JPS6126492B2 - - Google Patents

Info

Publication number
JPS6126492B2
JPS6126492B2 JP57193982A JP19398282A JPS6126492B2 JP S6126492 B2 JPS6126492 B2 JP S6126492B2 JP 57193982 A JP57193982 A JP 57193982A JP 19398282 A JP19398282 A JP 19398282A JP S6126492 B2 JPS6126492 B2 JP S6126492B2
Authority
JP
Japan
Prior art keywords
silicic acid
precipitated silicic
acid
precipitated
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57193982A
Other languages
Japanese (ja)
Other versions
JPS5888117A (en
Inventor
Naurooto Peeteru
Etsushu Haintsu
Teyuruku Gyunteru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6145876&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPS6126492(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Degussa GmbH filed Critical Degussa GmbH
Publication of JPS5888117A publication Critical patent/JPS5888117A/en
Publication of JPS6126492B2 publication Critical patent/JPS6126492B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/187Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/187Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
    • C01B33/193Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates of aqueous solutions of silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/19Oil-absorption capacity, e.g. DBP values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Description

【発明の詳細な説明】[Detailed description of the invention]

ケイ酸の構造性(Struktur)とは、その一次粒
子の二次粒子ないし三次凝集体への凝集状態の程
度および範囲を表わすケイ酸の性質を意味する。
フアーネスブラツクの構造性の特性化に関する現
在妥当する考察によれば、沈殿ケイ酸についての
カボツト(CABOT)によるブラベンダー
(Brabender)吸収値法」を用いることによつ
て、いわゆるジブチルフタレート吸収値(ml/g
または%で表わされる)と構造性との間には明確
な相関関係が示される(ドイツ特許第1767332号
明細書第2欄第45〜64行参照)。 従来技術として、その構造性に関して平均的な
程度の構造性を有する通常のケイ酸(ゴム用の補
強充填物質)とは異なる型のケイ酸が知られてい
る。 この場合、乾燥工程の特殊な変法によつてその
構造性が高められていると見される生成物が形成
される沈殿ケイ酸またはシリカゲルが重要であ
る。これには、ケイ酸―オルガノ―ヒドロゲルの
超限界脱水(米国特許第2245767号明細書参照)
により、またはケイ酸ヒドロゲルのジエツト粉砕
乾燥(ドイツ特許第1036220号明細書参照)によ
つて得られるエーロゾルが属する(ウルマン編工
業化学百科辞典(Ullmanns Enzyklopadie der
technischen Chemie)第版第15巻第725頁1949
年発行参照)。更に、乾燥工程前の中間ミセル性
液体が有機溶剤またはそのような溶剤と水との混
合物からなるものであるようなケイ酸およびケイ
酸ゲルもまたこの群に加えるべきである(米国特
許第2285449号、ドイツ特許公告第1008717号、お
よびドイツ特許第1089736号各明細書参照)。更
に、加うるに噴霧乾燥されたケイ酸類(オランダ
特許公告第6502791号、ドイツ特許第2447613号各
明細書参照)および最後に剪断によつて得られた
沈殿ケイ酸類もまたこれに属する(ドイツ特許出
願F14059VIC/12i、ドイツ特許公告第1000793
号、ドイツ特許第1767332号各明細書参照)。 下記の総括(第1表)には、平均的な構造性を
有する“通常の”沈殿ケイ酸に比較した従来技術
による生成物に関する比較データが示されてい
る。この一覧表には更に、本発明によるケイ酸の
データが加えられている。数値の比較により、本
発明によつて驚くべきことには400m2/g以上の
表面積を300%以上のDBP値と組合せて有する高
い構造性を有する沈殿ケイ酸およびケイ酸ゲルを
製造することに成功したことが立証される。 本発明は、アルカリ金属ケイ酸塩溶液を酸およ
び/または酸として作用する物質とを反応させる
ことによつて、300%以上の高いDBP値を同時に
400m2/g以上の高い比表面積を有する沈殿ケイ
酸を製造するという課題から出発している。本発
明のもう一つの目的は、前記の物理的―化学的特
性データを備えた沈殿ケイ酸を、種々の目的の粒
度分布型において製造することである。
The structure of silicic acid refers to the properties of silicic acid which indicate the degree and range of agglomeration of its primary particles into secondary particles or tertiary aggregates.
According to the currently valid considerations for characterizing the structural properties of Furness Black, the so-called dibutyl phthalate absorption value ( ml/g
(expressed in %) and the structural properties (see German Patent No. 1767332, column 2, lines 45-64). In the prior art, types of silicic acid are known which differ from normal silicic acid (reinforcing filler materials for rubber), which have an average degree of structural properties. In this case, precipitated silicic acids or silica gels are of interest, whose structural properties are formed by special variants of the drying process. This includes ultra-limit dehydration of silicic acid-organo-hydrogel (see US Pat. No. 2,245,767).
or by jet grinding and drying of silicic acid hydrogels (see German Patent No. 1036220).
Technischen Chemie) 1949 1949
(see publication). Furthermore, silicic acids and silicic acid gels in which the intermediate micellar liquid before the drying step consists of organic solvents or mixtures of such solvents and water should also be added to this group (US Pat. No. 2,285,449). (see German Patent Publication No. 1008717 and German Patent No. 1089736). In addition, spray-dried silicic acids (see Dutch Patent Publication No. 6502791 and German Patent No. 2447613) and finally precipitated silicic acids obtained by shearing also belong to this category (see German Patent No. 6502791 and German Patent No. 2447613). Application F14059VIC/12i, German Patent Publication No. 1000793
(see German Patent No. 1767332). In the summary below (Table 1) comparative data are given for products according to the prior art compared to "normal" precipitated silicas of average structure. This list also includes data for silicic acids according to the invention. Comparison of the numerical values shows that the present invention surprisingly produces precipitated silicas and silicic acid gels with high structural properties having a surface area of more than 400 m 2 /g in combination with a DBP value of more than 300%. proven successful. The present invention simultaneously achieves a high DBP value of 300% or more by reacting an alkali metal silicate solution with an acid and/or a substance that acts as an acid.
The starting point is to produce precipitated silicic acid with a high specific surface area of more than 400 m 2 /g. Another object of the invention is to produce precipitated silicic acids with the above-mentioned physical-chemical property data in various objective particle size distribution types.

