Granted JPS5510424A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8193578A JPS5510424A (en) 1978-07-07 1978-07-07 Fibrous calcium potassium silicate and production thereof
US06/054,810 US4277457A (en) 1978-07-07 1979-07-05 Alkali calcium silicates and process for preparation thereof
GB7923656A GB2031393B (en) 1978-07-07 1979-07-06 Alkali calcium silicates and process for preparation thereof
DE19792927444 DE2927444A1 (en) 1978-07-07 1979-07-06 ALKALICALCIUMSILIKATE AND METHOD FOR THE PRODUCTION THEREOF
FR7917768A FR2434117A1 (en) 1978-07-07 1979-07-09 NOVEL CALCOALCALIN SILICATE AND PROCESS FOR ITS PREPARATION
US06/125,186 US4294810A (en) 1978-07-07 1980-02-27 Alkali calcium silicates and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8193578A JPS5510424A (en) 1978-07-07 1978-07-07 Fibrous calcium potassium silicate and production thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7456479A Division JPS5510486A (en) 1979-06-15 1979-06-15 Ion exchanger

Publications (2)

Publication Number Publication Date
JPS5510424A JPS5510424A (en) 1980-01-24
JPS6126494B2 true JPS6126494B2 (en) 1986-06-20

Family

ID=13760332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8193578A Granted JPS5510424A (en) 1978-07-07 1978-07-07 Fibrous calcium potassium silicate and production thereof

Country Status (1)

Country Link
JP (1) JPS5510424A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158469U (en) * 1987-04-03 1988-10-18
JPH0534473Y2 (en) * 1987-09-24 1993-08-31

Also Published As

Publication number Publication date
JPS5510424A (en) 1980-01-24

Similar Documents

Publication Publication Date Title
US4351814A (en) Hydrotalcites having a hexagonal needle-like crystal structure and process for production thereof
KR20070095439A (en) Methods for producing cesium hydroxide solutions
US4749676A (en) Process for the preparation of a crystalline, swellable sheet silicate of the saponite type
US4243429A (en) Process for producing tobermorite and ettringite
JPH0653566B2 (en) Method for producing crystalline zirconium phosphate
US5002749A (en) Process for the manufacture of zirconium oxide hydrate from granular crystallized zirconium oxide
AU735325B2 (en) Method for producing calcium borate
US4277457A (en) Alkali calcium silicates and process for preparation thereof
JP4194655B2 (en) Calcium borate and method for producing the same
US4294810A (en) Alkali calcium silicates and process for preparation thereof
JP4330182B2 (en) Synthesis method of carbonated hydrocalumite
JPS6126494B2 (en)
JPH0648713A (en) Production of crystalline zirconium phosphate
CA1196173A (en) Method for recovering useful products from waste products obtained when manufacturing aluminium fluoride
US4078043A (en) Process for preparing calcium fluoride from hexafluoro silicic acid and production of silicic acid gel or active silicic acid from said calcium fluoride
US3656894A (en) Process for the production of high quality synthetic cryolite
JPS6126495B2 (en)
JPH024534B2 (en)
US3523764A (en) Process for the manufacture of magnesium aluminosilicate for medical uses
US3032391A (en) Production of calcium borates
JPS6125654B2 (en)
JPH07101711A (en) Crystalline zirconium phosphate
US4093706A (en) Method of production of synthetic fluorite having a selected grain size
JPS6129887B2 (en)
AU715684C (en) Method for producing calcium borate