JPS6126325Y2 - - Google Patents

Info

Publication number
JPS6126325Y2
JPS6126325Y2 JP7061381U JP7061381U JPS6126325Y2 JP S6126325 Y2 JPS6126325 Y2 JP S6126325Y2 JP 7061381 U JP7061381 U JP 7061381U JP 7061381 U JP7061381 U JP 7061381U JP S6126325 Y2 JPS6126325 Y2 JP S6126325Y2
Authority
JP
Japan
Prior art keywords
scraping
die
powder
shoe
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7061381U
Other languages
Japanese (ja)
Other versions
JPS57185726U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7061381U priority Critical patent/JPS6126325Y2/ja
Publication of JPS57185726U publication Critical patent/JPS57185726U/ja
Application granted granted Critical
Publication of JPS6126325Y2 publication Critical patent/JPS6126325Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

この考案は、焼結機械部品の製造に用いられる
粉末成形機の給粉装置に関するものである。 焼結機械部品の成形に際しては、成形体各部の
圧粉密度ができるだけ均一になるように成形する
必要がある。しかし、通常の粉末成形機はダイと
下パンチで形成するキヤビテイ内に原料粉を流し
込んで擦り切り充填し、これを上下のパンチ間に
圧縮する方式であり、また粉末は液体と異なり、
圧縮過程での横方向への移動は殆どない。従つて
各部の密度を均一に成形するためには、各部分の
圧縮比(充填深さ/成形体の高さ)が一様になる
ように、原料粉を充填しなければならない。 このような理由から、上パンチの上端面が水平
面でよい場合、即ち厚さが一様な平板状の形状が
最も成形しやすい。 また、或る縦断面に凹凸があつても、たとえば
樋のようにその断面と直角の方向には真つ直ぐに
伸びる形状の場合は成形可能である。この場合は
その長手方向とフイードシユーの往復方向を一致
させると共に、ダイおよびダイプレートの上面と
フイードシユーの下縁に所要の凹凸を設け、ダイ
内の粉末を、この下縁の凹凸なりに擦り切り充填
すればよい訳である。 しかし、互いに直交する二つの縦断面のどちら
にも凹凸がある形状、例えば第1図に示すような
その中央部が凹んだ円板状(鉢形またはボウル形
と呼んでもよい。)の場合には、上述の方法では
充填できない。シユーの下縁に所要の凸部を設け
ても、シユー自体がダイプレートの上面に沿つた
一次元の運動しかかしないからである。 そこで、従来は第2図に示すように、本来なら
1本で済むところの、その上端に所要形状の凹面
を形成された下パンチ3を同心円筒の切断面で複
数のパンチに分割して構成し、粉末の充填時には
内側のパンチを少し上昇させて充填深さを図示の
如くほぼ一様に揃え、成形時には内側のパンチを
元の位置に戻し、各パンチ先端の凹面が連続した
状態に固定した後に上パンチ2を下降させて圧縮
成形を行なつている。 しかし、この従来方式の場合は下パンチを分割
するため金型が高価になるだけでなく、成形機に
複数の下パンチを個別に作動させる複雑な機構を
設ける必要がある。また、成形に際して各パンチ
の合わせ目に多少の段差を生じることはある程度
避けられず、その結果は製品の性能または美観を
損うほか、金型に局部的な歪みを発生させ金型の
破壊を誘発するなどの問題もある。 この考案は、単一の下パンチによる均一成形を
可能にして上述の諸問題を回避することをことを
〓〓〓〓
目的とし、給粉装置の改良によりその目的を達成
したものである。 即ちこの考案の要旨は、樋状の成形体の場合に
ついて前述したところの、フイードシユーの下縁
に所要の凸部を設ける代わりにその機能を掻き板
として分離させると共に、この掻き板をフイード
シユーの前部に設けた掻き取り室内に昇降自在、
または水平な回転軸により所定の角度範囲で回動
自在に取り付け、掻き板の二次元的運動によつて
ダイ内の粉末の選択的掻き出しを可能にしたこと
にある。 以下、この考案の二つの実施例を図面について
詳細に説明する。成形体はそれぞれ第1図の形状
で、直径30mm,厚さ10mm,上側の凹面および下側
の凸面がともに曲率半径25mmの球面のものを対象
とした。 先ず、第3図および第4図は掻き板が回転する
方式の例で、フイードシユー8は図の左方の待機
位置とダイ4との間を往復するが、その前端部に
掻き取り室9を設けた点が従来のものと異なつて
いる。 この室9内には回転軸5がシユーの往復方向と
直交する向きでダイプレートから21mmの高さに平
行に支持され、回転装置7により駆動される。掻
き板6は軸5に固定され、その下縁は曲率半径25
mm円弧になつている。なお4は内径30mmのダイ,
3はこれと滑合する単一の下パンチで、その上端
は、成形体と対応する曲率半径25mmの凹球面にな
つている。 この装置の作動について述べると、先ず掻き板
6を点線で示した61の位置に保ち、シユー8を
その待機位置から前進させてダイ内に粉末を充填
する。このとき室9は、第3図よりさらに右方に
位置している。次いでシユー8を図示の位置まで
後退させて掻き板6を位置61から位置62まで
回転させればダイ内の余分の粉末が掻き出され、
その跡に擂鉢状の凹みが形成される。以後は通常
の成形工程と同じであつて、掻き出された粉末は
シユーと共に一旦後退し、次のサイクルで充填に
供される。 次に、第5図は掻き板が昇降する方式の例で、
掻き取り室9に昇降自在のラム52を設け、この
ラムに掻き板6を取り付けた点が上記の回転方式
の場合と異なつている。 ラム52を昇降させる手段は電動,油圧・空圧
その他任意であるが、この例ではダイプレート上
にシユーの往復方向に沿つて面カム53を設け、
ラムの下端から室9の外に伸ばした丸軸51と係
合させ、シユーの前後進とラムの昇降を機械的に
同期させる方式を用いた。即ち面カム53の上面
は、掻き板6がダイプレート上にある間はこれと
干渉しない高さを保ち、ダイの型孔上を通過する
時だけ所定の円弧に従つて下降させる形状に設計
されている。またカム面に正確に追随するため、
掻き板6をスプリングで常に下方に押している。 この装置の作動について述べると、シユー8が
待機位置から前進してダイ4内に粉末を充填する
状況は、上記の例と変わらない。ただしこの間、
掻き板が未充填のダイ内に出入するが、その中に
障害物はないので、何の支障も生じない。 次いでシユー8を後退させると、室9がダイの
上を通過する際に、掻き板6が図示の如く所定の
円弧を描いてダイ内に出入し、余分の粉末が掻き
出された跡に擂鉢状の凹みが形成される。以後の
工程および掻き出された粉末の処置は上記の例と
同様なので、その説明は省略する。 次に、粒度が100メツシユ以下のアトマイズ鉄
粉を原料とし、充填深さ25mm(圧縮比2.5)に設
定して、第1図の形状の成形体を上記二つの方式
それぞれで成形し、成形体の全体密度,中心部お
よび周辺部の部分密度を測定してその結果を第1
表に示した。 なお参考のために掻き板を使用せずに成形を試
みたが、各部の圧縮比が大きく異なるため、成形
が不可能であつた。
This invention relates to a powder feeding device for a powder compacting machine used for manufacturing sintered machine parts. When molding sintered machine parts, it is necessary to mold the compact so that the green density of each part of the molded body is as uniform as possible. However, a typical powder molding machine pours raw material powder into a cavity formed by a die and a lower punch, fills it with scrapes, and then compresses it between the upper and lower punches.
There is almost no lateral movement during the compression process. Therefore, in order to mold each part to have a uniform density, it is necessary to fill the raw material powder so that the compression ratio (filling depth/height of the molded body) of each part is uniform. For this reason, it is easiest to form the upper punch when its upper end surface is a horizontal plane, that is, when it has a flat plate shape with uniform thickness. Further, even if a certain longitudinal cross section has irregularities, it is possible to mold the shape if it extends straight in a direction perpendicular to the cross section, such as a gutter. In this case, the longitudinal direction and the reciprocating direction of the feed shoe should match, and the required unevenness should be provided on the upper surface of the die and die plate, and on the lower edge of the feed shoe, so that the powder inside the die can be filled by scraping along the unevenness of the lower edge. That's a good translation. However, in the case of a shape that has unevenness on both of its two vertical cross-sections that are perpendicular to each other, for example, a disk shape with a concave center (also called a bowl shape) as shown in Figure 1, , cannot be filled using the method described above. This is because even if a necessary convex portion is provided on the lower edge of the shoe, the shoe itself only moves in one dimension along the upper surface of the die plate. Therefore, conventionally, as shown in Fig. 2, the lower punch 3, which has a concave surface of the desired shape on its upper end, is divided into a plurality of punches by the cut surface of a concentric cylinder, although normally only one punch is required. When filling powder, the inner punch is slightly raised to make the filling depth almost uniform as shown in the diagram, and during molding, the inner punch is returned to its original position and the concave surface at the tip of each punch is fixed in a continuous state. After that, the upper punch 2 is lowered to perform compression molding. However, in this conventional method, not only does the mold become expensive because the lower punch is divided, but it is also necessary to provide the molding machine with a complicated mechanism for individually operating the plurality of lower punches. In addition, it is unavoidable to some extent that some level differences occur at the joints of each punch during molding, which not only impairs the performance or aesthetics of the product, but also causes local distortion in the mold and can lead to mold destruction. There are also problems such as triggering. This invention aims to avoid the above-mentioned problems by enabling uniform forming with a single lower punch.
