JPS61263051A - Solid electrolyte secondary battery - Google Patents

Solid electrolyte secondary battery

Info

Publication number
JPS61263051A
JPS61263051A JP60104236A JP10423685A JPS61263051A JP S61263051 A JPS61263051 A JP S61263051A JP 60104236 A JP60104236 A JP 60104236A JP 10423685 A JP10423685 A JP 10423685A JP S61263051 A JPS61263051 A JP S61263051A
Authority
JP
Japan
Prior art keywords
solid electrolyte
battery
discharge
secondary battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60104236A
Other languages
Japanese (ja)
Other versions
JPH0355027B2 (en
Inventor
Tadashi Tonomura
正 外邨
Teruhisa Kanbara
神原 輝寿
Satoshi Sekido
聰 関戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECH RES ASSOC CONDUCT INORG COMPO
Original Assignee
TECH RES ASSOC CONDUCT INORG COMPO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECH RES ASSOC CONDUCT INORG COMPO filed Critical TECH RES ASSOC CONDUCT INORG COMPO
Priority to JP60104236A priority Critical patent/JPS61263051A/en
Publication of JPS61263051A publication Critical patent/JPS61263051A/en
Publication of JPH0355027B2 publication Critical patent/JPH0355027B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain good charge-discharge cycle performance by constituting a solid electrolyte secondary battery with a negative electrode mainly comprising Cu, and Cu<+> ion conductive solid electrolyte, and a positive electrode obtained by replacing a part of NbS2 with In. CONSTITUTION:An all solid state solid electrolyte secondary battery is formed with a negative electrode 3 mainly comprising Cu, Cu<+> ion conductive solid electrolyte 2, and a positive electrode 1 comprising CuxNb1-yInyS2+1.5y (X=0.05-0.15, Y=0.01-0.10) which has layer crystal structure obtained by replacing a part of NbS2 which can dope and undoping Cu<+> ion between its layers with In and in which Cu is previously doped. Crystal distortion caused by doping and undoping of Cu<+> ions between S-S layers is reduced and the amount of doping between layers is increased. The drop in battery voltage during discharge is decreased and charge-discharge performance is increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、常温で高イオン導電性を有する固体電解質を
用いたオールソリッド・ステイトの固体電解質二次電池
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an all-solid state solid electrolyte secondary battery using a solid electrolyte having high ionic conductivity at room temperature.

従来の技術 常温で高イオン導電性を有する固体電解質を用いた電池
は、電池のオールソリッド・ステイト化が可能なことか
ら、液もれが本質的になく、保存中の自己放電のきわめ
て少ない高信頓性の電池となる。
Conventional technology Batteries using solid electrolytes that have high ionic conductivity at room temperature can be made into an all-solid state battery, so they are essentially free from leakage and have extremely low self-discharge during storage. It becomes a battery of credibility.

このような電池について、従来は一回の放電で寿命が尽
きてしまう一次電池がもっばら提案されていた。しかし
、電気回路素子の小形化が特徴であるマイクロエレクト
ロニクス分野の電源として該電池を使用する場合、当然
ながら電池も小形であることが要求される。電池は小形
化すればするほど容量は小さくなるから、−回の放電で
寿命が尽きてしまう一次電池に代り、くり返し使用ので
きる二次電池が有用となってくる。
Conventionally, most of the proposed batteries have been primary batteries whose lifespan ends after one discharge. However, when the battery is used as a power source in the field of microelectronics, which is characterized by miniaturization of electric circuit elements, the battery is naturally required to be small. As batteries become smaller, their capacity decreases, so secondary batteries, which can be used repeatedly, are becoming more useful in place of primary batteries, whose lifespan runs out after one discharge.

二次電池を構成する際必要となる要件は、正極材料およ
び負極材料が、電池の充・放電に際して可逆的な電気化
学反応を行う能力を有することである。
A necessary requirement when constructing a secondary battery is that the positive electrode material and the negative electrode material have the ability to perform a reversible electrochemical reaction during charging and discharging of the battery.