【表】 本発明の対象は、下記の物理的―化学的物質デ
ータによつて特徴づけられる沈殿ケイ酸である:
[Table] The subject of the invention is a precipitated silicic acid characterized by the following physical-chemical substance data:

【表】 従つて、これらの本発明による沈殿ケイ酸の物
理的―化学的物質パラメーターは、高いBBP値と
組合わされた比較的高いBET―表面積によつ
て、より高い構造性を有する沈殿ケイ酸およびケ
イ酸ゲルならびにケイ酸エアロゲルのそれらと異
なつている。それぞれ粒子分布曲線に従つて、こ
れらの沈殿ケイ酸は、あらゆる種類の工作材料の
ための貴重な、応用技術的に極めて有効な担体ケ
イ酸、極めて良好な透明度を有するポリプロピレ
ン―およびポリエチレンフイルム用の能率のよい
ブロツキング防止剤、高温処理されたケイ酸があ
まり濃縮率を示さないような一定の極性系中の濃
縮ケイ酸、ラツカー用の非常に有効なつや消し剤
および有用な触媒担体ならびに絶縁材料である。 本発明のもう一つの対象は、下記の物理的―化
学的特性データ:
[Table] These physico-chemical substance parameters of the precipitated silicic acid according to the invention are therefore higher than those of the precipitated silicic acid with higher structural properties due to the relatively high BET-surface area combined with the high BBP value. and are different from those of silicic acid gels and silicic acid aerogels. According to their respective particle distribution curves, these precipitated silicic acids are valuable, application-technically very effective carrier silicic acids for all kinds of working materials, and for polypropylene and polyethylene films with very good transparency. Efficient anti-blocking agent, concentrated silicic acid in certain polar systems where high temperature treated silicic acid does not show much concentration, very effective matting agent for lacquers and useful catalyst support and insulating material. be. Another object of the present invention is the following physical-chemical property data:

