JPS61262644A - Method for estimating configuration of softened fused strip in shaft furnace - Google Patents

Method for estimating configuration of softened fused strip in shaft furnace

Info

Publication number
JPS61262644A
JPS61262644A JP9867085A JP9867085A JPS61262644A JP S61262644 A JPS61262644 A JP S61262644A JP 9867085 A JP9867085 A JP 9867085A JP 9867085 A JP9867085 A JP 9867085A JP S61262644 A JPS61262644 A JP S61262644A
Authority
JP
Japan
Prior art keywords
furnace
shape
cohesive zone
tav
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9867085A
Other languages
Japanese (ja)
Other versions
JPH0376859B2 (en
Inventor
Shigeki Sasahara
笹原 茂樹
Takeshi Sugiyama
健 杉山
Shoken Shimizu
正賢 清水
Kouta Yamaguchi
山口 荒太
Reiji Ono
小野 玲児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9867085A priority Critical patent/JPS61262644A/en
Publication of JPS61262644A publication Critical patent/JPS61262644A/en
Publication of JPH0376859B2 publication Critical patent/JPH0376859B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To estimate the configuration of a fused strip in a shaft furnace with good accuracy, by such a simple method that the measured temp. values of the upper and lower parts of the shaft part of the shaft furnace are compared with the average furnace wall temp. obtained from actual operation results and the temp. index of a furnace body is calculated from a specific formula. CONSTITUTION:The temp. of the furnace wall of a shaft furnace is measured at a plurality of arbitrary points in the height direction of said furnace while the average furnace wall temp. at said temp. measuring points is preliminarily calculated from the actual operation results of the shaft furnace. The temp. index S of the furnace body is calculated from an upper side furnace wall temp. TS, a lower side furnace wall temp. TB and an actual average furnace wall temp. Tav according to formula. That is, it is estimated that the configuration of a softened fused strip is an inverted V-shape at the time of S<0, and L-shape at the time of S>0 and TB<=Tav and a W-shape at the time of S<0 and TB<Tav. By this method, the configuration of the softened fused strip can be estimated only from the measured results of the furnace outside temps. without extracting data for calculation from the interior of the shaft furnace.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高炉内における軟化融着帯の形状を簡単な方
法で正確に推定することのできる方法に関し、殊に高炉
々壁部の測温結果を元に当該高炉操業時における軟化融
着帯の形状を即座に推定することのできる方法に関する
ものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for accurately estimating the shape of a softened cohesive zone in a blast furnace using a simple method. This invention relates to a method that can instantly estimate the shape of a softened cohesive zone during blast furnace operation based on temperature results.

[従来の技術] 周知の通り高炉操業においては、炉頂部から鉄鉱石原料
とコークスを交互に装入しなから炉底の羽目から熱風を
送り込み、炉内を上昇する還元ガスによって鉄鉱石の還
元が行なわれる。還元によって組成変化を受けた鉱石は
、夫々の鉱石に固有の軟化溶融温度を示すが、高炉内の
温度は下方部はど高温であるから、降下途中の鉱石はや
がて該軟化溶融温度と同レベルの温度領域に至る。この
場合において通常の鉄鉱石は塊状から一気に融体化する
のではなく、ある温度範囲に亘って軟化、溶融次いで滴
下という過程を経てここに溶銑及び溶滓が形成される。
[Prior art] As is well known, in blast furnace operation, iron ore raw material and coke are alternately charged from the top of the furnace, hot air is sent through the bottom lining, and the iron ore is reduced by the reducing gas rising inside the furnace. will be carried out. Ore that has undergone a compositional change due to reduction exhibits a softening and melting temperature unique to each ore, but since the temperature inside the blast furnace is high at the bottom, the ore on its way down will eventually reach the same level as the softening and melting temperature. temperature range. In this case, normal iron ore does not change from lumpy to molten all at once, but undergoes a process of softening, melting, and then dripping over a certain temperature range to form hot metal and slag.

