JPS61262745A - Photoconductive member - Google Patents

Photoconductive member

Info

Publication number
JPS61262745A
JPS61262745A JP10634885A JP10634885A JPS61262745A JP S61262745 A JPS61262745 A JP S61262745A JP 10634885 A JP10634885 A JP 10634885A JP 10634885 A JP10634885 A JP 10634885A JP S61262745 A JPS61262745 A JP S61262745A
Authority
JP
Japan
Prior art keywords
photoconductive
gas
layer
amorphous layer
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10634885A
Other languages
Japanese (ja)
Inventor
Katsufumi Kumano
勝文 熊野
Koichi Haga
浩一 羽賀
Yasuyuki Shindo
泰之 進藤
Kenji Yamamoto
健司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Original Assignee
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Research Institute of General Electronics Co Ltd, Ricoh Co Ltd filed Critical Ricoh Research Institute of General Electronics Co Ltd
Priority to JP10634885A priority Critical patent/JPS61262745A/en
Publication of JPS61262745A publication Critical patent/JPS61262745A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • G03G5/102Bases for charge-receiving or other layers consisting of or comprising metals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers

Abstract

PURPOSE:To obtain a photoconductive member remarkably high in photodegradation resistance, capable of being used repeated for a long period, and hardly measurable in residual potential by forming an amorphous layer contg. O or O and N, and having specified characteristics. CONSTITUTION:The photoconductive member 1 is constituted by forming the amorphous layer 3 contg. O or O and N, and having photoconductive characteristics: a dark conductivity of 10<-15>-10<-11>(OMEGA.cm)<-1>, a photoconductivity of 10<-9>-10<-6>(OMEGA.cm)<-1> when light is incident in an intensity of 100mW/cm<2>, an optical band gap of 1.9-2.5eV, and a photoconductivity to dark conductivity ratio of 10<4>-10<6>, on a support 2, optionally conductive or insulating, and transparent or opaque, and in the case of a conductive substrate, for example, made of Al, stainless steel, NiCr, Cr, Mo, W, Au, Ta, Ti, Ni, Pt, or the like, or their alloy.

Description

【発明の詳細な説明】 [技術分野] 本発明は光導電部材に関して、詳しくは、特定の性状を
有したシリコン系非晶質層が支持体上に設けられている
光導電部材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a photoconductive member, and more particularly to a photoconductive member in which a silicon-based amorphous layer having specific properties is provided on a support.

[従来技術] 電子写真用像形成部材、光センサなどの光導電部材にお
ける光導電層材料としては、従来Se、ZnOごとき無
機材料やポリ−N−ビニルカルバゾール、トリニトロフ
ルオレノンのごとき有機材料が用いられてきたが、最近
になって、アモルファスシリコン(以降ra−siJと
称する)が注目されはじめている。これは、a−8iを
光導電層とした光導電部材が従来の光導電部材と比較し
て同様もしくはそれ以上の特性を有する他、人及び環境
に対しても無害であり、耐久性が著しく大きい等の長所
を有しているからである。
[Prior Art] Conventionally, inorganic materials such as Se and ZnO, and organic materials such as poly-N-vinylcarbazole and trinitrofluorenone have been used as photoconductive layer materials in photoconductive members such as electrophotographic image forming members and optical sensors. However, recently, amorphous silicon (hereinafter referred to as ra-siJ) has begun to attract attention. This is because photoconductive materials with a-8i photoconductive layers have properties similar to or better than conventional photoconductive materials, are harmless to humans and the environment, and are extremely durable. This is because it has advantages such as being large.

しかし、従来のa−3iで構成された光導電部材は暗抵
抗値、光感度、光応答性等の電気的。
However, the conventional photoconductive member made of a-3i has poor electrical properties such as dark resistance, photosensitivity, and photoresponsivity.

光学的、光導電的特性において、未だ充分な特性が得ら
れていないのが実情である6例えば。
For example, the reality is that sufficient optical and photoconductive properties have not yet been obtained.

電子写真用像形成部材や固体撮像装置に応用した場合、
帯電電位が充分に得られない為にa −8iからなる光
導電層を有する電子写真用像形成部材等の上記光導電層
に静電像形成の為の帯電処理を施しても暗減衰(dar
k decay)が著しく速く通常の電子写真法が仲々
適用され難い事、及び多湿雰囲気中においては、上記傾
向が著しく場合によっては現像時間まで帯電電位を全く
保持得ない事がある等である。
When applied to electrophotographic image forming members and solid-state imaging devices,
Because a sufficient charging potential cannot be obtained, dark decay (dar
k decay) is extremely fast, making it difficult to apply normal electrophotography, and in a humid atmosphere, the above-mentioned tendency is so pronounced that in some cases, the charged potential cannot be maintained at all until the development time.

こうした点を改良するものの一つとして、(1)a−8
iからなる光導電層と該光導電層を支持する支持体との
間に支持体側から光導電層中へのキャリアの流入を阻止
しかつ光等の電磁波照射によって前記先導ffi層中に
生じ支持体側に向かって移動するキアリアの光導電層側
から支持体側への通過を許す機罷を有する中間層を備え
た光導電部材が提案されている(特開昭57−5816
1号公報)、この光導電部材の中間層はシリコン原子及
び窒素原子を母体としハロゲン原子を含む非光導電性の
アモルファス材料で構成され、その厚さは30〜100
0人くらいである。
One of the ways to improve these points is (1) a-8.
Between a photoconductive layer consisting of i and a support supporting the photoconductive layer, carriers are prevented from flowing into the photoconductive layer from the support side and are generated in the leading ffi layer by irradiation with electromagnetic waves such as light. A photoconductive member has been proposed that has an intermediate layer that allows Chiaria moving toward the body to pass from the photoconductive layer side to the support side (Japanese Patent Laid-Open No. 57-5816
No. 1), the intermediate layer of this photoconductive member is composed of a non-photoconductive amorphous material based on silicon atoms and nitrogen atoms and containing halogen atoms, and has a thickness of 30 to 100 mm.
There were about 0 people.

この光導電部材は帯電電位を中間層の高抵抗率により保
持させるというものであるが、その厚さが前記のように
30〜1000人と非常に薄いため、この中間層を支持
体上に形成する際に支持体表面のキズ、凹凸等により支
持体全体にわたって均一に形成することが困難であり、
不均一に形成された場合においては、帯電電位が著しく
不均一になり良好な画像が形成され得ない欠点を有して
いる。ピンホールの発生があるとその部分で白抜は等の
問題も生じる。また、全体に帯電電位向上のために中間
層を厚く形成すると、帯ff1f!1位は向上するが、
中間層が非光導電性の為に光等の11!磁波照射によっ
て光導電層中に生じ、支持体側に向って移動するキャリ
アの光導電層側から支持体側への通過を許す事が困難番
ニなって光導電特性が低下したり残留電位が大きくなる
等の欠点を有している。
This photoconductive member maintains the charged potential by the high resistivity of the intermediate layer, but since the thickness of the intermediate layer is extremely thin (30 to 1,000 layers) as mentioned above, this intermediate layer is formed on a support. It is difficult to form uniformly over the entire support due to scratches, unevenness, etc. on the support surface.
If the toner is formed non-uniformly, the charging potential becomes extremely non-uniform and a good image cannot be formed. If a pinhole occurs, problems such as white spots will occur in that area. Also, if the intermediate layer is formed thickly to improve the charging potential over the entire band, the band ff1f! 1st place will improve, but
11! Since the intermediate layer is non-photoconductive, light etc. It becomes difficult to allow carriers generated in the photoconductive layer by magnetic wave irradiation and move toward the support to pass from the photoconductive layer to the support, resulting in a decrease in photoconductive properties and a large residual potential. It has the following disadvantages.

前記光R電的特性を改良するものの他の一つとしては、
 (2)a −S lからなる光導電層に不純物として
酸素原子を支持体側に少なく表面側に多くなるように(
即ち厚み方向で不均一になるように)含有させてa−S
i系光導電層の高抵抗化をはかり、帯Wi電位の向上を
意図した光導電部材が提案されている(特開昭57−1
15553号公報)。
Another example of improving the photo-R electrical characteristics is:
(2) Oxygen atoms are added as impurities to the photoconductive layer consisting of a-Sl so that they are less on the support side and more on the surface side (
In other words, the a-S is contained non-uniformly in the thickness direction.
A photoconductive member has been proposed that aims to improve the band Wi potential by increasing the resistance of the i-based photoconductive layer (Japanese Unexamined Patent Publication No. 57-1
15553).

この光導電部材によれば、前記(1)のように光導電層
と支持体との間に特別な層を設けることなく、光導電層
自体に帯電電位を保持させることが可能である。しかし
ながら、この光導電部材はIF電電位の保持機能を優先
して光I!電層中の酸li4原子の含有量を増加すると
光感度が低下する 欠点があり、実用的な光感度を得る
為にはある程度帯電電位を保持する機能を犠牲にしなけ
ればならないといった不都合がある。
According to this photoconductive member, it is possible to maintain a charged potential in the photoconductive layer itself without providing a special layer between the photoconductive layer and the support as in (1) above. However, this photoconductive member gives priority to the function of holding the IF electric potential, and the photoconductive member gives priority to the function of holding the IF electric potential. Increasing the content of acid Li4 atoms in the electrolytic layer has the disadvantage that the photosensitivity decreases, and in order to obtain practical photosensitivity, the function of holding the charged potential must be sacrificed to some extent.

また、この光導電部材(前記2のもの)の製造では、光
導1tjl!lに酸素原子を含有させるため酸1(0,
)、オゾン(O,)等を用いているが。
In addition, in the production of this photoconductive member (mentioned in item 2), the light guide 1tjl! In order to contain oxygen atoms in l, acid 1(0,
), ozone (O, ), etc. are used.

実際S I Ha等をグロー放電法により分解しa −
81の光導111層を形成する際に酸素原子を含有させ
る為に酸素(0,)を用いた場合の光導電層の特性は第
4図、第5図のように表わされる。
In fact, S I Ha etc. were decomposed by the glow discharge method and a −
The characteristics of the photoconductive layer when oxygen (0,) is used to contain oxygen atoms when forming the photoconductive layer 111 of No. 81 are shown in FIGS. 4 and 5.

