JPS61264129A - Manufacture of unrefined hot forged article having high strength and toughness - Google Patents

Manufacture of unrefined hot forged article having high strength and toughness

Info

Publication number
JPS61264129A
JPS61264129A JP10669185A JP10669185A JPS61264129A JP S61264129 A JPS61264129 A JP S61264129A JP 10669185 A JP10669185 A JP 10669185A JP 10669185 A JP10669185 A JP 10669185A JP S61264129 A JPS61264129 A JP S61264129A
Authority
JP
Japan
Prior art keywords
steel
toughness
hot forged
amount
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10669185A
Other languages
Japanese (ja)
Inventor
Masaaki Horie
正明 堀江
Masaaki Katsumata
勝亦 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10669185A priority Critical patent/JPS61264129A/en
Publication of JPS61264129A publication Critical patent/JPS61264129A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide superior strength and toughness to a hot forged article by heating a steel obtd. by adding prescribed amounts of Mn and Cr to a machine structural carbon steel to a prescribed low temp., hot forging the heated steel and cooling the resulting hot forged article so as to reduce the amount of proeutectoid ferrite in the article. CONSTITUTION:A steel contg., by weight, 0.25-0.6% C, 0.1-1% Si, 1-2% Mn and 0.3-1% Cr is heated to the Ac3 transformation point - 1,050 deg.C and hot forged. The resulting hot forged article is cooled so as to form a steel structure contg. proeutectoid ferrite by an amount F(%) represented by the formula [where C% is the C content (wt%) in the steel]. The structure is a ferrite-pearlite structure having <=0.2mum space between pearlite lamellae.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高強度高靭性非調質熱間鍛造品の製造方法に
関し、詳しくは、熱間鍛造後に調質熱処理を行なわずし
て、すぐれた強度と靭性を有する機械構造用非調質鍛造
品の製造方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for manufacturing a high-strength, high-toughness non-temperature hot forged product. This invention relates to a method for manufacturing non-thermal forged products for machine structures having excellent strength and toughness.

(従来の技術) 従来、機械構造用熱間鍛造品は、一般に、中炭素鋼又は
低合金鋼素材を熱間鍛造した後、再加熱し、焼入れ、焼
戻し、即ち、調質処理を施し、目的、用途に応じた強度
及び靭性を付与して、使用に供されている。しかし、上
記調質処理には多大の熱エネルギー費用を要すると共に
、処理工程の増加、仕掛り品の増大等のために製造費用
が高くならざるを得ない。
(Prior art) Conventionally, hot forged products for machine structures are generally produced by hot forging medium carbon steel or low alloy steel material, then reheating, quenching, and tempering, that is, refining treatment to achieve the desired purpose. , and are provided with strength and toughness depending on the purpose. However, the thermal refining treatment requires a large amount of thermal energy, and the manufacturing cost inevitably increases due to an increase in the number of processing steps, an increase in the number of products in progress, and the like.

そこで、近年、機械構造用熱間鍛造品の製造において、
製造工程を簡略化、特に、熱間鍛造後の調質熱処理を省
略するために、種々の非調質型熱間鍛造用鋼や、また、
非調質熱間鍛造品の製造方法が提案されている。このよ
うな従来の非調質型熱間鍛造用鋼の多くは、中炭素鋼に
微量のV、Nbs Ti、Zr等の所謂析出硬化型合金
元素を添加した析出硬化型非調質型鋼であって、熱間鍛
造後の冷却工程においてこれら元素を析出させ、その析
出硬化によって高強度を得ようとするものである。
Therefore, in recent years, in the production of hot forged products for machine structures,
In order to simplify the manufacturing process, and in particular to omit tempering heat treatment after hot forging, various non-thermal hot forging steels and
A method for manufacturing non-thermal hot forged products has been proposed. Most of these conventional non-temperature hot forging steels are precipitation-hardening non-temperature steels made by adding small amounts of so-called precipitation-hardening alloying elements such as V, Nbs Ti, and Zr to medium carbon steel. The aim is to precipitate these elements in the cooling process after hot forging and obtain high strength through precipitation hardening.