特に、正極材料としては、液体電解質を用いた電池では
、金属カルコゲン化物が、負極としてLl等のアルカリ
金属を用いた場合有用であることが古くから知られてい
る。この金属カルコゲン化物は、層状結晶構造を有して
おり、電池放電に際しては負極から遊離したアルカリ金
属イ、オンを層間に吸蔵し、充電に際してはアルカリ金
属イオンを層間より放出することで可逆的に電池反応を
行うことができる特徴を有している。
In particular, it has been known for a long time that metal chalcogenides are useful as positive electrode materials in batteries using liquid electrolytes when an alkali metal such as Ll is used as the negative electrode. This metal chalcogenide has a layered crystal structure, and upon battery discharge, it occludes alkali metal ions and ions liberated from the negative electrode between the layers, and upon charging, it reversibly releases alkali metal ions from between the layers. It has the characteristic of being able to perform battery reactions.

発明が解決しようとする問題点 以上のような金属カルコゲン化物を、銅を主体とする負
極と、Cu導電性固体電解質とするオールソリッド・ス
テイト二次電池の正極材料として使えるであろうという
ことは当該分野の技術者であれば容易に考えつくことで
あるが、金属カルコゲン化物のうちどのようなものが、
また、どの程度までCu イオノを自由にその層間に出
し入れできるか全くわからなかった。
Problems to be Solved by the Invention The metal chalcogenide described above can be used as a positive electrode material for an all-solid state secondary battery that has a negative electrode mainly made of copper and a Cu conductive solid electrolyte. As a person skilled in the art would easily think, which metal chalcogenides are
Furthermore, it was not at all clear to what extent Cu ions could be freely inserted and removed between the layers.

問題点を解決するための手段 本発明は、Cuを主体とする負極と、Cuイオン導電性
固体電解質と、正極材料として、CU イオンを層間に
自由に出し入れできるNbS2の一部をインジウムで置
換しかつあらかじめCuを挿入した層状結晶構造を有し
た新規な化合物、CuxNb1yInys2+1,5y
 (X :0−O6O−16、7:0,010−10)
とで構成される、良好な充・放電サイクル特性を発揮す
る固体電解質二次電池を提供する。
Means for Solving the Problems The present invention uses a negative electrode mainly composed of Cu, a Cu ion conductive solid electrolyte, and a positive electrode material in which part of NbS2, which allows Cu ions to be freely taken in and out between the layers, is replaced with indium. A novel compound with a layered crystal structure in which Cu is inserted in advance, CuxNb1yInys2+1,5y
(X:0-O6O-16, 7:0,010-10)
To provide a solid electrolyte secondary battery that exhibits good charge/discharge cycle characteristics.

作用 本発明に従う新規な正極材料である CuxNbl−yInysz+tsyは、NbS 2の
Nb  (イオン半径が0.63人)をIn  (イオ
ン半径が0.81人)で一部置換し、と同時にCuをS
−3の層間で挿入しておくことで、CuのS−8層間へ
の出し入れに伴う結晶ゆがみを軽減し、Cuの5−84
間への吸蔵可能量すなわち電池放電に際しては交電容量
を結晶構造的にあるいは静電的に増加することができる
。そして、該正極材料を用いた固体電解質二次電池は、
高容量でしかも良好な充・放電サイクル特性を与えるこ
とができる。
Function: CuxNbl-yInysz+tsy, a novel positive electrode material according to the present invention, partially replaces Nb (ionic radius of 0.63 μm) in NbS 2 with In (ionic radius of 0.81 μm), and at the same time replaces Cu with S.
By inserting the Cu between the S-8 and S-8 layers, the crystal distortion caused by the insertion and removal of Cu between the S-8 and S-8 layers can be reduced.
During battery discharge, the amount of storage that can be stored between the cells, that is, the current exchange capacity can be increased either crystallically or electrostatically. The solid electrolyte secondary battery using the positive electrode material is
It can provide high capacity and good charge/discharge cycle characteristics.