第4図はシラン(SiH4)に酸素(O3)の混入割合
と形成された光導電層の光学的バンドギャップの関係を
示すものであるが、酸素(0,)の混入割合を増加して
も光学的バンドギャップが広くならず高抵抗化には問題
がある・第5図はシラン(SiH4)に酸素(02)の
混入割合と形成された光導ffi層の光電率の関係を示
すものであるが酸素(0,)の混入割合を増加すると暗
導電率はある程度低くなるがΔM1100+IIW/c
Jの光入射時の光導電率が急激に低下し光導電特性が低
下してしまう問題がある。
Figure 4 shows the relationship between the mixing ratio of oxygen (O3) in silane (SiH4) and the optical band gap of the formed photoconductive layer. There is a problem in increasing the resistance because the optical bandgap does not widen. Figure 5 shows the relationship between the mixing ratio of oxygen (02) in silane (SiH4) and the photoelectricity of the formed light-guiding ffi layer. However, when the mixing ratio of oxygen (0,) increases, the dark conductivity decreases to some extent, but ΔM1100+IIW/c
There is a problem in that the photoconductivity of J when light is incident thereon suddenly decreases, resulting in a decrease in photoconductive properties.

また、シラン(SiH4)に酸素(0,)を混入した場
合においては、シラン(SiH,)がグロー放電により
分解する以前に混入した酸素(0,)と瞬間的に反応し
てしまい光導電層に効率よく酸素原子を含有させること
が困難であること、また光導電層を形成する装置におい
ても均質な酸素含有のために複雑な装置な必要になり量
産化もなかなか困難であるといった問題も残されている
Furthermore, when oxygen (0,) is mixed into silane (SiH4), the silane (SiH,) reacts instantaneously with the mixed oxygen (0,) before being decomposed by glow discharge, resulting in a photoconductive layer. It is difficult to efficiently incorporate oxygen atoms into the photoconductive layer, and the equipment for forming the photoconductive layer requires complicated equipment to ensure homogeneous oxygen content, making it difficult to mass-produce. has been done.

もっとも、光感度を低下させずに帯電電位特性を向上さ
せることを意図して、前記の(2)に(1)の手段の一
部を加味させることも考えられるが、依然として先にあ
げた様な問題は残されており、また帯電電位特性、光感
度、光応答特性の電気的、光学的、光導電的特性が充分
に満足できるa−5i系先光導電が得られないのが実情
である。
However, it is conceivable to add some of the measures in (1) to (2) above with the intention of improving the charging potential characteristics without reducing the photosensitivity, but the above-mentioned problem still remains. However, the current situation is that it is not possible to obtain a-5i-based photoconductivity that fully satisfies the electrical, optical, and photoconductive properties of charging potential characteristics, photosensitivity, and photoresponse characteristics. be.

[目  的] 本発明の目的は電気的、光学的及び光導電特性が常時安
定していてほとんど使用環境に制限を受けず耐光劣化に
著しく長は繰返し使用が可能で残留電位が全く又はほと
んど計測されない光導電部材を提供することである。
[Purpose] The purpose of the present invention is to have electrical, optical, and photoconductive properties that are stable at all times, to be hardly limited by the usage environment, to be resistant to light deterioration, to be able to be used repeatedly, and to have no or almost no residual potential. It is an object of the present invention to provide a photoconductive member that is not

本発明の別の目的は、全可視光領域において。Another object of the invention is in the entire visible light range.

光感度が高く又光波長によりその光感度を変え得ること
が出来、かつ、光応答特性の速い光導電部材を提供する
ことである。
It is an object of the present invention to provide a photoconductive member that has high photosensitivity, can change the photosensitivity depending on the wavelength of light, and has fast photoresponse characteristics.

本発明の他の目的は、電子写真用として適用させた場合
に、一般の電子写真法が極めて有効に適用され得る程度
に静電像形成の為の帯電処理の際の電荷保持機能が充分
にあり、かつ、多湿雰囲気中でもその特性の低下がほと
んどなく優れた電子写性特性を有する光導電部材を提供
することである。
Another object of the present invention is to have a sufficient charge retention function during charging processing for electrostatic image formation to the extent that general electrophotography can be applied very effectively when applied to electrophotography. It is an object of the present invention to provide a photoconductive member which has excellent electrophotographic properties with almost no deterioration in its properties even in a humid atmosphere.

本発明の更に他の目的は濃度が高く階調性にすぐれ、か
つ、解像度の高い高品質画像を常時安定して得ることが
容易に出来る電子写真用として有用な光導電部材を提供
することである。
Still another object of the present invention is to provide a photoconductive member useful for electrophotography, which can easily consistently obtain high-quality images with high density, excellent gradation, and high resolution. be.

本発明の又の目的は複雑な手段を用いることなく、量産
性にすぐれた製法が採りうる光導電部材を提供すること
である。
Another object of the present invention is to provide a photoconductive member that can be manufactured by a method with excellent mass productivity without using complicated means.

[構  成] 本発明は支持体上にシリコン原子を母材とする非晶質層
が設けられた光導電部材において、その非晶質層は酸素
原子又は酸素原子と窒素原子とを含有し、10 −” 
〜10 −” (Ωc+a)−1の範囲の暗導電率をも
ち、AM 1 100mW/cdの光入射時にあって1
O−6〜io−’(0cm)−1の範囲の光導電率をも
ち、1.9〜2.5eVの範囲の光学的バンドギャップ
をもち、かつ、前記の光導電率と暗導電率との比が10
4〜106の範囲にある光導電特性を有していることを
特徴とするものである。
[Structure] The present invention provides a photoconductive member in which an amorphous layer having silicon atoms as a base material is provided on a support, the amorphous layer containing oxygen atoms or oxygen atoms and nitrogen atoms, 10-”
It has a dark conductivity in the range of ~10-'' (Ωc+a)-1, and when light is incident at AM1100mW/cd, it has a dark conductivity of 1.
It has a photoconductivity in the range of O-6 to io-'(0cm)-1, an optical band gap in the range of 1.9 to 2.5eV, and the photoconductivity and dark conductivity as described above. The ratio of
It is characterized by having photoconductive properties in the range of 4 to 106.

ちなみに、本発明者らは前記目的を達成するため種々研
究、検討した結果、上記のような特定の性状を非晶質層
に付与させれば良好な電気的、光学的および光導電的特
性が得られることを確めたのであって、本発明はかかる
知見に基づいて完成されたものである。
Incidentally, the inventors of the present invention have conducted various studies and examinations to achieve the above object, and have found that if the above-mentioned specific properties are imparted to the amorphous layer, good electrical, optical, and photoconductive properties can be obtained. It has been confirmed that this can be obtained, and the present invention has been completed based on this knowledge.

以下に本発明を図面に従がいなからさらに詳細に説明す
る。第1図(よ本発明に係る光導電部材lが支持体2上
に非晶質層3を設けた構成からなっていることを表わし
ている。4は自由表面を示している。
The present invention will be explained in more detail below without referring to the drawings. FIG. 1 shows that a photoconductive member 1 according to the present invention has a structure in which an amorphous layer 3 is provided on a support 2. 4 indicates a free surface.

前記のとおり、非晶質層3は酸素原子又は酸素原子と窒
素原子を含有しており、1o −11〜10−+E (
Ωam)−1の範囲の暗導電率をもちAM1100■W
/cdの光入射時においては1O−6〜10−’(Ωc
+s)−’の範囲の光導電率をもち、光学的バンドギャ
ップは1.9〜2.5eVの範囲であり。
As mentioned above, the amorphous layer 3 contains oxygen atoms or oxygen atoms and nitrogen atoms, and has a range of 1o −11 to 10 −+E (
AM1100■W with dark conductivity in the range of Ωam)-1
/cd light incidence, 1O-6~10-'(Ωc
It has a photoconductivity in the range +s)-' and an optical bandgap in the range 1.9-2.5 eV.

かつ、前記光導電率と前記暗導電率との比が104〜1
0@の範囲の光導電特性を有している。
and the ratio of the photoconductivity to the dark conductivity is 104 to 1.
It has photoconductive properties in the range of 0@.

支持体2としては、導電性でも電気絶縁性であっても良
いし、透明でも不透明であっても良し1゜ 導電性支持体としては例えばAQ−ステンレス、NiC
r、 Cr 、 M o 、 W、 Au、Ta−Ti
、Ni、Pt等の金属又はこれらの合金が使用できる。
The support 2 may be conductive or electrically insulating, transparent or opaque, and examples of the 1° conductive support include AQ-stainless steel and NiC.
r, Cr, Mo, W, Au, Ta-Ti
, Ni, Pt, or alloys thereof can be used.

あるいはこれらの金属の積層したものであっても良い。Alternatively, it may be a laminate of these metals.

又、炭素又は炭素系合金でも使用できる。Also, carbon or carbon-based alloys can be used.

電気絶縁性支持体としてはポリエステル、ポリエチレン
、ポリカーボネート、セルローズ、ポリイミド、アセテ
ート、ポリプロピレン、ポリ塩化ビニル、テフロン等の
合成樹脂のフィルム又はシート、あるいはこれらの積層
したもの。
The electrically insulating support may be a film or sheet of synthetic resin such as polyester, polyethylene, polycarbonate, cellulose, polyimide, acetate, polypropylene, polyvinyl chloride, Teflon, or a laminate thereof.

他に透明であるガラス、セラミック、紙等が使用出来る
。これらの電気絶縁性支持体は通常その一方の表面を導
電処理し、導電処理された表面側に非晶質層3が形成さ
れる。例えばガラスであればその表面に前記導電性支持
体材料の金属又はこれらの合金の薄膜を設けることによ
って導電処理される。薄膜を形成するには通常の真空蒸
着、電子ビーム蒸着、スパッタリング、メッキ等でその
表面に形成される。又、透明導電性材料であるr T 
O(I n202+SnO,)あるいはSnO,を表面
に形成することにより導電性処理されても良い。
Other transparent materials such as glass, ceramic, and paper can be used. These electrically insulating supports usually have one surface conductively treated, and an amorphous layer 3 is formed on the conductively treated surface side. For example, in the case of glass, conductive treatment is performed by providing a thin film of the metal or alloy thereof as the conductive support material on its surface. To form a thin film, it is formed on its surface by conventional vacuum evaporation, electron beam evaporation, sputtering, plating, etc. In addition, r T which is a transparent conductive material
Conductive treatment may be performed by forming O (In202+SnO,) or SnO on the surface.