例えば、特公昭58−2243号公報には、中炭素鋼に
微量のVを添加し、これを1100℃以上の温度に加熱
して型打鍛造し、この後、500℃まで10〜b ことにより、フェライト中に微細なV炭窒化物を析出さ
せたフェライト・パーライト組織からなる非調質鍛造品
の製造方法が記載されている。しかし、このような析出
硬化型非調質鋼を用いる場合は、上記析出硬化型合金元
素を熱間鍛造前に十分に鋼中に固溶させるために、鋼を
上記のように1000〜1100℃又はそれ以上の高温
に加熱することが必要であり、この結果、鍛造品におい
て結晶粒組織が著しく粗大化するので、十分な靭性を得
ることができない。
For example, in Japanese Patent Publication No. 58-2243, a small amount of V is added to medium carbon steel, which is then heated to a temperature of 1,100°C or higher and die-forged, and then heated to 500°C for 10~b. , describes a method for producing a non-thermal forged product having a ferrite-pearlite structure in which fine V carbonitrides are precipitated in ferrite. However, when using such precipitation hardening non-tempered steel, the steel is heated to 1000 to 1100°C as described above in order to sufficiently dissolve the precipitation hardening alloying elements in the steel before hot forging. It is necessary to heat the forged product to a higher temperature, and as a result, the grain structure in the forged product becomes significantly coarsened, making it impossible to obtain sufficient toughness.

このような問題を解決するために、素材鋼や鍛造方法に
関して、析出硬化型元素の添加量をできる限り少なくす
る(例えば、特開昭55−82750号公報)、低C高
Mn化する、(例えば、特開昭54−121225公報
)、析出物の種類を制御する(例えば、特開昭56−3
8448号公報)、制御冷却により結晶粒を微細化する
(例えば、特開昭56−169723公報)等の方法が
従来より提案されているが、いずれによっても、強度及
び靭性に共にすぐれる非調質熱間鍛造品を得ることは、
尚、容易ではない。
In order to solve these problems, the amount of precipitation hardening elements added to the steel material and the forging method should be reduced as much as possible (for example, Japanese Patent Application Laid-Open No. 55-82750), low C, high Mn, etc. For example, Japanese Patent Application Laid-Open No. 54-121225), controlling the type of precipitates (for example, Japanese Patent Application Laid-Open No. 56-3
8448 (Japanese Patent Publication No. 8448), and micronization of crystal grains by controlled cooling (for example, Japanese Unexamined Patent Application Publication No. 169723/1984), none of these methods has been able to produce a non-tunable material with excellent strength and toughness. Obtaining quality hot forged products is
However, it is not easy.

(発明の目的) 本発明者らは、上記した問題を解決するために、析出硬
化型元素を用いることなく、熱間鍛造後に調質処理を行
なわずして、高強度高靭性である非調質熱間鍛造品を得
るべく鋭意研究した結果、機械構造用炭素鋼にMn及び
Crを所定量添加した綱を所定の低い温度範囲に熱間鍛
造前に加熱して、オーステナイト結晶粒の粗大化を防止
すると共に、熱間鍛造後の冷却によって、鍛造品におけ
る初析フェライト量を減少させ、且つ、パーライト組織
を微細化することによって、熱間鍛造後に非調質にて強
度及び靭性に共にすぐれる鍛造品を得ることができるこ
とを見出して、本発明に至ったものである。
(Purpose of the Invention) In order to solve the above-mentioned problems, the inventors of the present invention have developed a non-temperature steel alloy with high strength and toughness, without using precipitation hardening elements and without heat treatment after hot forging. As a result of intensive research in order to obtain high-quality hot forged products, we found that carbon steel for mechanical structures with a predetermined amount of Mn and Cr added was heated to a predetermined low temperature range before hot forging to coarsen the austenite crystal grains. In addition, by cooling after hot forging, the amount of pro-eutectoid ferrite in the forged product is reduced, and by refining the pearlite structure, strength and toughness are immediately improved without heat refining after hot forging. The present invention was achieved by discovering that a forged product can be obtained.