実施例 〈実施例1〉 第1図の曲線aは、CU イオン導電性固体電解質とし
てRbCu41tsC7?xsを用いCuを主体とする
負極と、CuQ、jNbQ、95InQ、05S2.0
8正極とで構成される第2図で示した断面の構造を有し
た固体電解質二次電池を一旦、X=Oまで100μAで
充電した後、20°C9100μ人の一定電流敏で放電
した際の電池電圧の変化を、X値を横軸に示したもので
ある。この曲線aかられかるように、Xの増加すなわち
放電の進行に伴い電池電圧は単調な減少を示し、この減
少はXが0.281を近まで続き、0.28を越えると
平坦部が現れる。また、比較例として示したx=o 、
y=oであるNbS 2を正極とする電池の放電特性を
示す曲線すよりも緩やかである。
Example (Example 1) Curve a in FIG. 1 shows RbCu41tsC7? as the CU ion conductive solid electrolyte. A negative electrode mainly made of Cu using xs, CuQ, jNbQ, 95InQ, 05S2.0
A solid electrolyte secondary battery with the cross-sectional structure shown in Figure 2, consisting of 8 positive electrodes, was charged at 100 μA until X=O, and then discharged at a constant current of 100 μA at 20°C. The change in battery voltage is shown with the X value on the horizontal axis. As can be seen from this curve a, the battery voltage shows a monotonous decrease as X increases, that is, as discharge progresses, and this decrease continues until X approaches 0.281, and a plateau appears when X exceeds 0.28. . In addition, x=o shown as a comparative example,
The curve is gentler than the curve showing the discharge characteristics of a battery using NbS 2 as the positive electrode, where y=o.

すなわち、G11zNb+−yInys2−H5y (
X : 0.O2N2.15.y:0.O1N0.10
)は、Xが0.28付近まで単一の層状結晶構造を保持
でき、Xが0.28までCu  イオ/をスムーズに出
し入れできる。
That is, G11zNb+-yInys2-H5y (
X: 0. O2N2.15. y:0. O1N0.10
) can maintain a single layered crystal structure until X is around 0.28, and can smoothly insert and remove Cu 2 ions until X is around 0.28.

NbS2の場合は、電池電圧の平坦部は、X=0.25
 f−f近から現われ始め、また電池電圧は八よりも低
く、Cu イオンの出し入れ易さはCuzNbl−yI
nysz+tsyに較べると劣る。
For NbS2, the plateau of the cell voltage is X=0.25
It begins to appear near f-f, the battery voltage is lower than 8, and the ease with which Cu ions can be taken in and out is CuzNbl-yI.
It is inferior to nysz+tsy.

第3図の曲線aは、本発明に従う第1図に示した特性を
示す電池と同様の電池を、Xの値が0〜0.25の間で
、20’C,100μ人で充・放電をくり返した際の各
サイクルの放電束の電池電圧と充・放電サイクル数との
関係を示したもので、100サイクルを越える良好なサ
イクル特性を与える。
Curve a in FIG. 3 shows that a battery similar to the battery according to the present invention and exhibiting the characteristics shown in FIG. This figure shows the relationship between the battery voltage of the discharge bundle of each cycle and the number of charging/discharging cycles when repeated, and shows good cycle characteristics over 100 cycles.