This goal was achieved by improving the powder feeding device. In other words, the gist of this invention is that instead of providing the necessary convex portion on the lower edge of the feed shoe as described above in the case of a gutter-shaped molded body, the function is separated as a scraper plate, and this scraper plate is placed in front of the feed shoe. It can be raised and lowered freely into the scraping chamber provided in the section.
Alternatively, it is mounted so as to be rotatable within a predetermined angular range by a horizontal rotating shaft, and the powder in the die can be selectively scraped out by two-dimensional movement of the scraping plate. Hereinafter, two embodiments of this invention will be described in detail with reference to the drawings. The molded bodies each had the shape shown in Fig. 1, a diameter of 30 mm, a thickness of 10 mm, and both the upper concave surface and the lower convex surface were spherical with a radius of curvature of 25 mm. First, FIGS. 3 and 4 are examples of a method in which the scraping plate rotates, and the feed shaker 8 reciprocates between the standby position on the left side of the figure and the die 4, and a scraping chamber 9 is provided at the front end of the feed shaker 8. It is different from the conventional one in the following points. A rotating shaft 5 is supported in the chamber 9 in parallel at a height of 21 mm from the die plate in a direction perpendicular to the reciprocating direction of the shoe, and is driven by a rotating device 7. The scraping plate 6 is fixed to the shaft 5, and its lower edge has a radius of curvature of 25
It is shaped like a mm arc. Note that 4 is a die with an inner diameter of 30 mm,
Reference numeral 3 denotes a single lower punch which is slidably fitted with this, and its upper end is a concave spherical surface with a radius of curvature of 25 mm corresponding to the molded body. To describe the operation of this device, first, the scraping plate 6 is held at a position 61 shown by a dotted line, and the shoe 8 is advanced from its standby position to fill the die with powder. At this time, the chamber 9 is located further to the right than in FIG. Next, by retracting the shoe 8 to the position shown in the figure and rotating the scraping plate 6 from position 61 to position 62, the excess powder in the die is scraped out.
A mortar-shaped depression is formed in its wake. The subsequent steps are the same as the normal molding process, and the scraped out powder once retreats together with the shoe and is used for filling in the next cycle. Next, Figure 5 shows an example of the method in which the scraping board moves up and down.
This differs from the above-described rotation method in that a ram 52 that can be raised and lowered is provided in the scraping chamber 9, and a scraping plate 6 is attached to this ram. The means for raising and lowering the ram 52 may be electric, hydraulic, pneumatic, or other arbitrary means, but in this example, a surface cam 53 is provided on the die plate along the reciprocating direction of the shoe.
A method was used in which the ram was engaged with a round shaft 51 extending from the lower end of the ram to the outside of the chamber 9 to mechanically synchronize the forward and backward movement of the shoe and the elevation and descent of the ram. That is, the top surface of the surface cam 53 is designed to maintain a height that does not interfere with the scraping plate 6 while it is on the die plate, and to descend along a predetermined arc only when passing over the die hole. ing. In addition, in order to accurately follow the cam surface,
The scraping board 6 is always pushed downward by a spring. Regarding the operation of this device, the situation in which the shoe 8 advances from the standby position and fills the powder into the die 4 is the same as in the above example. However, during this time,
The scraper moves in and out of the unfilled die, but since there are no obstacles therein, no problem occurs. Next, when the shoe 8 is moved backward, as the chamber 9 passes over the die, the scraping plate 6 moves in and out of the die in a predetermined arc as shown in the figure, leaving a mortar in the place where the excess powder was scraped out. A shaped depression is formed. The subsequent steps and treatment of the scraped-out powder are the same as in the above example, so their explanation will be omitted. Next, using atomized iron powder with a particle size of 100 mesh or less as raw material, setting the filling depth to 25 mm (compression ratio 2.5), and forming a molded body in the shape shown in Figure 1 using each of the above two methods, the molded body Measure the overall density, the partial density of the center and the periphery, and apply the results to the first
Shown in the table. For reference, we tried molding without using a scraping board, but molding was impossible because the compression ratios of each part were significantly different.