【表】 を有する本発明による沈殿ケイ酸を製造すべく、
pH値を6〜7に一定に保ちつつ水からなる40℃
〜42℃に加温された仕込み物中で、全沈殿時間に
亘つて続く剪断力の下に、水ガラス溶液および硫
酸を同時に供給し、第13分目から第103分目まで
90分間沈殿を中断し、146分間の全沈殿の全沈殿
時間の後にケイ酸の最終濃度を46g/に調整
し、沈殿ケイ酸懸濁液を12〜17時間熟成せしめ、
フイルタープレスを用いて上記懸濁液から沈殿ケ
イ酸を分離し、洗滌し、フイルターケーキを水お
よび/または酸を用いて10〜16重量%の固形分を
有する懸濁液まで液状化し、そして最後に噴霧乾
燥することを特徴とする沈殿ケイ酸の製造方法で
ある。 このようにして得られた沈殿ケイ酸は、特許請
求の範囲第1項に記載された物理的―化学的特性
データを示す。 本発明による沈殿ケイ酸を製造するための本発
明による方法の特別の利点―これらは本発明の新
規な方法の経済性にとつて有利に影響を及ぼすも
のであるが―下記のとおりである: ―高い比表面積を有する沈殿ケイ酸に比較してフ
イルターケーキ中の16〜17重量%というより高
い固形分は、この製造方法の乾燥費そして従つ
てエネルギー消費を減少せしめる。 ―高い比表面積を有する沈殿ケイ酸に比較して従
来みられなかつたような驚異的に低い洗滌時間
は、洗滌水の必要量を減少せしめ、そしてフイ
ルタープレスの性能の著しい向上を可能にす
る。 本発明によるケイ酸ならびにそれらを製造する
方法を以下の実施例において詳細に説明する。 例 1 沈殿容器として作用しそしてMIG―桿型撹拌装
置およびエカト(Ekato)―剪断タービンを備え
た75m3の木製桶中に、40℃の温度の水60m3を予め
装入する。この仕込み物に市販の水ガラス
(SiO2:26.8重量%、Na2O:8.0重量%、モジユ
ラス=3.35)9.8m3/hを9.8m3/hの速度でそし
て濃硫酸(96%)を0.98m3/hの速度で同時に流
入せしめる。その際、酸はタービンを経て添加さ
れ、このタービンは沈殿の始まりと共に運転を開
始される。この添加の間、沈殿仕込み物のpH値
は、6.0に保たれる。13分間の沈殿の後に―すな
わち著しい対照をなす粘度の上昇―水ガラスおよ
び酸の添加を90分間の間中断する。この中断期間
の間、エカトタービンで更に剪断を行なう。103
分目から水ガラスの添加を上記の添加速度および
pH値を保ちつつ146分目まで続行する。その時、
沈殿懸濁液の固形物含有量は、46g/である。
温度は、それぞれ外的温度条件に応じて42〜49℃
の値に調整されうる。最終pH値は6.0である。全
部で水ガラス9.1m3および硫酸0.91m3が反応せし
められる。この懸濁液を圧縮する前に中間容器内
で15時間熟成させる。この熟成期間に続いて、こ
の懸濁液を4個のフイルタープレスによつて過
する。その際、充填時間は、3.3バールの最終圧
力において1時間である。僅か1.5時間の極めて
短かい洗滌時間の後の、流出した液の伝導度
は、1050μSであり、4時間の洗滌時間の後の伝
導度は、280μsである。得られたフイルターケ
ーキの固形分は、約16.5〜17重量%である。この
フイルターケーキは、剪断力の影響下に水で液状
化された後、11重量%の固形分を示す。この液状
化に続いて、ケイ酸懸濁液を回転円板によつて噴
霧し、熱い燃焼ガスによつて乾燥する。 粉砕されていないこの生成物の特性データは、
第2表に示されている。 例 2 例1に従つて沈殿ケイ酸を調製する。その際、
例1と異なつて熟成時間は、全部で16時間に延長
され、これによつて同じ構造性標準数値
(Strukturmasszahl)においてBET―表面積は、
低下する。 粉砕されていないこのケイ酸の特性データは、
第2表に示されている。 例 3 例1に従つて沈殿ケイ酸の製造を行なう。相違
点は、熟成時間を13時間に減らし、同時に固形分
を11重量%から13重量%に高めたことである。 粉砕されていないこのケイ酸の特性データは、
第2表に示されている。 例 4 例1の諸条件を守る。ただし、噴霧乾燥にかけ
られた液状化されたフイルターケーキの固形分
は、12%に高められた。 粉砕されていないこのケイ酸の特性データは、
第2表に示されている。 例 5 このケイ酸の製造は、例1に従つて行なわれ
る。熟成時間のみ15時間から17時間に変えられ
る。更に、フイルターケーキを少量の希硫酸およ
び少量の水で液状化し、得られた16重量%の固形
分を有する懸濁液を噴霧乾燥にかける。固形物に
含まれた遊離の酸をアンモニアガスによつて中和
する。 粉砕されていないこのケイ酸の特性データは、
第2表に示されている。 例 6 この例は、本発明によるケイ酸が公知の表面積
の大きなケイ酸に比較して、フイルターブレス上
での改善された過および洗滌速度の点において
優れていることを示している。 ドイツ特許公告第1517900号明細書に従つて
(第2欄第53〜68行および第3欄第1〜7行参
照)、670m2/gの比表面積を有する沈殿ケイ酸を
調製する。 過工程のデータは、第3表に示されている。
そこにはこれらの過データが本発明による例3
のケイ酸の過データと比較されている。これら
は乾燥された沈殿ケイ酸について測定されたほぼ
同じ電導率を示す。 この比較例は、洗滌水およびフイルターブレス
容量についての驚異的に高い節約を示す。従つ
て、本発明による方法は、最も経済的な条件まで
高い表面積を有する沈殿ケイ酸の製造を可能にす
る。 BET―比表面積、BDP値およびかし密度のよ
うな物理的―化学的特性データは、DINによる方
法に従つて測定される。 4%水性分散液中の電導率は、ドイツ特許出願
公開第2628975号明細書第16頁に従つて測定され
る。 “アルピーネ(ALPINE)―ふるい残分”は、
次のようにして測定される: ふるい残分を測定するには、ケイ酸は、場合に
よつては存在する通気節目を破壊するために500
μ―メツシユの篩によつて篩分けられる。次い
で、篩分けられた物質10gを定められた空気流篩
にかけ、200mm水柱の減圧で篩分けする。篩分け
は、残渣が一定となつたときに終了し、それは大
抵流動性の外観で見分けられる。なお念のため
に、更に1分間篩分けを続ける。一般に篩分け工
程は、5分間行なわれる。万一凝集が起つた場合
には、篩分け工程を短時間中断し、凝集塊を刷毛
を用いて軽い加圧の下に破壊する。篩分けの後、
ふるい残分を空気流篩から慎重に叩いて除きそし
て回収する。 DIN66131によるBET―表面積は、次のように
して測定される: BET法を使用するガス吸着による固体の比表
面積の測定法であり、評価はBET法または修正
BET法によつて行なわれる。試料は、測定前に
真空中で少くとも100℃において圧力および重量
が一定になるまで脱ガス化される。 簡易化法によれば、比表面積の測定は、あまり
正確さが要求されない場合には、前処理ならびに
測定時間の短縮によつて容易化される(1点法;
連続的測定)。 試料の前処理:吸着の測定前に、試料表面に吸
着された不純物、特に水蒸気を有効に除去するた
めに、試料を10-2ないし10-3Paの減圧下で通常高
温で前処理する。 多くの無機物質(酸化物、炭酸塩、硫酸塩
等)、例えば触媒、顔料その他の工業製品におい
ては、窒素吸着の測定のためには、110ないし130
℃の前処理温度が適当であり、110℃における乾
燥棚において予め比較的長く乾燥することによつ
て減圧処理が短縮される。有機化合物および極め
て多孔性(高活性)の物質は、事情により50℃以
下の温度を必要とする。 DIN53601によるDBP値は、次のようにして測
定される: DIN53601は、カーボンブラツクのジブチルフ
タレート(DBP)吸収量の測定法である。A法に
従つて測定するには、乾燥したカーボンブラツク
をプラストグラフまたはプラストコーダーに接続
された回転数毎分125回転の特殊〓和機に入れ
る。この特殊〓和機に電動フラスコビユーレツト
から一定の速度でDBPを滴加する。最大回転モー
メントの約70%に達したときに、電動フラスコピ
ユーレツトのスイツチを切り、消費量の読みから
DBP―吸収量を算出する。これは、DBP値とも呼
ばれる。ジブチルフタレート(DBP)は、密度
1045〜1050g/mlのものが使用される。 DBP−値=ml/100gで表わしたDBP−吸収量 =ビユーレツトの読み(ml)/秤べり(g)×
100 DIN53194によるかさ密度は、次のようにして
測定される: 測定は、2回行なう。2回の測定に十分な量
(約500ml)の試料を加熱棚内で105±2℃で乾燥
し、乾燥器内で冷却する。乾燥した物質をふるい
にかけ、メスシリンダー内に中空部を生じないよ
うに充填する。物質200±10mlを添加した後、メ
スシリンダーを振つて試料を0.5gとする。物質
の表面がほぼ水平になるまでシリンダを軽くたた
き、栓を再び閉じる。メスシリンダーをかさ容積
計のメスシリンダー容器に入れ、カム軸を約1250
回転せしめて突固める。突固めた試料のかさ容積
を測定する。 かさ容積は、次式により算出される: Vt=100V/m−m かさ密度は次式により算出される: ρt=100/vt=m−m/V 上式中、 m0=空のメスシリンダーのgで表わした重量 m1=メスシリンダーおよび物質のgで表わし
た重量 V=突固めた後の物質のmlで表わした容積 vt=物質のml/100gで表わしたかさ容積 ρt=物質のg/mlで表わしたかさ密度 2回の測定の平均値をとる。
To produce a precipitated silicic acid according to the invention having [Table]
40℃ consisting of water while keeping the pH value constant at 6-7
Water glass solution and sulfuric acid were fed simultaneously in a feed warmed to ~42 °C under shear that lasted for the entire precipitation time, from the 13th minute to the 103rd minute.
Interrupting the precipitation for 90 minutes, adjusting the final concentration of silicic acid to 46 g/min after a total precipitation time of 146 minutes, and aging the precipitated silicic acid suspension for 12-17 hours;