即ち炉内のある部位には軟化融着した鉱石層が存在して
おり、これを一般に軟化融着帯(以下単に融着帯という
ことがある)と呼んでいる。
That is, a softened and fused ore layer exists in a certain part of the furnace, and this is generally called a softened and fused zone (hereinafter sometimes simply referred to as a fused zone).

従来は該融着帯の形状については、単に憶測する程度で
あったが、最近各社で実施された高炉解体調査によって
その様相が次第にほぼ正確に把握される様になってきて
おり、更には操業中の融着帯形状も色々の手段で検出す
る方法が試みられている。それらによると炉内融着帯形
状は高炉高さ方向及び水平方向で大きな分布を呈してお
りしかもこれらの分布は炉内状況と密接な関係を有する
ものであることが判明している。そして高炉の状況に応
じて種々のパターンを示すものであることも分かってい
るが、もっとも標準的なパターンを模式的に表わすと第
1図の如くである。即ち第1図においてlは高炉であり
、炉頂部1aから交互に装入された鉱石(ペレット及び
焼結鉱等の区別は問わない)3とコークス4は夫々層状
に装入された後、固形状のままで順次降下して行く、尚
6はこの様な塊状帯である。そしてシャフト部1bから
下方にかけては、融着帯7が層状且つ山状に形成され、
内包された炉心コークス層5の空隙をぬって溶銑及び溶
滓が滴下していく、他方羽口2からは熱風が吹き込まれ
矢印の如く上昇するが、融着帯7は、その物理的性状の
本質からして空隙率が極めて小さいものであるから、通
気性は頗る悪く、炉内では上昇ガスの抵抗板になってい
る。
In the past, the shape of the cohesive zone was only a matter of speculation, but recent blast furnace dismantling surveys conducted by various companies have gradually led to a more or less accurate understanding of its appearance, and even more Various methods have been attempted to detect the shape of the cohesive zone inside. According to these studies, it has been found that the shape of the cohesive zone in the furnace exhibits a large distribution in the height direction and horizontal direction of the blast furnace, and that these distributions are closely related to the conditions inside the furnace. Although it is known that various patterns are shown depending on the conditions of the blast furnace, the most standard pattern is shown schematically in FIG. That is, in Fig. 1, 1 is a blast furnace, and ore 3 (regardless of the distinction between pellets and sintered ore) and coke 4 are charged alternately from the top 1a of the furnace, and then solidified. 6 is such a blocky band that continues to descend sequentially while maintaining its shape. A cohesive zone 7 is formed in layers and in the shape of a mountain from the shaft portion 1b downward.
Hot metal and slag drip through the voids in the encapsulated core coke layer 5, while hot air is blown from the tuyere 2 and rises as shown by the arrow. Since it has extremely low porosity, it has extremely poor ventilation and acts as a resistance plate for rising gas inside the furnace.

従って炉心コークス層5内を通過上昇してきた還元ガス
は、第1図の矢印で示す如く、融着帯7に到達した時点
で高さ方向と水平方向に分配され、上方に向かうガスは
融着帯7の層に沿って炉心コークス層5内を上昇し、水
平方向に向かうガスは融着帯7ではさまれたコークスス
リット7′内を通って塊状帯6側に出る。即ち融着帯7
は上昇ガスの分配機能を示し、その形成状態、特に分布
によって炉内ガスの分散度合いが大きく影響される0例
えば融着帯7が炉腹部において炉心側に張り出して存在
するとき(例えば融着帯形状がW型のとき)は、炉頂に
おけるガス流は主として周辺流になるし、融着帯7が炉
壁側に片寄って存在するときは前記ガス流は主として中
心流を形成する。そして周辺流が形成されたときは塊状
帯6における還元が周辺部で九進し、他方中心流が形成
されたときはその逆になるが、これらは直接的に次の融
着帯形成に影響するだけでなく、炉全体における還元プ
ロセスの主要な支配因子になっている。
Therefore, the reducing gas that has passed through the core coke layer 5 and ascended is distributed in the height direction and horizontal direction when it reaches the cohesive zone 7, as shown by the arrows in FIG. 1, and the upward gas is fused. Gas rising in the core coke layer 5 along the layer of the band 7 and moving in the horizontal direction passes through the coke slit 7' sandwiched between the cohesive zones 7 and exits to the lump band 6 side. That is, cohesive zone 7
indicates the distribution function of rising gas, and the degree of dispersion of the gas in the furnace is greatly influenced by its formation state, especially its distribution. When the shape is W-shaped), the gas flow at the top of the furnace is mainly a peripheral flow, and when the cohesive zone 7 is biased toward the furnace wall, the gas flow mainly forms a center flow. When a peripheral flow is formed, the reduction in the lumpy zone 6 is nine-dimensional at the periphery, while when a central flow is formed, the opposite is true, but these directly influence the formation of the next cohesive zone. Not only that, but it is also the main controlling factor for the reduction process in the entire furnace.