【表】 この表からわかるように、成形体の部分密度の
均一さでは、掻き板の回転方式の方が優る結果を
示したが、これは掻き板が最終的に掻き出す際の
角度の影響と考えられる。 〓〓〓〓
しかし、成形効率の面では掻き板の昇降方式の
方が優り、また掻き板に円弧以外の複雑な動作を
要する場合は、後者が唯一の方式と考えられる。
[Table] As can be seen from this table, in terms of uniformity of the partial density of the compact, the rake plate rotation method showed better results, but this is due to the influence of the angle at which the rake plate is finally scraped. Conceivable. 〓〓〓〓
However, in terms of forming efficiency, the raising and lowering method of the scraping board is superior, and the latter method is considered to be the only method when the scraping board requires complicated movements other than circular arcs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の目的とする成形体の形状を
例示する図面、第2図はこれを成形する従来方式
を説明する図面、第3および4図はこの考案の一
実施例を説明する図面、第5図は他の実施例を示
す図面である。 2……上パンチ、3……下パンチ、4……ダ
イ、6……掻き板、7……掻き板の回転装置、8
……フイードシユー(フイーダー)、9……掻き
取り室、53……掻き板の昇降装置。 〓〓〓〓
Fig. 1 is a drawing illustrating the shape of the molded object that is the object of this invention, Fig. 2 is a drawing illustrating a conventional method for molding it, and Figs. 3 and 4 are drawings illustrating an embodiment of this invention. , FIG. 5 is a drawing showing another embodiment. 2... Upper punch, 3... Lower punch, 4... Die, 6... Scraping board, 7... Scraping board rotation device, 8
...Feeder, 9...Scraping room, 53...Scraping board lifting device. 〓〓〓〓