本発明に従う新規な正極材料である Cu)(Nb1−7エn7s2+157は、金属Nb粉
末、金属In粉末、金属Cu粉末とを所定の割合で混合
したもの、あるいはNbとInとGuの合金粉末を収納
した石英ガラス容器に、イオウ蒸気を徐々に送り込み9
00°Cで加熱反応することで得ることができるし、あ
るいはより簡便な方法としては、Nb82粉末とIn2
S3粉末とCu粉末とを所定の割合で混合し、約7市φ
のベレット状に約3トンの圧力で成形したものを、石英
ガラス管にo、1Torrの圧力以下で真空封入し、9
00’Cで約72時間加熱反応することでも得ることが
できる。
The novel positive electrode material according to the present invention (Cu)(Nb1-7en7s2+157) is a mixture of metallic Nb powder, metallic In powder, and metallic Cu powder in a predetermined ratio, or an alloy powder of Nb, In, and Gu. Sulfur vapor is gradually introduced into the quartz glass container.
It can be obtained by heating reaction at 00°C, or as a simpler method, Nb82 powder and In2
S3 powder and Cu powder are mixed at a predetermined ratio, and about 7 citiesφ
It was molded into a pellet shape under a pressure of about 3 tons, and then vacuum sealed in a quartz glass tube at a pressure of 1 Torr or less.
It can also be obtained by heating reaction at 00'C for about 72 hours.

〈実施例2〉 y値が、原料仕込み量で0.01  、0,02.0,
05゜0.10 、0,20 、0.30であるCuO
,lNb1yInyS2++、syを合成しこれらを正
極材料とする第2図に示した断面の構造を有する直径7
11mの固体電解質電池を構成した。
<Example 2> The y value is 0.01, 0,02.0,
05°0.10, 0.20, 0.30 CuO
, lNb1yInyS2++, sy are synthesized and these are used as positive electrode materials.
An 11 m solid electrolyte battery was constructed.

上記正極粉末と固体電解質粉末と負極粉末とを層状に三
層に約3トンの圧力でプレスし電池ベレットとし、次に
、正極および負極側に導電性カーボンフィルムより成る
集電体と、電極リードと熱圧着した後、電池全体をエポ
キシ樹脂で被膜することで電池を作った。第2図は、こ
のようにして作った固体電解質二次電池の断面図を示し
ており、1は正極層、2は固体電解質層、3は負極層、
4は集電体、5は電極リード、6は樹脂パ・ノケーシで
ある。
The above cathode powder, solid electrolyte powder, and anode powder are pressed into three layers under a pressure of about 3 tons to form a battery pellet, and then a current collector made of conductive carbon film and an electrode lead are placed on the cathode and anode sides. After heat-compression bonding, the battery was made by coating the entire battery with epoxy resin. Figure 2 shows a cross-sectional view of the solid electrolyte secondary battery made in this way, where 1 is a positive electrode layer, 2 is a solid electrolyte layer, 3 is a negative electrode layer,
4 is a current collector, 5 is an electrode lead, and 6 is a resin package.

第4図は、このようにして作った電池を、20°C,1
00μ人の定電流値でXの値の範囲がO〜0.26で充
放電を行った際の各サイクルの放電末期の電池電圧と充
・放電サイクル数との関係を示したもので、本発明に従
い、Inをy値として0.01  、0−02 、0.
O5、0,10含んだcuo、i Nb +−yIny
s 2+t57を正極とした電池は、すぐれたサイクル
特性を与えることがわかる。
Figure 4 shows the battery made in this way at 20°C.
It shows the relationship between the battery voltage at the end of discharge of each cycle and the number of charging/discharging cycles when charging and discharging is performed at a constant current value of 00 μm and the value of X is in the range of 0 to 0.26. According to the invention, the y value of In is 0.01, 0-02, 0.
cuo containing O5, 0,10, i Nb +-yIny
It can be seen that the battery using s2+t57 as the positive electrode provides excellent cycle characteristics.

〈実施例3〉 あらかじめ挿入するCuO量がX=O,O5゜0.1 
.0.15であるcuxl’ibo、9srno、os
s2.oaを合成し、これらを正極材料とする第2図で
示した構造の直径7mmの固体電解質電池を構成した。
<Example 3> The amount of CuO inserted in advance is X=O, O5゜0.1
.. cuxl'ibo which is 0.15, 9srno, os
s2. A solid electrolyte battery having a diameter of 7 mm and having the structure shown in FIG. 2 was constructed using these as positive electrode materials.