The precipitated silicic acid is separated from the suspension using a filter press, washed, the filter cake is liquefied with water and/or acid to a suspension with a solids content of 10-16% by weight, and finally This is a method for producing precipitated silicic acid, which is characterized by spray drying. The precipitated silicic acid thus obtained exhibits the physical-chemical property data set out in claim 1. Particular advantages of the process according to the invention for producing precipitated silicic acids according to the invention, which advantageously influence the economics of the novel process according to the invention, are as follows: - The higher solids content of 16-17% by weight in the filter cake compared to precipitated silicic acid with a high specific surface area reduces the drying costs and therefore the energy consumption of this production process. - The surprisingly low washing time, unprecedented compared to precipitated silicic acids with a high specific surface area, reduces the amount of washing water required and allows a significant improvement in the performance of the filter press. The silicic acids according to the invention and the methods for their production are explained in detail in the following examples. Example 1 Into a 75 m 3 wooden trough which acts as a settling vessel and is equipped with a MIG rod stirrer and an Ekato shearing turbine, 60 m 3 of water at a temperature of 40° C. are charged beforehand. To this charge, 9.8 m 3 /h of commercially available water glass (SiO 2 : 26.8% by weight, Na 2 O: 8.0% by weight, modulus = 3.35) was added at a rate of 9.8 m 3 / h and concentrated sulfuric acid (96%) was added. They are allowed to flow simultaneously at a speed of 0.98 m 3 /h. The acid is then added via a turbine, which is started at the beginning of precipitation. During this addition, the pH value of the precipitation charge is kept at 6.0. After 13 minutes of precipitation - i.e. a marked increase in the viscosity - the addition of water glass and acid is interrupted for a period of 90 minutes. During this interruption period, further shearing is carried out in the Ekato turbine. 103
From the minute onwards, start adding water glass at the above addition rate and
Continue until the 146th minute while maintaining the pH value. At that time,
The solids content of the precipitation suspension is 46 g/.
Temperature is 42-49℃ depending on external temperature conditions respectively
can be adjusted to the value of The final pH value is 6.0. A total of 9.1 m 3 of water glass and 0.91 m 3 of sulfuric acid are reacted. This suspension is aged for 15 hours in an intermediate vessel before being compressed. Following this aging period, the suspension is passed through four filter presses. The filling time is 1 hour at a final pressure of 3.3 bar. The conductivity of the effluent after a very short washing time of only 1.5 hours is 1050 μS, and after a washing time of 4 hours the conductivity is 280 μS. The solids content of the resulting filter cake is about 16.5-17% by weight. This filter cake exhibits a solids content of 11% by weight after being liquefied with water under the influence of shear forces. Following this liquefaction, the silicic acid suspension is atomized by means of a rotating disk and dried by hot combustion gases. Characteristic data for this unmilled product are:
It is shown in Table 2. Example 2 Precipitated silicic acid is prepared according to Example 1. that time,
In contrast to example 1, the aging time was extended to a total of 16 hours, so that for the same structural standard values (Strukturmasszahl) the BET surface area was
descend. The property data of this unmilled silicic acid is
It is shown in Table 2. Example 3 Precipitated silicic acid is prepared according to Example 1. The difference is that the aging time was reduced to 13 hours and at the same time the solids content was increased from 11% to 13% by weight. The property data of this unmilled silicic acid is
It is shown in Table 2. Example 4 Observe the conditions in Example 1. However, the solids content of the liquefied filter cake subjected to spray drying was increased to 12%. The property data of this unmilled silicic acid is
It is shown in Table 2. Example 5 The preparation of this silicic acid is carried out according to Example 1. Only the aging time can be changed from 15 hours to 17 hours. Furthermore, the filter cake is liquefied with a small amount of dilute sulfuric acid and a small amount of water, and the resulting suspension having a solids content of 16% by weight is subjected to spray drying. Free acids contained in the solids are neutralized with ammonia gas. The property data of this unmilled silicic acid is
It is shown in Table 2. Example 6 This example shows that the silicic acid according to the invention is superior to known high surface area silicic acids in terms of improved filtration and cleaning speed on the filter press. A precipitated silicic acid having a specific surface area of 670 m 2 /g is prepared according to DE 1517900 (see column 2, lines 53 to 68 and column 3, lines 1 to 7). Over-process data is shown in Table 3.