(発明の構成) 本発明による高強度高靭性非調質型鍛造用鋼の製造方法
は、重量%で C0.25〜0.60%、 Si0.10〜1.00%、 Mn  1.00〜2.00%及び Cr  0.30〜1.00% を含有する鋼をAc、変態点以上であって、且つ、10
50℃以下の温度に加熱して熱間鍛造を行なった後、冷
却して、鋼組織を、初析フェライト量をF(%)とする
とき、 F≦85−1000%(%) (但し、0%は鋼における重量%による含有量を示す。
(Structure of the Invention) The method for producing a high-strength, high-toughness, non-temperature forging steel according to the present invention includes, in weight percent, C0.25-0.60%, Si0.10-1.00%, Mn 1.00-1.00%. Ac, the steel containing 2.00% and 0.30 to 1.00% Cr, whose temperature is above the transformation point and whose temperature is 10
After hot forging by heating to a temperature of 50°C or less, cooling the steel structure, the amount of pro-eutectoid ferrite is F (%), F≦85-1000% (%) (However, 0% indicates the content in weight percent in the steel.

) であると共に、パーライト・ラメラ間隔をD(μm)と
するとき、 D≦0.20(μm) であるフェライト・パーライト組織とすることを特徴と
する。
), and the ferrite-pearlite structure is such that D≦0.20 (μm), where D (μm) is the pearlite-lamella spacing.

先ず、従来の機械構造用炭素鋼(S28C−S58C)
及びこれらに所定量のMn及びCrを添加した鋼を80
0〜1000℃に加熱した後、0〜50%圧延し、放冷
する熱間鍛造シミュレーションを施して、厚さ15鶴の
板材を製作し、これら熱間鍛造シミュレーション処理材
から得た試験片についての引張強さとシャルピー衝撃値
との関係を第1図に示す。これより、上記機械構造用炭
素鋼は、Mn及びCrの添加によって、同一強度での靭
性が改善されることが見出された。因に、本発明による
鋼は、引張強さをT S (kgf/mm2) 、シャ
ルピー衝撃値をCI V (kgf/mm”) とする
とき、(TS)・ (C1y) l/2が230以上で
あって、強度・靭性にすぐれることが第1図に示されて
いる。
First, conventional carbon steel for machine structures (S28C-S58C)
and 80% steel to which predetermined amounts of Mn and Cr are added.
After heating to 0 to 1000°C, rolling 0 to 50% and letting it cool, a hot forging simulation was performed to produce a plate material with a thickness of 15 cranes, and about the test pieces obtained from these hot forging simulation treated materials. The relationship between tensile strength and Charpy impact value is shown in Figure 1. From this, it has been found that the toughness of the above-mentioned carbon steel for mechanical structures is improved by adding Mn and Cr at the same strength. Incidentally, when the tensile strength of the steel according to the present invention is T S (kgf/mm2) and the Charpy impact value is CIV (kgf/mm"), (TS)・(C1y) l/2 is 230 or more. Figure 1 shows that it has excellent strength and toughness.

次に、上記熱間鍛造シミュレーション処理材における初
析フェライト量及びパーライト・ラメラ間隔と、強度・
靭性バランスとの関係を第2図に示す。即ち、Mn及び
Crの添加によって靭性が改善された上記処理材の顕微
鏡組織は、初析フェライト量をF(%)とするとき、 F≦85−1000%(%) (但し、0%は鋼における重量%にょる含有量を示す。
Next, the amount of pro-eutectoid ferrite and pearlite lamella spacing in the hot forging simulation treated material, and the strength and
The relationship with toughness balance is shown in Figure 2. In other words, the microstructure of the treated material whose toughness has been improved by the addition of Mn and Cr is F≦85-1000% (%), where the amount of pro-eutectoid ferrite is F (%) (however, 0% is steel It shows the content in weight%.

) を満足しており、Fが少ないことが理解される。) It is understood that F is small.

また、パーライト・ラメラ間隔りが0.20μmよりも
小さいことが見出された。
It was also found that the pearlite lamella spacing was smaller than 0.20 μm.

即ち、本発明によれば、従来の機械構造用炭素鋼に所定
量のMn及びCrを添加してなる鋼を素材鋼として用い
ると共に、この鋼の熱間鍛造後の冷却によって、鍛造品
の顕微鏡組織におけるフェライト量Fを所定値以下に抑
え、且つ、パーライト・ラメラ間隔りを0.20.ct
mよりも小さくすることによって、非調質にて強度・靭
性バランスにすぐれた熱間鍛造品を得ることができるの
である。
That is, according to the present invention, a steel made by adding a predetermined amount of Mn and Cr to a conventional carbon steel for machine structural use is used as a raw material steel, and by cooling this steel after hot forging, the forged product can be made under a microscope. The amount F of ferrite in the structure is suppressed to a predetermined value or less, and the pearlite lamella spacing is 0.20. ct
By making it smaller than m, it is possible to obtain a hot forged product with an excellent balance of strength and toughness without heat refining.