そして高炉実操業時における融着帯形状の代表的なパタ
ーンは、第2図に示す3種、即ち符号Δで示した所謂逆
V型と符号りで示したL型及び符号Wで示したW型に分
けられることが経験的に確認されており、このうち最も
円滑で効率の良い操炉状況が維持されているときの融着
帯形状はL型であると考えられている。
There are three typical patterns of the cohesive zone shape during actual blast furnace operation, as shown in Fig. 2: the so-called inverted V-shaped pattern indicated by the symbol Δ, the L-shaped pattern indicated by the symbol Δ, and the W-shaped pattern indicated by the symbol W. It has been empirically confirmed that the cohesive zone can be divided into two types, and among these, the L-type is thought to be the shape of the cohesive zone when the smoothest and most efficient furnace operation is maintained.

以上の様なところから、高炉の円滑操業を維持し高い生
産性を確保する為には炉内融着帯形状を適正に維持する
ことが必要であり、その為には前提条件として操炉中に
おける現時点での融着帯形状を可及的に精度良く把握し
なければならない。
From the above points, in order to maintain smooth operation of the blast furnace and ensure high productivity, it is necessary to properly maintain the shape of the cohesive zone inside the furnace. It is necessary to understand the current shape of the cohesive zone as accurately as possible.

こうした要請に沿うべく、例えば(a)数学的シミュレ
ーション法や(b)センサー投入による実測法等が色々
提案されている。即ち上記(a)の方法は、高炉積層原
料の上方部における温度やガス組成を高炉半径方向の複
数箇所でゾンデ等により測定し、ガス流れ、伝熱性や反
応性等を考慮した計算式によって炉内の温度分布やガス
組成分布を推定し、この推定モデルから推算される12
00”0等温線によって融着帯の外部形状を推定する方
法である。また前記(b)の方法は炉腹部或は炉頂部か
らセンサーを投入して炉内複数箇所の温度を実測するこ
とによって融着帯形状を確認する方法である。
In order to meet these demands, various methods have been proposed, such as (a) a mathematical simulation method and (b) an actual measurement method using sensors. In other words, method (a) above measures the temperature and gas composition in the upper part of the blast furnace laminated material at multiple locations in the radial direction of the blast furnace using a sonde, etc. 12 estimated from this estimation model.
This is a method of estimating the external shape of the cohesive zone based on the 00"0 isotherm. In addition, the method (b) above involves inserting a sensor into the furnace belly or the top of the furnace to actually measure the temperature at multiple locations inside the furnace. This is a method to confirm the shape of the cohesive zone.

[発明が解決しようとする問題点] しかしながら上記の方法は何れもバッチ式であって融着
帯の形状を連続的に測定し得るものではなく、しかもセ
ンサー等を含めた計測機器が極めて高価である為、これ
らの方法で常時炉内状況を把握する訳にはいかない、更
に前記(a)の方法は理論計算を含めた種々の推定値を
基に予測する方法であるから、精度的にも問題がある。
[Problems to be solved by the invention] However, all of the above methods are batch-type and cannot continuously measure the shape of the cohesive zone, and furthermore, the measuring equipment including sensors etc. is extremely expensive. Therefore, it is not possible to constantly grasp the situation inside the reactor using these methods.Furthermore, method (a) above is a method of predicting based on various estimated values including theoretical calculations, so it is not accurate in terms of accuracy. There's a problem.