Therein, these excess data are shown in Example 3 according to the present invention.
has been compared with the over data of silicic acid. These exhibit approximately the same conductivity as measured for dried precipitated silicic acid. This comparative example shows surprisingly high savings in wash water and filter breath capacity. The process according to the invention therefore allows the production of precipitated silicas with high surface areas up to the most economical conditions. Physical-chemical property data such as BET-specific surface area, BDP value and oak density are determined according to the method according to DIN. The electrical conductivity in the 4% aqueous dispersion is determined according to DE 26 28 975, page 16. “ALPINE – sieve residue” is
It is measured as follows: To measure the sieve residue, silicic acid is added to
It is sieved through a μ-metal sieve. 10 g of the sieved material is then passed through a defined airflow sieve and sieved at a reduced pressure of 200 mm water column. Sieving ends when the residue becomes constant, which is usually discernible by its fluid appearance. Just to be sure, continue sieving for an additional minute. Generally the sieving step is carried out for 5 minutes. If agglomeration should occur, the sieving process is briefly interrupted and the agglomerates are broken up using a brush under light pressure. After sieving,
The sieve residue is carefully tapped off the air stream sieve and collected. BET according to DIN 66131 - surface area is determined as follows: A method for determining the specific surface area of solids by gas adsorption using the BET method, which can be evaluated using the BET method or modified
This is done using the BET method. The sample is degassed in vacuum at least at 100°C until pressure and weight are constant before measurement. According to the simplified method, when high accuracy is not required, the measurement of the specific surface area is facilitated by preprocessing and shortening the measurement time (one-point method;
continuous measurement). Sample pretreatment: Before adsorption measurements, the sample is pretreated under reduced pressure of 10 -2 to 10 -3 Pa, usually at high temperature, in order to effectively remove impurities, especially water vapor, adsorbed on the sample surface. For many inorganic substances (oxides, carbonates, sulfates, etc.), such as catalysts, pigments and other industrial products, 110 to 130
A pretreatment temperature of 0.degree. C. is suitable, and the vacuum treatment is shortened by a relatively long pre-drying in a drying cabinet at 110.degree. Organic compounds and highly porous (highly active) materials may require temperatures below 50°C. The DBP value according to DIN 53601 is determined as follows: DIN 53601 is a method for measuring the amount of dibutyl phthalate (DBP) absorbed by carbon black. To measure according to method A, the dried carbon black is placed in a special softener connected to a plastograph or plastocoder and running at 125 revolutions per minute. DBP is added dropwise at a constant rate from an electric flask brewet to this special mixing machine. When approximately 70% of the maximum rotational moment is reached, switch off the electric flask distillate and from the consumption reading
DBP - Calculate absorption amount. This is also called the DBP value. Dibutyl phthalate (DBP) has a density
1045-1050g/ml is used. DBP-value = DBP-absorption amount expressed in ml/100g = Biuret reading (ml) / Weighing capacity (g) x
100 The bulk density according to DIN 53194 is determined as follows: The measurement is carried out in duplicate. Sufficient samples for two measurements (approximately 500 ml) are dried in a heating cabinet at 105±2° C. and cooled in a dryer. Sift the dry material and fill it into the graduated cylinder without creating any hollow spaces. After adding 200±10 ml of substance, shake the graduated cylinder to bring the sample to 0.5 g. Tap the cylinder until the surface of the material is approximately horizontal and close the stopper again. Place the graduated cylinder in the measuring cylinder container of the bulk volume meter, and set the camshaft to approximately 1250 mm.
Rotate and compact. Measure the bulk volume of the tamped sample. Bulk volume is calculated by the following formula: Vt=100V/ m1 - m0 Bulk density is calculated by the following formula: ρt=100/vt= m1 - m0 /V In the above formula, m0 = Weight of empty graduated cylinder in g m 1 = Weight of graduated cylinder and substance in g V = Volume of substance after compaction in ml vt = Bulk volume in ml of substance/100 g ρt = Bulk density in g/ml of substance. Take the average value of two measurements.