支持体2の形成としては円筒状、ベルト状。The support body 2 is formed into a cylindrical shape or a belt shape.

板状等、使用に応じてその形状が決定される。The shape, such as a plate shape, is determined depending on the use.

本応用例において高速連続画像形成部材とする場合には
無端ベルト又は円筒状が望ましい。
In the case of a high-speed continuous image forming member in this application example, an endless belt or a cylindrical shape is preferable.

支持体2の厚さは、所望通りの非晶質層3が形成される
様に決定・されるが、本応用例においてはその機能が充
分発揮される範囲であれば良い。特に製造上及び取扱い
上、機械的強度、耐久性の点から通常10μ−以上あれ
ば良い。
The thickness of the support 2 is determined so that the desired amorphous layer 3 is formed, but in this application example, it may be within a range that allows its function to be sufficiently exhibited. In particular, from the viewpoint of manufacturing and handling, mechanical strength, and durability, it is usually sufficient if the thickness is 10 μm or more.

いま1本発明の応用例を電子写真用像形成部材とした場
合、その目的を効果的に達成する様に支持体2上に形成
されるシ゛リコン原子を母材とする非晶質層3は、下記
の半導体特性を有する様に形成される。
When the present invention is applied to an electrophotographic image forming member, the amorphous layer 3 formed on the support 2 and having silicon atoms as a base material is formed on the support 2 to effectively achieve the purpose. It is formed to have the following semiconductor characteristics.

■p型シリコンを母材とする非晶質・・・アクセプター
のみを含むもの或いはドナーとアクセプターとの両方を
含みアクセプターの密度が高いシリコンを母材とする非
晶質。
■Amorphous material whose base material is p-type silicon: Amorphous material that contains only acceptors or amorphous material that contains both donors and acceptors and has a high density of acceptors as its base material.

■n型シリコンを母材とする非晶質・・・ドナーのみを
含むもの或いはアクセプターとドナーの両方を含むドナ
ーの密度が高いシリコンを母材とする非晶質。
■Amorphous with n-type silicon as the base material: Amorphous with silicon as the base material containing only donors or containing both acceptors and donors with a high donor density.

■l型シリコンを母材とする非晶質・・・ドナー或いは
アクセプターの密度がほぼ零かドナーとアクセプターの
密度が同じシリコンを母材とする非晶質。
■Amorphous whose base material is l-type silicon...Amorphous whose base material is silicon where the donor or acceptor density is almost zero or the donor and acceptor density is the same.

また、シリコンを母材とする非晶質層3が水素原子1重
水素原子又はハロゲン原子のいずれかを含んでおり、こ
の非晶質層3を例えばグロー放電法で形成する場合は、
シリコンの原料ガスあるいはキャリアガス、ドーピング
ガス等により電子写真用像形成部材の目的に応じて組合
せて行なう、前記ハロゲン原子としては、具体的にはフ
ッ素(F)、塩素((dり、臭素(Br)、ヨウ素(I
)が挙げられ、殊に好適なものとしてフッ素(F)、塩
素CCU)を挙げることが出来る。 非晶質層3を形成
するには、例えばグロー放電法、スパッタリング法、イ
オンブレーティング法等の放電現象を利用する減圧堆積
法によって行なうことができる。
Further, when the amorphous layer 3 whose base material is silicon contains either hydrogen atoms, deuterium atoms, or halogen atoms, and this amorphous layer 3 is formed by, for example, a glow discharge method,
Specifically, the halogen atoms are fluorine (F), chlorine ((d), bromine ( Br), iodine (I
), and particularly preferred are fluorine (F) and chlorine (CCU). The amorphous layer 3 can be formed by, for example, a vacuum deposition method that utilizes a discharge phenomenon such as a glow discharge method, a sputtering method, or an ion blating method.

例えばグロー放電法によって非晶質層3を形成するには
シリコンを生成し得るシリコン原料ガスと共に二酸化炭
素(CO2)又は二酸化炭素(Cod)と窒素(N、)
ガス、必要に応じて、水素原子1重水素原子又はハロゲ
ン原子導入用の原料ガス、さらに必要に応じて、半導体
特性を決定する■族あるいはV族の不純物を含むドーピ
ングガスを内部が減圧にし得る堆積室内に導入して、該
堆積室内にグロー放電を生じさせ。
For example, to form the amorphous layer 3 by the glow discharge method, carbon dioxide (CO2) or carbon dioxide (Cod) and nitrogen (N,
Gas, if necessary, raw material gas for introducing hydrogen atoms, deuterium atoms, or halogen atoms, and further, if necessary, doping gas containing group II or group V impurities that determine semiconductor characteristics can be reduced in pressure inside. is introduced into the deposition chamber to generate a glow discharge within the deposition chamber.

あらかじめ所定の位置に設置され所定の温度に保持され
た所定の支持体表面上に形成させれば良い。
What is necessary is to form it on the surface of a predetermined support body that is placed in advance at a predetermined position and maintained at a predetermined temperature.

スパッタリング法で形成する場合においては。In the case of forming by sputtering method.

例えばAr、Ha等の不活性ガス又はこれ等の不活性ガ
スをペースとした混合ガスの雰囲気中でシリコンで形成
されたターゲットをスパッタリングする際に、二酸化炭
素(COt)又は二酸化炭素(CO,)と窒素ガス(N
2)を導入し、さらに水素原子、重水素原子又はハロゲ
ン原子導入用の原料ガスをスパッタリング用の堆積室に
導入し、あらかじめ所定の位置に設置され所定の温度に
保持された所定の支持体表面上に形成させれば良い。
For example, when sputtering a target made of silicon in an atmosphere of an inert gas such as Ar or Ha or a mixed gas based on these inert gases, carbon dioxide (COt) or carbon dioxide (CO,) and nitrogen gas (N
2), and further introduce a raw material gas for introducing hydrogen atoms, deuterium atoms, or halogen atoms into a deposition chamber for sputtering, and deposit the material on a predetermined support surface that has been placed in a predetermined position and maintained at a predetermined temperature. It is better to form it on top.

シリコンを母材とする非晶質層3を形成する際に使用さ
れるシリコン原料ガスとしては、SiH4g 81. 
Ha e S1m Ha * S14 Ha等のガス状
態又はガス化し得る水素化シリコン(シラン類)が有効
に使用されるものとして挙げられ、殊に層作成の作業性
、取扱い易°い等の点でS iH4、S it Hsが
好ましいものとして挙げられる。
SiH4g 81. is used as a silicon raw material gas when forming the amorphous layer 3 whose base material is silicon.
Ha e S1m Ha * S14 Hydrogenated silicon (silanes) that can be gasified or gasified, such as Ha, can be effectively used, and S1 is particularly effective in terms of workability in layer creation, ease of handling, etc. Preferred examples include iH4 and S it Hs.

非晶質層3を形成する際に使用される他のシリコン原材
料として有効なのはシリコン原子と重水素原子とを構成
要素とするガス状態又はガス化し得る重水素を含むシリ
コン化合物も挙げることが出来る。例えば5iD4e 
Sit Da等が挙げられる。又、シリコン原子とハロ
ゲン原子とを構成要素とするガス状態5i2H,等が挙
げられる。又、シリコン原子とハロゲン原子とを構成要
素とするガス状態又はガス化し得るハロゲンを含むシリ
コン化合物も挙げることが′出来る0例えばSiF、、
Si、F、、5icQ、#S iB r a等が挙げら
れる。
Other effective silicon raw materials used in forming the amorphous layer 3 include silicon compounds containing silicon atoms and deuterium atoms that are in a gaseous state or can be gasified. For example 5iD4e
Examples include Sit Da and the like. Another example is gas state 5i2H, which has silicon atoms and halogen atoms as constituent elements. In addition, silicon compounds containing halogens that are in a gaseous state or can be gasified and have silicon atoms and halogen atoms as constituent elements may also be mentioned.For example, SiF,
Examples include Si, F, 5icQ, #S iB r a, and the like.

水素原子、重水素原子、又はハロゲン原子を必要と応じ
て非晶質層3に含有させる場合の材料としては水素(H
,) 、重水素(D2)又はハロゲン化合物例えばフッ
素、塩素、臭素、ヨウ素のハロゲンガス、BrF、C1
l F、CQF、。
Hydrogen (H
), deuterium (D2) or halogen compounds such as fluorine, chlorine, bromine, iodine, BrF, C1
l F, CQF,.

BrF、等のハロゲン間化合物を挙げることが出来る。Examples include interhalogen compounds such as BrF.

各ガスは所定の電子写真用像形成部材の目的に応じて単
独種のみでなく所定の混合比で複数種混合して用いても
良い。
Each gas may be used not only individually but also in a mixture of multiple types at a predetermined mixing ratio depending on the purpose of a predetermined electrophotographic image forming member.

イオンブレーティング法によって非晶質層3を形成する
際には、多結晶シリコン又は単結晶シリコンを蒸発源と
して蒸着用ボートに収容し、これを抵抗加熱或は電子ビ
ーム法等によって加熱しシリコンを蒸発させ、この蒸発
したシリコンを所定のガスプラズマ雰囲気中を通過させ
、あらかじめ所定の位置に設置されて所定の温度に保持
された所定の支持体表面上に形成させることが出来る。
When forming the amorphous layer 3 by the ion blating method, polycrystalline silicon or single crystal silicon is placed in an evaporation boat as an evaporation source, and the silicon is heated by resistance heating or an electron beam method. After evaporation, the evaporated silicon can be passed through a predetermined gas plasma atmosphere and formed on the surface of a predetermined support that has been placed in a predetermined position and maintained at a predetermined temperature.

前記ガスプラズマ雰囲気を形成させる際に二酸化炭素(
CO2)原料ガスを導入し、ガスプラズマ雰囲気を形成
することによって達成できる。
When forming the gas plasma atmosphere, carbon dioxide (
This can be achieved by introducing a source gas (CO2) and forming a gas plasma atmosphere.