次に、本発明の方法において用いる綱の化学成分の限定
理由を説明する。
Next, the reasons for limiting the chemical components of the species used in the method of the present invention will be explained.

Cは、本発明による熱間鍛造品に機械構造部品として必
要な強度を与えるために、0.25%以上を添加するこ
とが必要である。しかし、過多に添加するときは、靭性
及び被削性を害するので、添加量の上限を0.60%と
する。
C needs to be added in an amount of 0.25% or more in order to give the hot forged product according to the present invention the strength necessary as a mechanical structural component. However, when added in excess, toughness and machinability are impaired, so the upper limit of the amount added is set at 0.60%.

Siは、製鋼上、脱酸剤として必要であると共に、フェ
ライトを強化するためにも必要な元素である。このよう
な効果を有効に得るために、本発明においては、0.1
0%以上を添加することが必要であるが、過多に添加す
るときは、SiO□等の介在物が増加し、靭性及び被削
性を低下させるので、添加量の上限を1.00%とする
Si is an element that is necessary as a deoxidizing agent in steel manufacturing and is also necessary to strengthen ferrite. In order to effectively obtain such effects, in the present invention, 0.1
It is necessary to add 0% or more, but when adding too much, inclusions such as SiO□ increase and reduce toughness and machinability, so the upper limit of the addition amount is set at 1.00%. do.

Mn及びCrは、前記したように、熱間鍛造後の初析フ
ェライト量及びパーライト・ラメラ間隔を所定の範囲と
するために、本発明の方法で用いる鋼における必須の元
素であり、Mnについては少なくとも1.00%、Cr
については少なくとも0.30%を添加することが必要
である。しかし、これら元素を過多に添加することは、
経済的に不利であるのみならず、鍛造後に高周波焼入れ
等を施すような部品においては、焼き割れ感受性を増大
させるので、添加量の上限は、Mnについては2.00
%、Crについては1.00%とする。
As mentioned above, Mn and Cr are essential elements in the steel used in the method of the present invention in order to keep the amount of pro-eutectoid ferrite and the pearlite-lamella spacing within a predetermined range after hot forging. At least 1.00% Cr
It is necessary to add at least 0.30%. However, adding too many of these elements
Not only is it economically disadvantageous, but it also increases the susceptibility to quench cracking in parts that undergo induction hardening after forging, so the upper limit for the amount of Mn added is 2.00.
%, Cr is 1.00%.

Aβは、鋼の脱酸及び結晶粒の微細化のために0、01
0%以上を添加することが必要であるが、0.060%
を越えるときは鋼の被削性が劣化する。
Aβ is 0,01 for deoxidizing steel and refining grains.
It is necessary to add 0% or more, but 0.060%
When the value exceeds this value, the machinability of the steel deteriorates.

従ッテ、AID添加量は0.010−0.060%の範
囲とする。
Accordingly, the amount of AID added is in the range of 0.010-0.060%.

尚、本発明においては、必要に応じて、結晶粒の微細化
のために、上記した元素に加えて、用いる素材鋼に Ti0.1%以下及び Nb0.1%以下 よりなる群から選ばれる少なくとも1種の元素を添加す
ることができる。また、被削性を向上させるために、 S   0.15%以下、 Pb0.30%以下、 Ca0.020%以下、 Se0.30%以下、 Te0.30%以下、 Bio、1o%以下及び Ce0.20%以下 よりなる群から選ばれる少なくとも1種の元素を添加す
ることもできる。
In addition, in the present invention, in addition to the above-mentioned elements, at least one selected from the group consisting of 0.1% or less Ti and 0.1% or less Nb may be added to the steel material used, in order to refine the grains, if necessary. One type of element can be added. In addition, in order to improve machinability, S 0.15% or less, Pb 0.30% or less, Ca 0.020% or less, Se 0.30% or less, Te 0.30% or less, Bio, 10% or less, and Ce0. It is also possible to add at least one element selected from the group consisting of 20% or less.