【表】 * 粉砕されていないケイ酸
[Table] * Unground silicic acid

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 下記の物理的−化学的特性データを有するこ
とを特徴とする沈殿ケイ酸: 【表】 2 下記の物理的−化学的特性データ: 【表】 を有する沈殿ケイ酸を製造すべく、pH値を6〜
7に一定に保ちつつ水からなる40℃〜42℃に加温
された仕込み物中に、全沈殿時間に亘つて続く剪
断力の下に、水ガラス溶液および硫酸を同時に供
給し、第13分目から第103分目まで90分間沈殿を
中断せしめ、146分間の全沈殿時間の後にケイ酸
の最終濃度を46g/に調整し、沈殿ケイ酸懸濁
液を12〜17時間熟成せしめ、フイルタープレスを
用いて上記懸濁液から沈殿ケイ酸を分離し、洗滌
し、フイルターケーキを水および/または酸を用
いて10〜16重量%の固形分を有する懸濁液まで液
状化し、そして次いで噴霧乾燥することを特徴と
する、前記沈殿ケイ酸の製造方法。
[Claims] 1 Precipitated silicic acid characterized by having the following physical-chemical property data: [Table] 2 Precipitated silicic acid characterized by having the following physical-chemical property data: [Table] In order to manufacture, the pH value is 6~
The water glass solution and sulfuric acid were fed simultaneously into a charge consisting of water heated to 40°C to 42°C while keeping the temperature constant at 7°C, under shear that lasted for the entire precipitation time, and at 13th minute. The precipitation was interrupted for 90 minutes from the 103rd minute to the 103rd minute, the final concentration of silicic acid was adjusted to 46 g/min after a total precipitation time of 146 minutes, and the precipitated silicic acid suspension was aged for 12-17 hours and filter-pressed. Separate the precipitated silicic acid from the suspension using a filtrate, wash, liquefy the filter cake with water and/or acid to a suspension with a solids content of 10-16% by weight, and then spray dry. The method for producing the precipitated silicic acid, characterized in that:
JP57193982A 1981-11-07 1982-11-06 Highly structural sediment silicates and manufacture Granted JPS5888117A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3144299.4 1981-11-07
DE19813144299 DE3144299A1 (en) 1981-11-07 1981-11-07 PELLETIC SILES WITH A HIGH STRUCTURE AND METHOD FOR THE PRODUCTION THEREOF

Publications (2)

Publication Number Publication Date
JPS5888117A JPS5888117A (en) 1983-05-26
JPS6126492B2 true JPS6126492B2 (en) 1986-06-20

Family

ID=6145876

Family Applications (3)

Application Number Title Priority Date Filing Date
JP57193982A Granted JPS5888117A (en) 1981-11-07 1982-11-06 Highly structural sediment silicates and manufacture
JP59257761A Granted JPS60221315A (en) 1981-11-07 1984-12-07 Precipitated silicic acid having high constitutive property and manufacture thereof
JP59257762A Granted JPS60155524A (en) 1981-11-07 1984-12-07 High structural sedimental silicic acids and manufacture

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP59257761A Granted JPS60221315A (en) 1981-11-07 1984-12-07 Precipitated silicic acid having high constitutive property and manufacture thereof
JP59257762A Granted JPS60155524A (en) 1981-11-07 1984-12-07 High structural sedimental silicic acids and manufacture

Country Status (14)