第2図は上記製造例により形成された光導電部材の光導
電層のシラン(SiH,)に二酸化炭素(Co□)を混
入した割合と光学的バンドギャップとの関係を示したも
のである。二酸化炭素(CO2)の混入割合の増加に伴
って光学バンドギャプはほぼ直線的に増加している。
FIG. 2 shows the relationship between the optical bandgap and the ratio of carbon dioxide (Co□) mixed into silane (SiH) in the photoconductive layer of the photoconductive member formed according to the above manufacturing example. The optical bandgap increases almost linearly as the proportion of carbon dioxide (CO2) mixed increases.

第3図は上記製造例により形成された光導電部材の光導
電層のシラン(SiH4)に二酸化炭素(CO,)を混
入した割合と導電率との関係を示したものである。二酸
化炭素の混入割合の増加に伴って暗導電率は1o−t4
(Ωam)−’まで低下するがAMI  100W/c
I#の光入射時の光導電率は10−”(0cm)−’台
であり、光導電率と暗導電率の比が10s〜106の範
囲で非常に光感度が高いことを示している。
FIG. 3 shows the relationship between the electrical conductivity and the ratio of carbon dioxide (CO,) mixed into silane (SiH4) of the photoconductive layer of the photoconductive member formed according to the above manufacturing example. As the mixing ratio of carbon dioxide increases, the dark conductivity increases to 1o-t4
(Ωam)-', but AMI 100W/c
The photoconductivity of I# when light is incident is on the order of 10-'' (0 cm), indicating that it has very high photosensitivity with a ratio of photoconductivity to dark conductivity in the range of 10s to 106. .

これら第2図、第3図から推察されるように。As can be inferred from these Figures 2 and 3.

本発明の光導電部材は電気的特性、光学的特性。The photoconductive member of the present invention has electrical properties and optical properties.

光導電的特性のいずれも非常にすぐれたものとなってい
る。
All of the photoconductive properties are excellent.

ところで、本発明の光導電部材を電子写真用としてその
目的をより効果的に達成するためには、厚み方向にその
電気的、光学的、光導電的特性を変えても良く、その方
法としてはグロー放電法、スパッターリング法、イオン
ブレーティング法によって非晶質層3を形成する際に前
記二酸化炭素(CO,)又は二酸化炭素(Co□)と窒
素(N2)のミリコン原料ガス混入割合を非晶質層3の
成長にあわせて調製することにより達成できる。
By the way, in order to more effectively achieve the purpose of using the photoconductive member of the present invention for electrophotography, the electrical, optical, and photoconductive properties may be changed in the thickness direction. When forming the amorphous layer 3 by the glow discharge method, sputtering method, or ion blating method, the mixing ratio of the millicon raw material gases of carbon dioxide (CO,) or carbon dioxide (Co□) and nitrogen (N2) is controlled. This can be achieved by adjusting it in accordance with the growth of the crystalline layer 3.

第6図乃至第8図は電子写真用像形成部材として種々の
目的のために非晶質層3の膜厚方向に光学的バンドギャ
ップを変化させた応用例を示している。
6 to 8 show examples of application in which the optical bandgap of the amorphous layer 3 is varied in the thickness direction for various purposes as an electrophotographic image forming member.

図中、横軸は非晶質層3の層方向の任意の位置における
光学的バンドギャップAの分布を示し、矢印方向に光学
的バンドギャップが増加することを示している。縦軸は
非晶質層3の層厚大を示し、10は支持体2と非晶質層
3との界面位置を示し、t、は自由表面4側の非晶質層
3の表面界面位置を示し、1oからt、に向かって非晶
質層3の層厚tが厚くなることを示している。
In the figure, the horizontal axis indicates the distribution of the optical bandgap A at any position in the layer direction of the amorphous layer 3, indicating that the optical bandgap increases in the direction of the arrow. The vertical axis indicates the layer thickness of the amorphous layer 3, 10 indicates the interface position between the support 2 and the amorphous layer 3, and t indicates the surface interface position of the amorphous layer 3 on the free surface 4 side. This shows that the layer thickness t of the amorphous layer 3 increases from 1o to t.

第6図に示す例においては非晶質層3の光学的バンドギ
ャップAの層方向の分布状態は支持体2と非晶質層3と
の界面位置t0より表面界面位fistsで最大の光学
的バンドギャップAを有する様に構成されたものであり
、この様な構成による光導電部材は光感度として短波長
側の感度を必要とする際に用いられる帯電電位特性も一
層向上出来る。
In the example shown in FIG. 6, the distribution state of the optical band gap A of the amorphous layer 3 in the layer direction is from the interface position t0 between the support 2 and the amorphous layer 3 to the surface interface position fists. It is configured to have a band gap A, and a photoconductive member with such a configuration can further improve charging potential characteristics used when sensitivity on the short wavelength side is required as photosensitivity.

第7図に示す例においては非晶質層3の光学的バンドギ
ャップAの層方向の分布状態は表面界面位置t、より支
持体2と非晶質層3との界面位置t、で最大の光学的バ
ンドギャップAを有する様に構成されたものであり、こ
の様な構成による光導電部材は、支持体2側から非晶質
層3に流入するキャリアを有効に阻止することが出来帯
電電位も一層向上出来る。
In the example shown in FIG. 7, the distribution state of the optical band gap A of the amorphous layer 3 in the layer direction is maximum at the surface interface position t, and more specifically at the interface position t between the support 2 and the amorphous layer 3. It is configured to have an optical band gap A, and a photoconductive member with such a configuration can effectively prevent carriers from flowing into the amorphous layer 3 from the support 2 side, and reduce the charging potential. can be further improved.

第8図に示す例においては非晶質層3の中間領域より表
面界面位置t1と支持体2と非晶質層3との界面位置t
。で光学的バンドギャップが大きい様に構成されたもの
で、表面位置t。
In the example shown in FIG. 8, the surface interface position t1 from the intermediate region of the amorphous layer 3 and the interface position t between the support 2 and the amorphous layer 3
. It is constructed so that the optical bandgap is large at the surface position t.

及び支持体2と非晶質層3との界面位置tllの光学的
バンドギャップが等しくても文具なっていてもよく、そ
の使用目的によって任意に決定される。この様な構成に
よる光導電部材は表面界面位置t1の光学的バンドギャ
ップを大きくする事で短波長側の光感度を制御し、かつ
、支持体2と非晶質層3との界面位置t、の光学的バン
ドギャップを大きくすることで支持体2側から非晶質層
3に流入するキャリアを有効に阻止することが出来帯電
電位の一層の向上が出来る。これら第6図、第7図およ
び第8図では光学的バンドギャップの層厚方向の分布に
ついて説明したが、光学的バンドギャップは非晶質層3
の全体において1.9〜2.5eVの範囲であり、非晶
質層3の全体において10−1″〜10−1!i(Ωa
m)””の範囲の暗導電率をもち、AMlloomW 
/ dの光入射時においては10−6〜10−’(Ωc
+a)−’の範囲の光導電率をもちかつ前記光導電率と
前記暗導電率の比が104〜104の範囲の光導電特性
を有しているものである。
Even if the optical band gap of the interface position tll between the support body 2 and the amorphous layer 3 is the same, it may be a stationery, and it is arbitrarily determined depending on the purpose of use. The photoconductive member having such a configuration controls the photosensitivity on the short wavelength side by increasing the optical band gap at the surface interface position t1, and also controls the photosensitivity on the short wavelength side by increasing the optical band gap at the surface interface position t1, and also at the interface position t between the support 2 and the amorphous layer 3. By increasing the optical bandgap of the amorphous layer 3, it is possible to effectively prevent carriers from flowing into the amorphous layer 3 from the support 2 side, thereby further improving the charging potential. In these FIGS. 6, 7, and 8, the distribution of the optical band gap in the layer thickness direction has been explained.
is in the range of 1.9 to 2.5 eV in the entire amorphous layer 3, and is in the range of 10-1'' to 10-1!i(Ωa
m) has a dark conductivity in the range of
10-6 to 10-' (Ωc
It has a photoconductivity in the range of +a)-' and a photoconductivity in which the ratio of the photoconductivity to the dark conductivity is in the range of 104 to 104.

光導電部材の非晶質層3に含有される酸素原子の量は、
光学的バンドギャップが1.9〜2.5QVの範囲にな
る様に選択されるが好適には0.5〜70at、omi
c%、最適には1.0−70−70ajo%の範囲から
選択されるのが望ましbl。
The amount of oxygen atoms contained in the amorphous layer 3 of the photoconductive member is
The optical band gap is selected to be in the range of 1.9 to 2.5 QV, preferably 0.5 to 70 at, omi
c%, preferably selected from the range of 1.0-70-70ajo%.

本発明の光導電部材の製造に際して二酸化炭素(CO,
> と窒素(N、)とが用いられた場合に形成される非
晶質層3に含有される酸素原子の量は前記範囲から選択
されるのが望ましく。
Carbon dioxide (CO,
It is desirable that the amount of oxygen atoms contained in the amorphous layer 3 formed when nitrogen (N) and nitrogen (N, ) are used is selected from the above range.

また、同時に窒素原子も非晶質J13に含有されるが前
記特定された電気的、光学的及び光導電的特性の範囲の
値を逸脱しないような範囲に限定される。
At the same time, nitrogen atoms are also contained in the amorphous J13, but are limited to values that do not deviate from the above-specified ranges of electrical, optical, and photoconductive properties.

光導電部材の非晶質層3に必要により含有される水素原
子1重水素原子又はハロゲン原子の量は通常1〜40a
10mic%、好適には4〜30a10−mic%とす
るのが好ましい。非晶質層3に含有される水素原子、重
水素原子又はハロゲン原子の量を決定するには、例えば
支持体の保持温度、減圧堆積室へ導入する各原料ガスの
割合、放電電力等を制御してやれば良い。
The amount of hydrogen atoms, deuterium atoms, or halogen atoms contained as necessary in the amorphous layer 3 of the photoconductive member is usually 1 to 40a.
It is preferable to set it as 10 mic%, suitably 4-30a10-mic%. To determine the amount of hydrogen atoms, deuterium atoms, or halogen atoms contained in the amorphous layer 3, for example, the holding temperature of the support, the proportion of each raw material gas introduced into the vacuum deposition chamber, the discharge power, etc. are controlled. Just do it.