次に、本発明の方法における鍛造条件について説明する
Next, the forging conditions in the method of the present invention will be explained.

本発明の方法によれば、上記した元素を含有すル14 
ヲA C3変態点以上であって、且つ、1050℃以下
の温度に加熱して熱間鍛造を行なった後、自然冷却又は
加速冷却して、初析フェライト量をF(%)とするとき
、 F≦85 140C%C%)    (1)(但し、0
%は鋼における重量%にょる添加量を意味する。) ラメラ間隔をD(μm)とするとき、 D≦0.20  (μm)       (2)を満足
するフェライト・パーライト組織とすることが必要であ
る。
According to the method of the present invention, the above-described element-containing solution 14
woA When hot forging is performed by heating to a temperature above the C3 transformation point and below 1050 ° C., followed by natural cooling or accelerated cooling, and the amount of pro-eutectoid ferrite is F (%), F≦85 140C%C%) (1) (However, 0
% means the amount added in weight % in steel. ) When the lamella spacing is D (μm), it is necessary to have a ferrite-pearlite structure that satisfies the following (D≦0.20 (μm)) (2).

鍛造前の加熱温度は、均一なオーステナイト組織を得る
ために、Ac3変態点以上の温度とすることが必要であ
る。他方、鍛造前の加熱温度は、結晶粒の粗大化を避け
るために、1050℃以下とする必要がある。即ち、1
050℃よりも高温に加熱するときは、結晶粒の粗大化
が著しく、強度は向上しても、それ以上に靭性が低下す
るからである。
The heating temperature before forging needs to be at least the Ac3 transformation point in order to obtain a uniform austenite structure. On the other hand, the heating temperature before forging needs to be 1050° C. or lower to avoid coarsening of crystal grains. That is, 1
This is because when heating to a temperature higher than 050° C., the crystal grains become coarser and even though the strength is improved, the toughness is further reduced.

本発明の方法において、上記(1)及び(2)の条件を
満足する必要があることは、前述したとおりであり、か
かる条件を満足することによって、強度及び靭性のいず
れにもすぐれた非調質熱間鍛造品を得ることができる。
As mentioned above, in the method of the present invention, it is necessary to satisfy the conditions (1) and (2) above. High quality hot forged products can be obtained.

尚、熱間鍛造後の冷却に関して、大型部品の場合は、熱
間鍛造後に自然冷却するときは、所要の顕微鏡組織を得
ることが困難な場合もある。このような場合には、熱間
鍛造後、自然冷却でなく、加速冷却を行なうことにより
、顕微鏡組織を上記条件を満足するように制御して、高
強度高靭性非調質鍛造品を得ることができる。
Regarding cooling after hot forging, in the case of large parts, it may be difficult to obtain a required microscopic structure when naturally cooling after hot forging. In such cases, after hot forging, it is possible to control the microstructure to satisfy the above conditions by performing accelerated cooling instead of natural cooling to obtain a high-strength, high-toughness non-thermal forged product. I can do it.

(発明の効果) 以上のように、本発明によれば、所定量のMn及びCr
を所定量添加した機械構造用鋼を鍛造前所定の低い温度
範囲に加熱することによって結晶粒の粗大化を防止し、
更に、熱間鍛造後の冷却において、初析フェライト量を
減少させ、且つ、パーライト組織を微細化させるので、
高強度高靭性非調質型鍛造用鋼を得ることができる。
(Effects of the Invention) As described above, according to the present invention, a predetermined amount of Mn and Cr
By heating machine structural steel to which a predetermined amount of is added to a predetermined low temperature range before forging, coarsening of crystal grains is prevented.
Furthermore, during cooling after hot forging, the amount of pro-eutectoid ferrite is reduced and the pearlite structure is refined, so
High strength, high toughness, non-thermal forging steel can be obtained.

(実施例) 以下に本発明の実施例を挙げるが、本発明はこれら実施
例によって何ら制限されるものではない。
(Examples) Examples of the present invention are listed below, but the present invention is not limited to these Examples in any way.

実施例 第1表に示す化学組成を有する鋼を800〜1200℃
に加熱し、0〜50%圧延後、放冷する熱間鍛造シミュ
レーション処理を施して、厚さ15fiの板材を製作し
た。
Example Steel having the chemical composition shown in Table 1 was heated to 800 to 1200°C.
A plate material with a thickness of 15 fi was manufactured by performing a hot forging simulation process in which the material was heated to 0 to 50%, and then allowed to cool.