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] フイードシユー8の前部に底の無い掻き取り室
9を設け、この室内に下縁を所要の形状に形成さ
れた掻き板6を昇降自在に、または水平な回転軸
により所定の角度範囲で回動自在に取り付けたこ
とを特徴とする粉末成形機の給粉装置。
A bottomless scraping chamber 9 is provided at the front of the feed shoe 8, and within this chamber a scraping plate 6 whose lower edge is formed into a desired shape can be raised and lowered or rotated within a predetermined angle range using a horizontal rotating shaft. A powder feeding device for a powder molding machine characterized by being freely attached.
JP7061381U 1981-05-18 1981-05-18 Expired JPS6126325Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7061381U JPS6126325Y2 (en) 1981-05-18 1981-05-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7061381U JPS6126325Y2 (en) 1981-05-18 1981-05-18

Publications (2)

Publication Number Publication Date
JPS57185726U JPS57185726U (en) 1982-11-25
JPS6126325Y2 true JPS6126325Y2 (en) 1986-08-07

Family

ID=29866435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7061381U Expired JPS6126325Y2 (en) 1981-05-18 1981-05-18

Country Status (1)

Country Link
JP (1) JPS6126325Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6330438B2 (en) * 2014-04-09 2018-05-30 信越化学工業株式会社 Manufacturing method of rare earth sintered magnet

Also Published As

Publication number Publication date
JPS57185726U (en) 1982-11-25

Similar Documents

Publication Publication Date Title
US6402493B1 (en) Powder compacting apparatus
CA2577919A1 (en) Punch, and rotary compression molding machine using the same
US3840631A (en) Method of making a composite tablet
JPS6126325Y2 (en)
JPH035919B2 (en)
JPS639562B2 (en)
JPH0832922B2 (en) Powder molding method and apparatus for molded body with boss
JP5594471B2 (en) Powder mold equipment
WO2008024406A2 (en) Tabletting press
JP2009255112A (en) Powder press
JPS60162702A (en) Forming method of double-layered molding
CN207156058U (en) The happy high brick forming machine of one kind
JPH06210496A (en) Powder feeder and powder feeding method
JPS6211932Y2 (en)
JPS6137399A (en) Powder molding device
JPS6217183Y2 (en)
CN112191809B (en) Forming device of horizontal modeling production line
JP3143793B2 (en) Feeder in powder molding equipment
JP2673637B2 (en) Method for producing solid powder cosmetics
JPS6226417Y2 (en)
JPS605997Y2 (en) Automatic powder feeding device for green compact production equipment
JP3205243B2 (en) Method for manufacturing a green compact
JPH09327798A (en) Feeder in powder molding equipment
JPS639561B2 (en)
KR101040319B1 (en) Multi-step powder feeding/pressing device and method for producing sintering mold by using the same