光導電部材の非晶質層3の半導体特性を制御するには、
グロー放電法やスパッタリング法等によって非晶質層3
を形成する際に各原料ガスに加えてn型不純物又はp型
不純物或いは両年M物をガス状態で加えてその量を制御
することによって行なわれる。非晶質層i型又はp型傾
向にするには周期律表■族Aの元素例えばB。
To control the semiconductor properties of the amorphous layer 3 of the photoconductive member,
Amorphous layer 3 is formed by glow discharge method, sputtering method, etc.
This is done by adding an n-type impurity, a p-type impurity, or an M-type impurity in a gaseous state to each raw material gas when forming the impurity, and controlling the amount thereof. To make the amorphous layer have an i-type or p-type tendency, use an element of group A of the periodic table, such as B.

AQ、Ga、I n、Tl1等が好適なものとして挙げ
られる。n型傾向にするには周期律表V族Aの元素例え
ばP、Ass sb、B i等が好適なものとして挙げ
られる。このような元素を非晶質層3に含有させるには
グロー放電法等によって非晶質層3を形成する際に各元
素の水素化合物又はハロゲン化合物、例えばB2H,。
Preferred examples include AQ, Ga, In, Tl1, and the like. For the n-type tendency, elements of group V A of the periodic table, such as P, Ass sb, B i, etc., are suitable. In order to contain such elements in the amorphous layer 3, hydrogen compounds or halogen compounds of each element, such as B2H, are used when forming the amorphous layer 3 by a glow discharge method or the like.

P Ha e At Ha −Bx Fe 、P F2
等のガスを減圧堆積室に導入することによって出来る。
P Ha e At Ha −Bx Fe , P F2
This can be done by introducing a gas such as into a vacuum deposition chamber.

非晶質層3の半導体特性の所望の伝導型を有するために
非晶質層3に導入される元素の量としては、同期体表第
■族Aの元素の場合は3×10−” a10+sic%
以下の量の範囲内でドーピングしてやれば良く、同期律
表第■族Aの元素の場合は“5 XIO−’ a10n
+ic%以下の量の範i内でドーピングしてやれば良い
The amount of the element introduced into the amorphous layer 3 in order to have the desired conductivity type of the semiconductor properties of the amorphous layer 3 is 3×10−” a10+sic in the case of an element of group Ⅰ A in the synchronizer table. %
It is sufficient to dope within the following amount range, and in the case of elements in group A of the synchronous table, "5 XIO-' a10n
Doping may be done within the range of +ic% or less.

本発明における光導電部材の非晶質層3の膜厚は非晶質
層中で生成されるキャリアが効率よく所定の方向に輸送
される様に所望に従って適宜法められる。電子写真用像
形成部材として応用する場合には通常3〜100μm好
適には5〜60μmとする。光センサー等に応用する場
合には通常0.3〜3μm好適には0.5〜1.5μm
とされる6次に実施例を示す。
The thickness of the amorphous layer 3 of the photoconductive member in the present invention is determined as desired so that carriers generated in the amorphous layer are efficiently transported in a predetermined direction. When applied as an electrophotographic image forming member, the thickness is usually 3 to 100 μm, preferably 5 to 60 μm. When applied to optical sensors etc., it is usually 0.3 to 3 μm, preferably 0.5 to 1.5 μm.
Next, an example will be shown.

実施例1 第9図に示す装置を用い以下の如き操作手順によって光
導電部材を作製した。
Example 1 A photoconductive member was produced using the apparatus shown in FIG. 9 according to the following operating procedure.

表面を清浄にした1mm厚の3c+5X5c■角のガラ
ス板にITOを蒸着した基体6、表面を清浄にしたII
III+厚の3cm+×5cm+角のガラス板にCrを
蒸着した基板7、及び表面を研磨し清浄にした3■−厚
の3cmX5cm角のAQ板基板8をグロー放電減圧堆
積室(以下「チャンバー」と称す)5内の所定位置にあ
る基体固定部材9に堅固に固定した。
Substrate 6 with ITO vapor-deposited on a 1mm thick 3c+5x5c square glass plate with a cleaned surface, II with a cleaned surface
A substrate 7 with Cr deposited on a glass plate of III+ thickness of 3 cm + × 5 cm + square, and an AQ plate substrate 8 of 3 × thickness of 3 cm × 5 cm square whose surface has been polished and cleaned were placed in a glow discharge reduced pressure deposition chamber (hereinafter referred to as "chamber"). It was firmly fixed to the base body fixing member 9 at a predetermined position in the body 5.

基板6,7および8は基板固定部材9内の加熱ヒーター
10によって±0.5℃以下の精度で所定の温度に保持
される。温度は熱電対(図示せず)によって検値され温
度制御なされる・基体固定部材9はモーター11によっ
て回転がなされる。
The substrates 6, 7, and 8 are maintained at a predetermined temperature by a heater 10 within the substrate fixing member 9 with an accuracy of ±0.5° C. or less. The temperature is measured and controlled by a thermocouple (not shown). The base fixing member 9 is rotated by a motor 11.

次いで、系内の全バルブが閉じられてから真空排気バル
ブ12を開は真空ポンプ(図示せず)によってチャンバ
ー5内を真空に排気した後ガスラインの導入バルブ52
、流出バルブ13.14.16、流入バルブ25.26
.28を開はガスライン及びマスフローコントローラー
19.20.22内に充分排気しチャンバー5内の真空
度を5 X 10−” Torr以下にした。その後、
ヒーター電源制御袋!!54のスイッチをONにし加熱
ヒーター10に電流を流し、基体固定部材9及びその表
面に固定された基体6,7および8を加熱し、250℃
の一定の温度で制御した。
Next, after all the valves in the system are closed, the vacuum exhaust valve 12 is opened, and after the chamber 5 is evacuated by a vacuum pump (not shown), the gas line introduction valve 52 is opened.
, outflow valve 13.14.16, inflow valve 25.26
.. 28 was opened, the gas line and mass flow controller 19, 20, and 22 were sufficiently evacuated to reduce the degree of vacuum in the chamber 5 to 5 X 10-" Torr or less. After that,
Heater power control bag! ! Turn on the switch 54 and apply current to the heating heater 10 to heat the substrate fixing member 9 and the substrates 6, 7, and 8 fixed to the surface thereof to 250°C.
The temperature was controlled at a constant temperature.

その後、ガスラインの導入バルブ52.流出バルブ13
.14.、16.流入バルブ25.26.28を閉じた
後、H2ガスボンベ31.S i H,ガスボンベ34
、および二酸化炭素(以下Co2と称す)ボンベ4oの
各バルブ32.35および41を開け、出口圧力ゲージ
33.36および42の圧力を1kg/fiK調整した
のち導入バルブ52.流出バルブ13.14゜16を開
け1次に流入バルブ25.26.28を徐々番こ開はマ
スプローコントローラー19.20.22にガスを流入
させた。この時マスプローコントローラーによりH,ガ
ス、S i HaガスおよびCO2ガスノ流量比がSi
H4ガス2を1/10トしCo、/S i H4を5/
1に調整した。
Then, the gas line inlet valve 52. Outflow valve 13
.. 14. , 16. After closing the inlet valves 25, 26, 28, the H2 gas cylinder 31. S i H, gas cylinder 34
, and carbon dioxide (hereinafter referred to as Co2) cylinder 4o, and after adjusting the pressure of the outlet pressure gauges 33, 36 and 42 by 1 kg/fiK, open the inlet valve 52. The outflow valves 13, 14 and 16 were opened, and the inlet valves 25, 26 and 28 were gradually opened to allow gas to flow into the mass blow controllers 19, 20 and 22. At this time, the mass flow controller controls the flow rate ratio of H, gas, Si Ha gas, and CO2 gas to Si
Add H4 gas 2 to 1/10 and add Co, /S i H4 to 5/
Adjusted to 1.

次に、キャパシタンスマノメーター49の圧力指示を注
視しながら真空排気バルブエ2の開口面積を調整し排気
量を制御しながらチャンバー5内の圧力がL 、 0T
orrになる様に調整する。チャンバー5内の圧力が安
定した後、高周波電源50のスイッチをON状態にし高
周波電極51に13.56MH,の高周波電力を供給し
、高周波電極51と基板固定部材9との間にグロー放電
を発生させる。入力電力密度は23mW/cIIとした
Next, while watching the pressure indication of the capacitance manometer 49 and adjusting the opening area of the vacuum exhaust valve 2 to control the exhaust volume, the pressure inside the chamber 5 is adjusted to L, 0T.
Adjust so that it becomes orr. After the pressure in the chamber 5 has stabilized, the switch of the high-frequency power source 50 is turned on and high-frequency power of 13.56 MH is supplied to the high-frequency electrode 51 to generate a glow discharge between the high-frequency electrode 51 and the substrate fixing member 9. let The input power density was 23 mW/cII.

上記条件(基体温度250℃、チャンバー内圧力1 、
0Torr 、入力電力密度2.3mW/cd)を1.
5時間保って光導電層を形成した。その後高周波電源5
0のスイッチをOFF状態にしてグロー放電を中止させ
た後、流出バルブ14.16および流入バルブ26.2
8を閉じSiH4ガス、CO,ガスの供給を止めた。次
に真空排気バルブ12を調整してチャンバー5内をH,
ガスのみで満たした後。
The above conditions (substrate temperature 250°C, chamber pressure 1,
0 Torr, input power density 2.3 mW/cd) 1.
A photoconductive layer was formed by holding for 5 hours. Then high frequency power supply 5
After stopping the glow discharge by turning the switch 0 to the OFF state, the outflow valve 14.16 and the inflow valve 26.2
8 was closed to stop the supply of SiH4 gas, CO, and gas. Next, adjust the vacuum exhaust valve 12 to make the inside of the chamber 5 H,
After filling with gas only.