本発明filAは、従来の機械構造用炭素鋼である比較
mDにMn及びCrを所定量添加して、本発明による化
学成分組成を与えたものである。比較鋼Bは、C量が本
発明で規定する範囲を越えて添加されたもので、このC
量の増加によって、初析フェライトを減少させて、高強
度を得ようとするものである。更に、鋼Cは、S45C
mにVを添加した析出硬化型非調質鋼である。
The filA of the present invention is obtained by adding predetermined amounts of Mn and Cr to comparative mD, which is a conventional carbon steel for mechanical structures, to give it the chemical composition according to the present invention. Comparative steel B is one in which the amount of C added exceeds the range specified in the present invention;
By increasing the amount, pro-eutectoid ferrite is reduced and high strength is attempted. Furthermore, steel C is S45C
It is a precipitation hardening type non-temperature steel in which V is added to m.

上記の本発明鋼及び比較鋼からなる上記熱間鍛造シミュ
レーション処理板材の機械的性質は、上記板材から圧延
方向に平行にJIS d号引張試験片及びJIS a号
衝撃試験片を採取し、室温における引張及び衝撃試験を
行なって評価した。結果を第1図及び第2表に示す。尚
、比較鋼りについては、標準的な調質処理として、85
0℃加熱後水冷、600℃で焼戻しを行なった場合につ
いても、その機械的性質を第2表に示す。
The mechanical properties of the above-mentioned hot forging simulation-treated plate materials made of the above-mentioned inventive steel and comparative steel were determined by taking JIS No. d tensile test pieces and JIS No. a impact test pieces from the above-mentioned sheets parallel to the rolling direction, and measuring Tensile and impact tests were conducted and evaluated. The results are shown in FIG. 1 and Table 2. In addition, regarding the comparative steel, 85
Table 2 also shows the mechanical properties of the samples heated at 0°C, water-cooled, and tempered at 600°C.

以上の結果から明らかなように、本発明によれば、従来
の機械構造用炭素鋼や、或いはこれに多量のCを添加し
てなる比較鋼、■添加によって析出硬化型非調質鋼とし
た高強度鋼に比べて、すぐれた強度と靭性とを併せ有す
る非調質熱間鍛造品を得ることができる。
As is clear from the above results, according to the present invention, conventional carbon steel for mechanical structures, or comparative steel made by adding a large amount of C to it, can be made into precipitation-hardened non-thermal steel by addition of It is possible to obtain a non-thermal hot forged product that has both superior strength and toughness compared to high-strength steel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、機械構造用鋼におけるMn及びCrの添加量
と、非調f熱間鍛造品における引張強さ及び衝撃値との
関係を示すグラフ、第2図は、熱間鍛造品における強度
・靭性バランスと初析フェライト面積率、最小パーライ
ト・ラメラ間隔及びC含有量との関係を示すグラフであ
る。
Figure 1 is a graph showing the relationship between the amounts of Mn and Cr added in mechanical structural steel and the tensile strength and impact value of non-tempered hot forged products, and Figure 2 is a graph showing the strength of hot forged products. - It is a graph showing the relationship between toughness balance, pro-eutectoid ferrite area ratio, minimum pearlite lamella spacing, and C content.

Claims (1)