Country Link
US (1) US4495167A (en)
EP (1) EP0078909B2 (en)
JP (3) JPS5888117A (en)
KR (1) KR890000809B1 (en)
AR (1) AR230249A1 (en)
AT (1) ATE19385T1 (en)
BR (1) BR8206437A (en)
CA (1) CA1194272A (en)
DE (2) DE3144299A1 (en)
DK (1) DK171556B1 (en)
ES (1) ES517140A0 (en)
FI (1) FI72497C (en)
IL (1) IL67145A0 (en)
ZA (1) ZA828158B (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3144299A1 (en) * 1981-11-07 1983-05-19 Degussa Ag, 6000 Frankfurt PELLETIC SILES WITH A HIGH STRUCTURE AND METHOD FOR THE PRODUCTION THEREOF
DE3346349A1 (en) * 1983-12-22 1985-07-11 Degussa Ag, 6000 Frankfurt Methyl isothiocyanate preparation
DE3545615C3 (en) * 1984-12-28 1996-11-21 Ppg Industries Inc Use of amorphous precipitated silicon dioxide to reinforce microporous separating elements for batteries
US4636415A (en) * 1985-02-08 1987-01-13 General Electric Company Precipitated silica insulation
DE3639845A1 (en) * 1986-11-21 1988-06-01 Degussa FELLING SILICS, METHOD FOR THE PRODUCTION AND USE THEREOF
DE3639844A1 (en) * 1986-11-21 1988-06-01 Degussa DENTAL CARE
US6143281A (en) * 1987-03-31 2000-11-07 Smithkline Beecham P.L.C. Dentifrice compositions
EP0334400B1 (en) * 1988-03-22 1994-01-05 Agfa-Gevaert N.V. A sheet or web carrying an antistatic layer
DE3815670A1 (en) * 1988-05-07 1990-01-25 Degussa FINE-PARTICULATED SOFT SEEDS WITH HIGH STRUCTURE, METHOD FOR ITS MANUFACTURE AND USE
FI83330C (en) * 1988-06-03 1991-06-25 Neste Oy Process for activating a polymerization catalyst support and a catalyst component obtained by the process
US5362541A (en) * 1988-08-24 1994-11-08 Degussa Aktiengesellschaft Shaped articles for heat insulation
US6193795B1 (en) 1993-08-02 2001-02-27 Degussa Corporation Low structure pyrogenic hydrophilic and hydrophobic metallic oxides, production and use
DK0643015T3 (en) * 1993-08-07 1996-12-23 Degussa Process for producing precipitated silicic acid
US6977065B1 (en) * 1993-10-07 2005-12-20 Degussa Ag Precipitated silicas
US5571494A (en) * 1995-01-20 1996-11-05 J. M. Huber Corporation Temperature-activated polysilicic acids
MY116513A (en) * 1995-04-19 2004-02-28 Ppg Ind Ohio Inc Amorphous precipitated silica having large liquid carrying capacity
IN188702B (en) * 1995-06-01 2002-10-26 Degussa
DE19617039A1 (en) * 1995-06-01 1996-12-05 Degussa Precipitated silicas, process for their preparation and use of vulcanizable rubber mixtures
DE19526476A1 (en) * 1995-07-20 1997-01-23 Degussa precipitated silica
US5605569A (en) * 1995-11-08 1997-02-25 Ppg Industries, Inc. Precipitated silica having high sodium sulfate content
DE19740440A1 (en) 1997-09-15 1999-03-18 Degussa Easily dispersible precipitated silica
US6395247B1 (en) 1997-12-12 2002-05-28 Degussa Ag Precipitated silica
DE19755287A1 (en) * 1997-12-12 1999-07-08 Degussa precipitated silica
JP4071343B2 (en) * 1998-02-18 2008-04-02 株式会社ブリヂストン Rubber composition and pneumatic tire using the same
DE19807700A1 (en) * 1998-02-24 1999-08-26 Degussa Precipitated silica granules
US6573032B1 (en) 1999-04-22 2003-06-03 J. M. Huber Corporation Very high structure, highly absorptive hybrid silica and method for making same
US7015271B2 (en) * 1999-08-19 2006-03-21 Ppg Industries Ohio, Inc. Hydrophobic particulate inorganic oxides and polymeric compositions containing same
US6403059B1 (en) 2000-08-18 2002-06-11 J. M. Huber Corporation Methods of making dentifrice compositions and products thereof
US6652611B1 (en) 2000-08-18 2003-11-25 J. M. Huber Corporation Method for making abrasive compositions and products thereof
US6419174B1 (en) 2000-08-18 2002-07-16 J. M. Huber Corporation Abrasive compositions and methods for making same
DE10048616A1 (en) 2000-09-30 2002-04-11 Degussa Doped precipitated silica
DE10058616A1 (en) * 2000-11-25 2002-05-29 Degussa Precipitated silicic acid used as a carrier for feedstuffs, vitamins or catalysts, as a free-flow or anti-caking agent and in tires, has increased dibutyl phthalate absorption
DE10105750A1 (en) * 2001-02-08 2002-10-10 Degussa Precipitated silicas with a narrow particle size distribution
US7253224B2 (en) * 2001-08-07 2007-08-07 Ppg Industries Ohio, Inc. Silica-based particulates
US7135429B2 (en) * 2002-05-24 2006-11-14 Ppg Industries Ohio, Inc. Attrition resistant carrier product
DE10241273A1 (en) 2002-09-06 2004-03-18 Degussa Ag Efficient matting agents based on precipitated silicas
FR2856680B1 (en) * 2003-06-30 2005-09-09 Rhodia Chimie Sa SILICA-BASED THERMAL AND / OR ACOUSTIC INSULATION MATERIALS AND METHODS FOR OBTAINING SAME
JP2005053744A (en) * 2003-08-05 2005-03-03 Dsl Japan Co Ltd High oil absorptive amorphous silica particle
DE102004005409A1 (en) * 2004-02-03 2005-08-18 Degussa Ag Hydrophilic precipitated silica for defoamer formulations
US7037476B1 (en) 2004-12-27 2006-05-02 Council Of Scientific And Industrial Research Process for preparing amorphous silica from kimberlite tailing
WO2007054955A1 (en) * 2005-11-10 2007-05-18 Council Of Scientific & Industrial Research A process for the preparation of sodium silicate from kimberlite tailings
AU2008246949B2 (en) * 2007-05-03 2012-11-01 Council Of Scientific & Industrial Research A process for the preparation of finely divided precipitated silica
DE102009045104A1 (en) 2009-09-29 2011-03-31 Evonik Degussa Gmbh Novel matting agents for UV coatings
DE102010029945A1 (en) 2010-06-10 2011-12-15 Evonik Degussa Gmbh Novel matting agents for UV overprint varnishes
FR2988383B1 (en) * 2012-03-22 2017-06-09 Rhodia Operations PRECIPITATED SILICA PREPARATION PROCESS USING A MIXER OR EXTRUDER
DE102017209874A1 (en) 2017-06-12 2018-12-13 Evonik Degussa Gmbh Process for the preparation of wax-coated silica
CN112694092A (en) * 2020-12-29 2021-04-23 山东联科卡尔迪克白炭黑有限公司 Production process and application of silicon dioxide for choline chloride carrier