ヒーター電源制御装置54のスイッチをOFFにして基
板固定部材9および基体6,7.8の温度が100℃以
下になるまでチャンバー5内の圧力をl 、 0Tor
rに保持した。その後、流出バルブ13および流入バル
ブ25を閉じ1次に導入バルブ52を閉じ真空排気バル
ブ12を全開してチャンバー5内を排気し5−XIO−
%Torrにした。次にリークバルブ53によってチャ
ンバー5内にN2ガスを導入し大気圧とし基板6,7.
8を取り出した。この時、形成された光導電層の膜厚は
約1.7μ■であった。
Turn off the switch of the heater power supply control device 54 and reduce the pressure in the chamber 5 to 0 Torr until the temperature of the substrate fixing member 9 and the bases 6, 7.8 becomes 100° C. or less.
It was held at r. Thereafter, the outflow valve 13 and inflow valve 25 are closed, firstly the inlet valve 52 is closed, and the vacuum exhaust valve 12 is fully opened to exhaust the inside of the chamber 5.
%Torr. Next, N2 gas is introduced into the chamber 5 using the leak valve 53 to bring the pressure to atmospheric pressure for the substrates 6, 7.
I took out 8. At this time, the thickness of the photoconductive layer formed was approximately 1.7 μm.

以上の製造方法゛によって得られた光導電部材を次の方
法によって電気的、光学的、光導電的特性を計測した。
The electrical, optical, and photoconductive properties of the photoconductive member obtained by the above manufacturing method were measured by the following method.

基板6,7の光導電層の上面にAn電極を形成し、暗導
電率およびA M 1100mW/ ad (71光入
射時の光導電率を計測した。その結果、基体6.7を用
いた光導電部材はともに暗導電率が3X10−”(Ωa
m)−1、基板6を用いた光導電部材にガラス基体側か
ら光を入射した時の光導電率はlXl0−”(Ωcm+
)−1が得られ、光導電率と暗導電率との比は3.3 
XIO’で非常に良好な光導電層が得られた。また光学
バンドギャップは2.2aVであった。
An electrode was formed on the upper surface of the photoconductive layer of the substrates 6 and 7, and the dark conductivity and the photoconductivity when light was incident on A M 1100 mW/ad (71) were measured. Both conductive members have a dark conductivity of 3X10-" (Ωa
m)-1, the photoconductivity when light is incident on the photoconductive member using the substrate 6 from the glass substrate side is lXl0-"(Ωcm+
)-1 is obtained, and the ratio of photoconductivity to dark conductivity is 3.3.
A very good photoconductive layer was obtained with XIO'. Further, the optical band gap was 2.2 aV.

基板8を用いた光導電部材をペーパーアラナイザーによ
って帯電特性、暗減衰、光感度を測定したところ電子写
真用像形成部材として応用できる充分な特性が得られた
When the charging characteristics, dark decay, and photosensitivity of the photoconductive member using the substrate 8 were measured using a paper analyzer, sufficient characteristics were obtained that could be used as an electrophotographic image forming member.

実施例2 実施例1と同様に、ガラス板にITOを蒸着した基板6
.ガラス板にCrを蒸着した基板7およびAQ基板8を
チャンバー5内の基板固定部材9に堅固に固定した。次
に全バルブを閉じた後、真空排気バルブ12を開は真空
ポンプ(図示せず)でチャンバー5内を排気した。続い
て導入バルブ52、流出バルブ14.16.1g、流入
バルブ26.28.30を開はガスラインを排気した。
Example 2 Similar to Example 1, a substrate 6 in which ITO was deposited on a glass plate
.. A substrate 7 and an AQ substrate 8 in which Cr was vapor-deposited on a glass plate were firmly fixed to a substrate fixing member 9 in the chamber 5. Next, after closing all the valves, the evacuation valve 12 was opened to evacuate the inside of the chamber 5 using a vacuum pump (not shown). Subsequently, the inlet valve 52, the outlet valve 14.16.1g, and the inlet valve 26.28.30 were opened to exhaust the gas line.

次に基板加熱制御電源54のスイッチをONにし加熱ヒ
ーター10に電流を流し基板固定部材9および基体6,
7.8の温度を250℃に保持した。
Next, the switch of the substrate heating control power source 54 is turned ON to supply current to the heating heater 10, the substrate fixing member 9, the base 6,
7.8 temperature was maintained at 250°C.

温度は熱電対(図示せず)で検値した。次にモーター1
1を回転させ基板固定部材9を回転させた。
The temperature was measured with a thermocouple (not shown). Next motor 1
1 was rotated to rotate the substrate fixing member 9.

チャンバー5内は5×10−“Torrまで排気した。The inside of chamber 5 was evacuated to 5 x 10-'' Torr.

その後、ガラスラインの全バルブ(導入バルブ52、流
出バルブ14.16.18.流入バルブ26゜28、3
0)を閉じ、SiH4ガスボンベ34、CO、ガスボン
ベ40.アルゴンガス(以下A「ガスと称す)ボンベ4
6のバルブ35.41.47を開け、出口圧力ゲージ3
6.42.48の圧力を1kg/c+#になる様に調整
した0次に導入バルブ52および流出バルブ14.16
.18を開けた後、流入バルブ26゜28、30ヲ徐々
に開け、マスフローコントローラー20.22.24内
にガスを流入した。この時マスフローコントローラーに
よりSiH,ガス、co、ガス、Arガスの流量を調整
し、Sin、。
After that, all the valves in the glass line (inlet valve 52, outlet valve 14, 16, 18, inlet valve 26° 28, 3
0), and SiH4 gas cylinder 34, CO, gas cylinder 40. Argon gas (hereinafter referred to as A “gas”) cylinder 4
Open valve 35, 41, 47 of 6, outlet pressure gauge 3
6.42.48 The zero order inlet valve 52 and outlet valve 14.16 adjusted to have a pressure of 1 kg/c+#
.. After opening 18, the inlet valves 26, 28, and 30 were gradually opened to allow gas to flow into the mass flow controllers 20, 22, and 24. At this time, the flow rates of SiH, gas, CO, gas, and Ar gas were adjusted using a mass flow controller.

/Arの比が1/ 4. COw / S i H4の
比が15/8になる様にした。
/Ar ratio is 1/4. The ratio of COw/S i H4 was set to 15/8.

次に、キャパシタンスマノメーター49の圧力指示を注
視しながら真空排気バルブ12の開口面積を変えてチャ
ンバー5内の圧力が1.0Torrになる様に調整した
。チャンバー5内の圧力が1 、0Torrで安定にな
った後、高周波電源50のスイッチをON状態にして高
周波電極51に13.56MH2の高周波電力を供給し
高周波電極51と基板固定部材9との間にグロー放電を
発生させた。
Next, while observing the pressure indication of the capacitance manometer 49, the opening area of the evacuation valve 12 was changed to adjust the pressure inside the chamber 5 to 1.0 Torr. After the pressure inside the chamber 5 becomes stable at 1.0 Torr, the switch of the high-frequency power supply 50 is turned on to supply high-frequency power of 13.56 MH2 to the high-frequency electrode 51, and between the high-frequency electrode 51 and the substrate fixing member 9. generated a glow discharge.

入力電力密度は47mW/a#とした。The input power density was 47 mW/a#.

上記条件(基板温度250℃、チャンバー内圧力り、O
T’orr、入力電力密度47mW/al)を30分保
って光導電層を形成した。その後、高周波電源50のス
イッチをOFF状態にしてグロー放電を中止させた後、
流出バルブ14.16.18、流出バルブ26、28.
30を閉じ、SiH,ガス、CO,ガス、Arガスの供
給を止めた。次にH2ボンベ31のバルブ32を開け、
出口圧力ゲージ33がIkg/aJになる様に調整した
。続いて流出バルブ13および流入バルブ25を開はチ
ャンバー5内にH2ガスを導入した0次に真空排気バル
ブ12を調整してチャンバー5内をH2ガスで満たした
後、ヒーター電源制御装置31のスイッチをOFFにし
て基板固定部材9および基板6,7.8の温度が100
℃以下になるまでチャンバー5内の圧力を1 、0To
rrに保持した。
The above conditions (substrate temperature 250℃, chamber pressure, O
A photoconductive layer was formed by maintaining T'orr (input power density 47 mW/al) for 30 minutes. After that, after turning off the switch of the high frequency power supply 50 and stopping the glow discharge,
Outflow valves 14.16.18, Outflow valves 26, 28.
30 was closed, and the supply of SiH, gas, CO, gas, and Ar gas was stopped. Next, open the valve 32 of the H2 cylinder 31,
The outlet pressure gauge 33 was adjusted to be Ikg/aJ. Next, the outflow valve 13 and the inflow valve 25 are opened to introduce H2 gas into the chamber 5. After adjusting the evacuation valve 12 and filling the chamber 5 with H2 gas, the switch of the heater power supply control device 31 is opened. OFF and the temperature of the board fixing member 9 and the boards 6, 7.8 is 100℃.
The pressure inside the chamber 5 is kept at 1.0To until the temperature drops below ℃.
It was held at rr.

その後、流出バルブ13.流入バルブ25および導入バ
ルブ52を閉じ、真空排気バルブ12を全開にしてチャ
ンバー5内を5 XIO−’ Torrまで排気した。
Then the outflow valve 13. The inflow valve 25 and the introduction valve 52 were closed, and the evacuation valve 12 was fully opened to exhaust the inside of the chamber 5 to 5 XIO-' Torr.

次にリークバルブ53によってチャンバー5内にNtガ
スを導入し大気圧として基板6゜7.8を取り出した。
Next, Nt gas was introduced into the chamber 5 using the leak valve 53 to bring the pressure to atmospheric pressure, and the substrate 6°7.8 was taken out.

この時、形成された光導電層の膜厚は約1.8μmであ
った。
At this time, the thickness of the photoconductive layer formed was about 1.8 μm.

以上の製造方法によって得られた光導電部材を次の方法
によって電気的、光学的、光導電的特性を計測した。
The electrical, optical, and photoconductive properties of the photoconductive member obtained by the above manufacturing method were measured by the following method.

基板6,7の光導電層の上面にAQ電極を形成して暗導
電率およびA M 1100mW / alの光入射時
の光導電率を計測した。その結果基板6゜7を用いた光
導電部材はともに暗導電率が1×10−”(0cm)−
”であり、基板6を用いた光導電部材にガラス板側より
光入射した時の光導電率は7.6X10−’ (Ωam
)−1が得られ、光導電率と暗導電率の比は7.6 X
 104の非常に良好な光導電層が得られた。光学的バ
ンドギャップは2 、 OeVであった。
AQ electrodes were formed on the upper surfaces of the photoconductive layers of the substrates 6 and 7, and the dark conductivity and the photoconductivity upon incidence of light of A M 1100 mW/al were measured. As a result, the dark conductivity of both photoconductive members using a substrate of 6°7 was 1×10-” (0 cm)-
", and the photoconductivity when light is incident on the photoconductive member using the substrate 6 from the glass plate side is 7.6X10-' (Ωam
)-1 is obtained, and the ratio of photoconductivity to dark conductivity is 7.6
A very good photoconductive layer of 104 was obtained. The optical bandgap was 2.0 OeV.