【特許請求の範囲】[Claims] (1)重量%で C0.25〜0.60%、 Si0.10〜1.00%、 Mn1.00〜2.00%及び Cr0.30〜1.00% を含有する鋼をAc_3変態点以上であつて、且つ、1
050℃以下の温度に加熱して熱間鍛造を行なつた後、
冷却して、鋼組織を、初析フェライト量をF(%)とす
るとき、 F≦85−140C%(%) (但し、C%は鋼における重量%による含有量を示す。 ) であると共に、パーライト・ラメラ間隔をD(μm)と
するとき、 D≦0.20(μm) であるフェライト・パーライト組織とすることを特徴と
する高強度高靭性非調質熱間鍛造品の製造方法。
(1) Steel containing 0.25 to 0.60% C, 0.10 to 1.00% Si, 1.00 to 2.00% Mn, and 0.30 to 1.00% Cr by weight at Ac_3 transformation point or higher and 1
After hot forging by heating to a temperature of 050°C or less,
When the steel structure is cooled and the amount of pro-eutectoid ferrite is F (%), F≦85-140C% (%) (However, C% indicates the content by weight% in the steel.) A method for producing a high-strength, high-toughness non-thermal hot forged product, characterized in that the ferrite-pearlite structure is such that D≦0.20 (μm), where the pearlite-lamella spacing is D (μm).
JP10669185A 1985-05-17 1985-05-17 Manufacture of unrefined hot forged article having high strength and toughness Pending JPS61264129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10669185A JPS61264129A (en) 1985-05-17 1985-05-17 Manufacture of unrefined hot forged article having high strength and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10669185A JPS61264129A (en) 1985-05-17 1985-05-17 Manufacture of unrefined hot forged article having high strength and toughness

Publications (1)

Publication Number Publication Date
JPS61264129A true JPS61264129A (en) 1986-11-22

Family

ID=14440062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10669185A Pending JPS61264129A (en) 1985-05-17 1985-05-17 Manufacture of unrefined hot forged article having high strength and toughness

Country Status (1)

Country Link
JP (1) JPS61264129A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379940A (en) * 1986-07-05 1988-04-09 テイツセン・エ−デルシユタ−ルヴエルケ・アクチエンゲゼルシヤフト Micro-alloyed structural steel
US5221373A (en) * 1989-06-09 1993-06-22 Thyssen Edelstahlwerke Ag Internal combustion engine valve composed of precipitation hardening ferritic-pearlitic steel
US10975452B2 (en) 2016-05-20 2021-04-13 Nippon Steel Corporation Hot forged product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379940A (en) * 1986-07-05 1988-04-09 テイツセン・エ−デルシユタ−ルヴエルケ・アクチエンゲゼルシヤフト Micro-alloyed structural steel
US5221373A (en) * 1989-06-09 1993-06-22 Thyssen Edelstahlwerke Ag Internal combustion engine valve composed of precipitation hardening ferritic-pearlitic steel
US5286311A (en) * 1989-06-09 1994-02-15 Thyssen Edelstahlwarke Ag Precipitation hardening ferritic-pearlitic steel valve
US10975452B2 (en) 2016-05-20 2021-04-13 Nippon Steel Corporation Hot forged product

Similar Documents

Publication Publication Date Title
US20240052470A1 (en) Non-quenched and Tempered Round Steel with High Strength, High Toughness and Easy Cutting and Manufacturing Method Therefor
CN110079743A (en) A kind of 1500MPa grades of low hydrogen-induced delayed cracking sensibility hot forming steel and production method
JPH0156124B2 (en)
JPS6365020A (en) Manufacture of surface hardened steel for rapid heating and quenching
CN110157864A (en) A kind of 1300MPa grades of low hydrogen-induced delayed cracking sensibility hot forming steel and production method
JPS6223929A (en) Manufacture of steel for cold forging
JPS6137334B2 (en)
JPS6383249A (en) Hot working tool steel and its manufacture
JPS61264129A (en) Manufacture of unrefined hot forged article having high strength and toughness
JP2000336460A (en) Hot rolled wire rod and steel bar for machine structure and manufacture of the same
JPS61284554A (en) Alloy steel for unrefined bolt or the like having superior toughness and steel material for unrefined bolt or the like using same
JPS6156235A (en) Manufacture of high toughness nontemper steel
JPH0112815B2 (en)
JPS63166949A (en) Non-heattreated steel for hot forging
JPS6137333B2 (en)
JPS63223125A (en) Manufacture of high-tensile steel plate with high-toughness
JPS63161117A (en) Production of hot rolled steel products having high strength and high toughness
JPH0526850B2 (en)
JPH059576A (en) Production of non-heattreated bar steel excellent in toughness at low temperature
JPH0229727B2 (en) DORIRUKARAAYOBOKONOSEIZOHOHO
KR940007365B1 (en) Method of manufacturing steel rod
JPH0472901B2 (en)
JPS61147849A (en) Unnormalized tough hardening steel
JPS62280326A (en) Non-heattreated steel material for bolt excellent in toughness
JPH05156354A (en) Manufacture of hardening obviated steel for hot forging