固体電解質材料、負極材料および正極、負極、固体電解
質の重量および組成は、実施例2と同様である。電池の
組み立て方法も実施例2と同様である。
The weight and composition of the solid electrolyte material, negative electrode material, positive electrode, negative electrode, and solid electrolyte are the same as in Example 2. The method of assembling the battery is also the same as in Example 2.

第5図は、このようにして作った電池を、2゜’C,1
00μ人の定電流値でXの範囲がQ〜0.26で充・放
電を行った際の各サイクルの放電末期の電池電圧と充・
放電サイクル数との関係を示しており、いづれの電池も
100サイクル以上のすぐれたサイクル特性を与える。
Figure 5 shows the battery made in this way at 2°C, 1
Battery voltage at the end of discharge and charging/discharging at the end of each cycle when charging/discharging is performed with a constant current value of 00μ and the range of X is Q ~ 0.26
The relationship between the number of discharge cycles and the number of discharge cycles is shown, and all of the batteries exhibit excellent cycle characteristics over 100 cycles.

なお、本発明の実施例において、Cu  イオン導電性
固体電解質としてRbGu4It5CA3.5を用いた
が、他のCu+イオン導電性固体電解質、例えばRbC
u4工t25Cハフ51 Rtlo7sKo、zsCu
4Its、(j?s、s 、CuBrにヘキサメチレン
テトラミン等の第4級アンモニウム塩を添加した固体電
解質等を用いても本発明と同様の効果が得られることは
言うまでもない。
In the examples of the present invention, RbGu4It5CA3.5 was used as the Cu ion conductive solid electrolyte, but other Cu + ion conductive solid electrolytes, such as RbC
u4 engineering t25c huff 51 Rtlo7sKo, zsCu
4Its, (j?s,s) It goes without saying that the same effects as the present invention can be obtained by using a solid electrolyte, etc., in which a quaternary ammonium salt such as hexamethylenetetramine is added to CuBr.

さらに、Cu を主体とする負極として、Cu +Cu
vsps + Cu+イオン導電性固体電解質より成る
混合物の他に、Gu+Cu  イオン導電性固体電解質
より成る混合物や、Cu’5M0636 + Cu  
イオン導電性固体電解質より成る混合物等を用いても本
発明と同様の効果が得られることは言うまでもない。
Furthermore, as a negative electrode mainly composed of Cu, Cu +Cu
In addition to the mixture consisting of vsps + Cu + ion conductive solid electrolyte, there are also mixtures consisting of Gu + Cu ion conductive solid electrolyte, Cu'5M0636 + Cu
It goes without saying that the same effects as the present invention can be obtained by using a mixture of ionically conductive solid electrolytes.