基板8を用いた光導電部材をペーパーアキライザーによ
って帯電特性、暗減衰、光感度を測定したところ、電子
写真用像形成部材として応用できる充分に良好な特性が
得られた。
When the charging characteristics, dark decay, and photosensitivity of the photoconductive member using the substrate 8 were measured using a paper achierizer, sufficiently good characteristics were obtained to be applicable as an electrophotographic image forming member.

実施例3 実施例1と同様にガラス板にITOを蒸着した基板6.
ガラス板にCrを蒸着した基板7およびAfl基板8を
チャンバー5内の基板固定部材9に堅固に固定した、次
に全バルブを閉じた後真空排気バルブ12を開は真空ポ
ンプ(図示せず)で排気した。続いて導入バルブ52、
流出バルブ14.16.17.1B、流入バルブ26.
28.29゜30を開はガスラインを排気した。次に基
板加熱制御電源54のスイッチをONにして加熱ヒータ
ー10に電流を流し基板固定部材9および基板6゜7.
8を加熱し、250℃に保持した。温度は熱電対(図示
せず)で検値した。次にモータ11を回転させ、基板固
定部材9を回転した。チャンバー5内は5 X 10−
’ Torrまで排気した。
Example 3 A substrate 6 in which ITO was deposited on a glass plate in the same manner as in Example 1.
The substrate 7 with Cr deposited on a glass plate and the Afl substrate 8 are firmly fixed to the substrate fixing member 9 in the chamber 5. Next, after closing all the valves, the vacuum exhaust valve 12 is opened using a vacuum pump (not shown). It was exhausted. Subsequently, the introduction valve 52,
Outflow valve 14.16.17.1B, inflow valve 26.
28.29°30 was opened to exhaust the gas line. Next, the switch of the substrate heating control power supply 54 is turned on to apply current to the heating heater 10 and the substrate fixing member 9 and the substrate 6.7.
8 was heated and maintained at 250°C. The temperature was measured with a thermocouple (not shown). Next, the motor 11 was rotated, and the substrate fixing member 9 was rotated. Inside chamber 5 is 5 x 10-
' Exhausted to Torr.

その後ガスラインの全バルブ(導入バルブ52、流出バ
ルブ14.16.17.18、流入バルブ26.28゜
29、30)を閉じた。次にStH,ボンベ34、Co
2ガスボンベ40.N2ガスボンベ43.Arガスボン
ベ46のバルブ35.41.44.47を開は出口圧力
ゲージ36.42.45.4Bの圧力を1kg/dにな
る様に調整した。
After that, all valves of the gas line (inlet valve 52, outlet valve 14, 16, 17, 18, inlet valve 26, 28° 29, 30) were closed. Next, StH, cylinder 34, Co
2 gas cylinders 40. N2 gas cylinder 43. The valve 35.41.44.47 of the Ar gas cylinder 46 was opened to adjust the pressure of the outlet pressure gauge 36.42.45.4B to 1 kg/d.

次に導入バルブ52.流出バルブ14.16.17゜1
8を開けた後、流入バルブ26.2B、 29.30を
徐々に開はマスプローコントローラー20.22.23
゜24にガスを流入した。この時マスプローコントロー
ラ一番こよりSiH4ガス、CO,ガス。
Next, the introduction valve 52. Outflow valve 14.16.17゜1
After opening 8, gradually open inlet valve 26.2B, 29.30, mass plow controller 20.22.23
Gas was introduced at 24°C. At this time, SiH4 gas, CO, and gas are supplied from the first mass blower controller.

N2ガスおよびArガスの流量を調整し。Adjust the flow rates of N2 gas and Ar gas.

S t H4/ A rの比が1/4. CO* / 
S i H4ノ比が1/1. Go、 /N、 (71
比が2/1&::なる様にした。
The ratio of S t H4/A r is 1/4. CO* /
S i H4 ratio is 1/1. Go, /N, (71
The ratio was set to 2/1&::.

次に、キャパシタンスマノメーター49の圧力指示を注
視しながら真空排気バルブ12の開口面積を変えてチャ
ンバー5内の圧力が1.0Torrになる様に調整した
。チャンバー5内の圧力が1.0Torrに安定した後
、高周波電源50のスイッチをON状態にして高周波電
極51に13.56 MH,の高周波電力を供給し、高
周波電極51と基板固定部材9との間にグロー放電を発
生させた。この時の入力電力密度は47+++W/aJ
とした。
Next, while observing the pressure indication of the capacitance manometer 49, the opening area of the evacuation valve 12 was changed to adjust the pressure inside the chamber 5 to 1.0 Torr. After the pressure inside the chamber 5 stabilizes at 1.0 Torr, the switch of the high frequency power source 50 is turned on to supply high frequency power of 13.56 MH to the high frequency electrode 51, and the high frequency electrode 51 and the substrate fixing member 9 are connected to each other. A glow discharge was generated in between. The input power density at this time is 47+++W/aJ
And so.

上記条件(基板温度25Q’C、チャンバー内圧力1.
0Torr、入力電力密度47mW/aJ)を30分保
って光導電層を形成した。その後高周波電流50のスイ
ッチをOFF状態にしてグロー放電を中止させた後流出
バルブ14.16.17.18、流入バルブ26.28
,29.30を閉じ、S i Haガス、CO,ガス、
N2ガス、Arガスの供給を止めた。次にHオガスボン
ベ31のバルブ32を開は出口圧力ゲージ33が1kg
/atになる様に調整した。続いて流出バルブ13およ
び流入バルブ25を開け、チャンバー5内にN2ガスを
導入した。
The above conditions (substrate temperature 25Q'C, chamber pressure 1.
A photoconductive layer was formed by maintaining a temperature of 0 Torr and an input power density of 47 mW/aJ for 30 minutes. After that, after turning off the switch of the high frequency current 50 and stopping the glow discharge, the outflow valve 14.16.17.18 and the inflow valve 26.28
, 29. Close 30, S i Ha gas, CO, gas,
The supply of N2 gas and Ar gas was stopped. Next, when the valve 32 of the H gas cylinder 31 is opened, the outlet pressure gauge 33 is 1 kg.
I adjusted it so that it becomes /at. Subsequently, the outflow valve 13 and the inflow valve 25 were opened, and N2 gas was introduced into the chamber 5.

次に、真空排気バルブ12を調整してチャンバー5内を
N2ガスで満たした後、ヒーター電源制御装置51のス
イッチをOFFにして基板固定部材9および基板6,7
,8の温度が100℃以下になるまでチャンバー5内の
圧力を1 、0Torrに保持した。その後流出バルブ
13.流入バルブ25および導入バルブ52を閉じ真空
排気バルブ12を全開にして、チャンバー5内を5 X
 10−”rorrまで排気した。次にリークバルブ5
3によってチャンバー5内にNオガスを導入し大気圧と
して基板6,7.8を取り出した。この時形成された光
導電層の膜厚は約1.5μmであった。
Next, after adjusting the vacuum exhaust valve 12 and filling the inside of the chamber 5 with N2 gas, the switch of the heater power supply control device 51 is turned off, and the substrate fixing member 9 and the substrates 6, 7 are turned off.
, 8 was maintained at 1.0 Torr until the temperature of the chamber 5 became 100° C. or lower. Then the outflow valve 13. Close the inflow valve 25 and introduction valve 52, fully open the vacuum exhaust valve 12, and vacuum the inside of the chamber 5 by 5X.
Exhausted to 10-”rorr. Next, leak valve 5
3, nitrogen gas was introduced into the chamber 5 to bring it to atmospheric pressure, and the substrates 6, 7.8 were taken out. The thickness of the photoconductive layer formed at this time was about 1.5 μm.

以上の製造方法において得られた光導電部材を次の方法
によって電気的、光学的及び光導電特性を計測した。
The electrical, optical and photoconductive properties of the photoconductive member obtained by the above manufacturing method were measured by the following method.

基板6,7を用いた光導電部材の光導電層の上面にAQ
電極を形成して暗導電率およびAMl  100mW/
aJの光入射時の光導電率を計測した。
AQ on the top surface of the photoconductive layer of the photoconductive member using the substrates 6 and 7.
Form electrodes to increase dark conductivity and AML 100mW/
The photoconductivity at the time of light incidence of aJ was measured.

その結果基板6,7を用いた光導電部材はともに暗導電
率は5X10−14(Ωcm) −’ 、基板6を用い
た光導電部材にガラス板側より光入射した時の光導電率
は5×1O−9(Ωcm) −1が得られ。
As a result, the dark conductivity of both the photoconductive members using substrates 6 and 7 was 5X10-14 (Ωcm) −', and the photoconductivity when light was incident on the photoconductive member using substrate 6 from the glass plate side was 5 ×1O-9(Ωcm)-1 was obtained.

光導電率と暗導電率の比はlXl0’の非常に良好な光
導電層が得られ、光学バンドギャップは2.09eVで
あった。
A very good photoconductive layer was obtained with a ratio of photoconductivity to dark conductivity of 1X10', and an optical bandgap of 2.09 eV.

基板8を用いた光導電部材についてペーパーアナライザ
ーで帯電特性、暗減衰、光感度を測定したところ電子写
真用像形成部材として応用できる充分に良好な特性が得
られた。
When the charging characteristics, dark decay, and photosensitivity of the photoconductive member using Substrate 8 were measured using a paper analyzer, sufficiently good characteristics were obtained to be applicable as an electrophotographic image forming member.

実施例4 実施例3と同様にAQ基板6,7.8を基板固定部材9
に堅固に固定した。又同位置にSLウェハーも固定した
。次の操作は実施例3と同様にして光導電源を形成した
Example 4 Similar to Example 3, the AQ boards 6, 7.8 are fixed to the board fixing member 9.
was firmly fixed. The SL wafer was also fixed at the same position. The next operation was the same as in Example 3 to form a photoconductive source.