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE14059C (en) * c. von trott in New-York (V. St. A.) Innovations in electromagnetic signaling devices for railways
DE1299617B (en) * 1965-01-13 1969-07-24 Degussa Process for the manufacture of finely divided precipitated silica
NL6502791A (en) * 1965-03-05 1966-09-06
DE1767332C3 (en) * 1968-04-27 1975-10-09 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Process for the production of finely divided, amorphous silicas with a high structure
US4067954A (en) * 1971-05-11 1978-01-10 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Process for the production of finely divided silicon dioxide having a large specific surface
DE2414478C3 (en) * 1974-03-26 1978-07-13 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Airgel-like structured silica and process for making same
AU497891B2 (en) * 1974-05-22 1979-01-18 J.M. Huber Corp. Siliceous pigments & their production
SE420596B (en) * 1975-03-25 1981-10-19 Osaka Packing FORMATED BODY OF AMORPH SILICON Dioxide, INCLUDING INCLUDING CALCIUM CARBONATE, SET TO MAKE A FORMATED BODY OF AMORPH SILICON Dioxide AND PARTICLE OF AMORPH SILICON Dioxide FOR THE PREPARATION OF A FORMATED BODY
US4243428A (en) * 1979-01-24 1981-01-06 Donnet Jean Baptise Processes for the manufacturing of precipitated silica
US4312845A (en) * 1979-09-10 1982-01-26 J. M. Huber Corporation Method of producing amorphous silica of controlled oil absorption
DE3144299A1 (en) * 1981-11-07 1983-05-19 Degussa Ag, 6000 Frankfurt PELLETIC SILES WITH A HIGH STRUCTURE AND METHOD FOR THE PRODUCTION THEREOF

Also Published As

Publication number Publication date
DK493882A (en) 1983-05-08
FI823558A0 (en) 1982-10-18
ES8307664A1 (en) 1983-08-01
ATE19385T1 (en) 1986-05-15
JPH0246521B2 (en) 1990-10-16
FI72497B (en) 1987-02-27
BR8206437A (en) 1983-09-06
JPS5888117A (en) 1983-05-26
EP0078909B2 (en) 1992-09-30
DE3144299A1 (en) 1983-05-19
FI823558L (en) 1983-05-08
EP0078909A3 (en) 1984-10-10
ZA828158B (en) 1983-09-28
US4495167A (en) 1985-01-22
JPS60221315A (en) 1985-11-06
EP0078909A2 (en) 1983-05-18
JPS60155524A (en) 1985-08-15
DK171556B1 (en) 1997-01-13
EP0078909B1 (en) 1986-04-23
DE3270779D1 (en) 1986-05-28
KR890000809B1 (en) 1989-04-08
CA1194272A (en) 1985-10-01
ES517140A0 (en) 1983-08-01
FI72497C (en) 1987-06-08
AR230249A1 (en) 1984-03-01
JPS6212171B2 (en) 1987-03-17
IL67145A0 (en) 1983-03-31
KR840002326A (en) 1984-06-25

Similar Documents

Publication Publication Date Title
JPS6126492B2 (en)
RU2092435C1 (en) Precipitated silicon dioxide and method of preparation thereof
RU2129985C1 (en) Method of preparing precipitated silicon dioxide and precipitated silicon dioxide prepared by this method
EP1314695B1 (en) Silica and method for producing the same
FI112862B (en) A process for the preparation of precipitated silica
US8617504B2 (en) Hydrophilic silica for sealants
JP3719687B2 (en) Method for producing silica gel
KR100476150B1 (en) Composition comprising a liquid absorbed on a support based on precipitate silica
JPH0229607B2 (en)
US6663963B2 (en) Very high structure, highly absorptive hybrid silica and methods for making same
JPH0331642B2 (en)
US5911963A (en) Amorphous precipitated silica having a low proportion of small pores
JP2003525191A (en) Amorphous silica particles containing boron
US9738535B2 (en) Precipitated silicas for storage-stable RTV-1 silicone rubber formulations without stabilizer
JP2002326809A (en) Silicic acid containing at least two silicate fractions
KR101443370B1 (en) Precipitated Silicas Having Special Surface Properties
CN101100300B (en) Precipitated silicas with special surface properties
JPS636484B2 (en)
KR970005188B1 (en) Process for the preparation of precipitated silica
EP3774654B1 (en) Precipitated silica and process for its manufacture
KR19980034469A (en) Process for producing hydrophobic silica
SU981215A1 (en) Process for producing water resistant silica gel
JPS598615A (en) Preparation of silica gel
JP2023547459A (en) Precipitated silica, its production method and its use
FI72109B (en) FAELLNINGSKISELSYRA MED HOEG STRUCTUR OCH FOERFARANDE FOER DESS FRAMSTAELLNING