発明の効果 本発明に従い、正極材料として CuxNbl−yInys2+t5yを有し、Cuを主
体とする負極ト)、Cu+イオン導電性固体電解質とで
構成される固体電解質二次電池は、分極の小さいすなわ
ち放電時の電池電圧の低下のゆるやかな、かつ優れた充
・放電特性を与える。
Effects of the Invention According to the present invention, a solid electrolyte secondary battery having CuxNbl-yInys2+t5y as a positive electrode material, a negative electrode mainly composed of Cu, and a Cu+ ion conductive solid electrolyte has low polarization, that is, a The battery voltage drops slowly and provides excellent charging and discharging characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の固体電解質二次電池の放
電時の電圧変化図、第2図は同電池の構造を示す断面図
、第3図は同電池の充・放電サイクル特性図、第4図は
同電池の充・放電サイクル特性図、第5図は同゛覗池の
充・放電サイクル特性図である。 乙・・・・・・本発明の一実施例の電池、b・・・・・
・比較例の電池、1・・・・・・正極層、2・・・・・
・固体電解質層、3・・・・・・負極層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ρ、6    10 χ イ直 第2図 3・・・負極濁 第3図 克・辰宅サイクル数 第4図 ノし・ 故化すイクル聚 @5図 丸・方i4Lサイクル迄(
Figure 1 is a voltage change diagram during discharge of a solid electrolyte secondary battery according to an embodiment of the present invention, Figure 2 is a sectional view showing the structure of the battery, and Figure 3 is the charge/discharge cycle characteristics of the battery. Fig. 4 shows the charge/discharge cycle characteristics of the same battery, and Fig. 5 shows the charge/discharge cycle characteristics of the same pond. B...Battery of one embodiment of the present invention, b...
・Battery of comparative example, 1...Positive electrode layer, 2...
・Solid electrolyte layer, 3...Negative electrode layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure ρ, 6 10 χ I direct Figure 2 Figure 3...Negative polarity Figure 3 Katsu/Tatsutaku cycle number Figure 4 Noshi/decrepit cycle @Figure 5 circle/square i4L cycle (

Claims (1)

【特許請求の範囲】 銅を主体とする負極と、Cu^+イオン導電性固体電解
質と、Cuをあらかじめ挿入した Cu_xNb_1_−_yIn_yS_2_+_1_.
_5_yで表わされる硫化物(ただし、y:0.01〜
0.10、x:0.05〜0.15)を主体とする正極
より構成されることを特徴とする固体電解質二次電池。
[Claims] A negative electrode mainly made of copper, a Cu^+ ion conductive solid electrolyte, and Cu_xNb_1_-_yIn_yS_2_+_1_. in which Cu is inserted in advance.
_5_ Sulfide represented by y (however, y: 0.01~
0.10, x: 0.05 to 0.15).
JP60104236A 1985-05-16 1985-05-16 Solid electrolyte secondary battery Granted JPS61263051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60104236A JPS61263051A (en) 1985-05-16 1985-05-16 Solid electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60104236A JPS61263051A (en) 1985-05-16 1985-05-16 Solid electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS61263051A true JPS61263051A (en) 1986-11-21
JPH0355027B2 JPH0355027B2 (en) 1991-08-22

Family

ID=14375324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60104236A Granted JPS61263051A (en) 1985-05-16 1985-05-16 Solid electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS61263051A (en)

Also Published As

Publication number Publication date
JPH0355027B2 (en) 1991-08-22

Similar Documents

Publication Publication Date Title
WO1998040923A1 (en) Nonaqueous electrolyte battery and charging method therefor
JPH0567468A (en) Electrochemical secondary battery
JPS62290072A (en) Organic electrolyte secondary battery
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
JPH05151995A (en) Nonaqueous electrolyte secondary battery
JPH0554914A (en) Secondary battery
JPS63239773A (en) Solid electrolyte cell
JPS62290071A (en) Organic electrolyne secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP2830365B2 (en) Non-aqueous electrolyte secondary battery
JPS61263051A (en) Solid electrolyte secondary battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JPH012258A (en) Non-aqueous electrolyte secondary battery
JPS6012677A (en) Solid electrolyte secondary battery
JPS63143759A (en) Rechargeable electrochemical battery
JPH0355026B2 (en)
JPH02165565A (en) Full solid secondary cell
JP2579058B2 (en) Non-aqueous electrolyte secondary battery
JPH0684545A (en) Manufacture of thin type nonaqueous electrolyte secondary battery
JPS61263053A (en) Solid electrolyte secondary battery
JPS61263054A (en) Solid electrolyte secondary battery
JP3168615B2 (en) Non-aqueous electrolyte secondary battery
JPS6199270A (en) Solid electrolyte secondary battery
JPH0534780B2 (en)
JPS6012678A (en) Solid electrolyte secondary battery