得られた光導電部材をペーパーアナライザーによって帯
電特性、暗減衰、光感度を測定したところ、電子写真用
像形成部材として応用できる十分に良好な特性が得られ
ると同時に、N2ガスを用いた実施例3および4におい
て、光導電層の特性のバラツキが非常に改良されること
が判明した。
When the charging characteristics, dark attenuation, and photosensitivity of the obtained photoconductive member were measured using a paper analyzer, it was found that the properties were sufficiently good to be applicable as an electrophotographic image forming member, and at the same time, it was found that an example using N2 gas was obtained. In Examples 3 and 4, it was found that the variation in the properties of the photoconductive layer was significantly improved.

また、Siウェハー上に形成された光導電層を赤外吸収
スペクトルにより膜中の酸素を計測したところ、N2ガ
スを用いない時より酸素原子の含有が増加していること
が判明した。窒素原子は膜中に含有しているが、N、ガ
スの流量を増加して、膜中に含有される窒素原子の量が
増加しても光学的、電気的、光導電的特性にほとんど影
響していないことが判明した。又、炭素の含有も赤外吸
収スペクトルでは認めることが出来なかった。
Furthermore, when the photoconductive layer formed on the Si wafer was measured for oxygen in the film using infrared absorption spectroscopy, it was found that the content of oxygen atoms was increased compared to when N2 gas was not used. Nitrogen atoms are contained in the film, but even if the amount of nitrogen atoms contained in the film is increased by increasing the flow rate of N gas, there is little effect on the optical, electrical, and photoconductive properties. It turned out that it didn't. Furthermore, no carbon content could be detected in the infrared absorption spectrum.

実施例5 実施例3と同様の製造方法でさらにB、H。Example 5 B and H were further produced using the same manufacturing method as in Example 3.

/H,10oρpa+ボンベより、バルブ38、出口圧
力ゲージ39、流入バルブ27.マスフローコントロー
ラー21および流出バルブ15を通じてB、H。
/H, 10oρpa+ from the cylinder, valve 38, outlet pressure gauge 39, inflow valve 27. B, H through mass flow controller 21 and outflow valve 15.

ガスを13. H,/S i H,の比9116で導入
し光導電部材を形成した。
Gas 13. H,/S i H, was introduced at a ratio of 9116 to form a photoconductive member.

以上の製造方法によって得られた光導電部材を次の方法
によって電気的、光学的、光導電的特性を計測した。
The electrical, optical, and photoconductive properties of the photoconductive member obtained by the above manufacturing method were measured by the following method.

基板6,7を用いた光導電部材の光導電層の上面にAQ
電極を形成して暗導電率およびAMl 10抛W/c+
#の光入射時の光導電率を計測した。
AQ on the top surface of the photoconductive layer of the photoconductive member using the substrates 6 and 7.
Form an electrode to increase dark conductivity and AMl 10 W/c+
The photoconductivity of # when light was incident was measured.

その結果、基板6,7を用いた光導電部材とも暗導電率
は8XlO−”(Ωcm)−’であり、基板6を用いた
光導電部材にガラス板側より光入射時の光導電率は4.
3X10−” (Ωcm)−’が得られ、光導電率の比
は5.4 X 104の非常に良好な光導電層が得られ
た。光学的バンドギャップは2.01aVであった。基
体8を用いた光導電部材についてペーパーアナライザー
で帯電特性、暗減衰、光感度を測定したところ電子写真
用像形成部材として応用できる充分に良好な特性が得ら
れた。
As a result, the dark conductivity of both the photoconductive members using substrates 6 and 7 was 8 4.
A very good photoconductive layer with a photoconductivity ratio of 5.4 x 104 was obtained.The optical bandgap was 2.01 aV.Substrate 8 When the charging characteristics, dark decay, and photosensitivity of the photoconductive member using the photoconductive member were measured using a paper analyzer, sufficiently good characteristics were obtained to be applicable as an electrophotographic image forming member.

[効  果] 上記の実施例の記載から明らかなように、本発明の光導
電部材は極めてすぐれた電気的・光学的及び光導電的特
性を有するものである・本発明を電子写真用の像形成部
材として応用した場合には、帯電処理の際の電荷保持機
能に長は画像形成への残留電位の影響が全くなく、多湿
雰囲気中でもその電荷保持機能が安定しており高い光感
度で高SN比を有するものであって耐光劣化、繰返し使
用に長け、濃度が高く階調性にすぐれ、かつ解像度の高
い高品質の可視画像を常時安定的に得ることが出来る。
[Effects] As is clear from the description of the examples above, the photoconductive member of the present invention has extremely excellent electrical, optical, and photoconductive properties. When applied as a forming member, it has a long charge retention function during charging processing, has no influence of residual potential on image formation, is stable even in a humid atmosphere, and has high photosensitivity and high SN. It has a high ratio, is resistant to light deterioration, is resistant to repeated use, has high density, excellent gradation, and can always stably obtain high-quality visible images with high resolution.

また。Also.

複雑な装置や方法を用いることなく光導電部材の量産も
可能になる。
It also becomes possible to mass-produce photoconductive members without using complicated equipment or methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る光導電部材の模式的断面図、第2
図及び第3図は本発明の光導電部材の光学的バンドギャ
プ及び電気的特性を示す図、第4図及び第5図は従来の
光導電部材の光学的バンドギャップ及び電気的特性を示
す図、第6図、第7図及び第8図は本発明を電子写真用
像形成部材に応用したときの光導電層の光学的バンドギ
ャップの分布を示した図、第9図は本発明の光導電部材
を製造する装置の一例を示す図である。 ■・・・光導電部材  2・・・支持体3・・・非晶質
層(光導電層) 特許出願人 リコー株式会社 外1名 CO2/5iH4 CO2/5iH4 02/SiH4
FIG. 1 is a schematic cross-sectional view of a photoconductive member according to the present invention, and FIG.
3 and 3 are diagrams showing the optical bandgap and electrical characteristics of the photoconductive member of the present invention, FIGS. 4 and 5 are diagrams showing the optical bandgap and electrical characteristics of the conventional photoconductive member, 6, 7, and 8 are diagrams showing the optical bandgap distribution of the photoconductive layer when the present invention is applied to an electrophotographic image forming member, and FIG. 9 is a diagram showing the optical bandgap distribution of the photoconductive layer of the present invention. It is a figure showing an example of the device which manufactures a member. ■...Photoconductive member 2...Support 3...Amorphous layer (photoconductive layer) Patent applicant Ricoh Co., Ltd. and one other person CO2/5iH4 CO2/5iH4 02/SiH4

Claims (1)

【特許請求の範囲】[Claims] 1、支持体上にシリコン原子を母材とする非晶質層が設
けられた光導電部材において、その非晶質層は酸素原子
又は酸素原子と窒素原子とを含有し、10^−^1^1
〜10^−^1^5(Ωcm)^−^1の範囲の暗導電
率をもち、AM1 100mW/cm^2の光入射時に
あって10^−^6〜10^−^9(Ωcm)^−^2
の範囲の光導電率をもち、1.9〜2.5eVの範囲の
光学的バンドギャップをもち、かつ、前記の光導電率と
暗導電率との比が10^4〜10^6の範囲にある光導
電特性を有していることを特徴とする光導電部材。
1. In a photoconductive member in which an amorphous layer having silicon atoms as a base material is provided on a support, the amorphous layer contains oxygen atoms or oxygen atoms and nitrogen atoms, and 10^-^1 ^1
It has a dark conductivity in the range of ~10^-^1^5 (Ωcm)^-^1, and is 10^-^6 to 10^-^9 (Ωcm) when light is incident at AM1 100mW/cm^2. ^-^2
has a photoconductivity in the range of A photoconductive member characterized in that it has photoconductive properties.
JP10634885A 1985-05-17 1985-05-17 Photoconductive member Pending JPS61262745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10634885A JPS61262745A (en) 1985-05-17 1985-05-17 Photoconductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10634885A JPS61262745A (en) 1985-05-17 1985-05-17 Photoconductive member

Publications (1)

Publication Number Publication Date
JPS61262745A true JPS61262745A (en) 1986-11-20

Family

ID=14431293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10634885A Pending JPS61262745A (en) 1985-05-17 1985-05-17 Photoconductive member

Country Status (1)

Country Link
JP (1) JPS61262745A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142164A1 (en) * 2008-05-21 2009-11-26 キヤノン株式会社 Electrophotographic photoreceptor for negative electrification, method for image formation, and electrophotographic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142164A1 (en) * 2008-05-21 2009-11-26 キヤノン株式会社 Electrophotographic photoreceptor for negative electrification, method for image formation, and electrophotographic apparatus
US7932005B2 (en) 2008-05-21 2011-04-26 Canon Kabushiki Kaisha Negatively-chargeable electrophotographic photosensitive member, image forming process and electrophotographic apparatus
JP5346809B2 (en) * 2008-05-21 2013-11-20 キヤノン株式会社 Electrophotographic photosensitive member for negative charging, image forming method, and electrophotographic apparatus

Similar Documents

Publication Publication Date Title
JP3073327B2 (en) Deposition film formation method
JPS6161103B2 (en)
JPS628783B2 (en)
JPS6348054B2 (en)
JPS628781B2 (en)
JPS649625B2 (en)
JPS6348057B2 (en)
JPS61262745A (en) Photoconductive member
JPS6410068B2 (en)
JPS6161102B2 (en)
JPS60130747A (en) Photoconductive member
JP2911659B2 (en) Photovoltaic element
JP2505731B2 (en) Deposited film formation method
JPS6410066B2 (en)
JP2915628B2 (en) Photovoltaic element
JPS63234513A (en) Deposition film formation
JP3320228B2 (en) Method of manufacturing light receiving member for electrophotography
JPS61247018A (en) Deposition film forming method and deposition film forming equipment
JPH0645882B2 (en) Deposited film formation method
JPS6357781B2 (en)
JPH0454945B2 (en)
JPS61179868A (en) Method of forming accumulated film
JPS61220324A (en) Deposition film forming
JPS6188515A (en) Formation of deposited film
JPH05102503A (en) Photovoltaic element