この様な状況のもとで本発明は、高炉内における融着帯
の形状を比較的簡単な方法で精度良く推定することがで
き、且つ実操業工程で推定操作を連続的に実施すること
のできる方法を提供しようとするものである。
Under these circumstances, the present invention is capable of estimating the shape of the cohesive zone in a blast furnace with high accuracy using a relatively simple method, and also makes it possible to continuously perform the estimation operation in the actual operation process. This is an attempt to provide a possible method.

[問題点を解決する為の手段] 上記の目的を達成した本発明に係る融着帯形状の推定法
とは、高炉における高さ方向に異なった任意の複数点で
炉壁温度を測定する一方、上記測温領域における平均炉
壁温度を当該高炉の操業実績から求めておき、これらの
温度を基に高炉内の軟化融着帯形状を推定する方法であ
って、上部側炉壁温度:Ts、下部側炉壁温度:TB及
び実績平均炉壁温度:Tavから次式によって炉体温度
指数:Sを求め、 (Ts −Tav) @ (TB −Tav) >0(
7)とき5=Te  /Ts  −[1] (Ts −Tav) * (Te −Tav) <0の
とき5=−TB / T s  ・・・ [II]該S
値を基に Sく0のときの軟化融着帯形状は逆V型、S〉0で且つ
T[I≦Taマのときの軟化融着帯形状はL型。
[Means for Solving the Problems] The method for estimating the cohesive zone shape according to the present invention that achieves the above object is to measure the furnace wall temperature at arbitrary plural points different in the height direction of the blast furnace. , is a method in which the average furnace wall temperature in the temperature measurement area is determined from the operational history of the blast furnace, and the shape of the softened cohesive zone in the blast furnace is estimated based on these temperatures, and the upper furnace wall temperature: Ts , find the furnace body temperature index: S from the lower furnace wall temperature: TB and the actual average furnace wall temperature: Tav using the following formula, (Ts - Tav) @ (TB - Tav) > 0 (
7) When 5 = Te / Ts - [1] (Ts - Tav) * (Te - Tav) < 0, then 5 = - TB / T s ... [II] The S
Based on the values, the shape of the softened cohesive zone when S is 0 is an inverted V-shape, and the shape of the softened cohesive zone when S>0 and T[I≦Ta is L-shaped.

S>Oで且つTB<Tavのときの軟化融着帯形状はW
型、 であることを夫々承知するところに要旨を有するもので
ある。
When S>O and TB<Tav, the shape of the softened cohesive zone is W
The gist lies in the fact that we recognize that each type is a type.

[作用] 本発明者等は、高炉内における融着帯の形状によって熱
風の上昇状況がかなり変わり、それに伴なって炉壁部の
温度分布が変わってくるという知見のもとで、炉壁部分
の温度分布と融着帯の形状に一定の相関々係があるので
はないかと考え、その線に沿って色々実験を進めてきた
。その結果、高炉における高さ方向に異なった任意の複
数点、例えば高炉シャフト部の上部及び下部の温度を測
定し、これを当該高炉の操業実績から求められる上記測
温領域における平均炉壁温度と比較して下記式によって
炉体温度指数(S)を算出し、この値と前述の実測炉壁
温度及び実績平均炉壁温度を対比観察すれば、そのとき
の融着帯形状が前3種のパターンの何れに該当するかと
いうことを正確に推定し得ることを知った。
[Function] Based on the knowledge that the rising condition of hot air changes considerably depending on the shape of the cohesive zone in the blast furnace, and the temperature distribution of the furnace wall changes accordingly, the present inventors I thought that there might be a certain correlation between the temperature distribution and the shape of the cohesive zone, and I have been conducting various experiments along this line. As a result, we measure the temperature at arbitrary multiple points that differ in the height direction of the blast furnace, such as the upper and lower parts of the blast furnace shaft, and calculate this as the average furnace wall temperature in the above temperature measurement area determined from the operating history of the blast furnace. By comparison, the furnace body temperature index (S) is calculated using the formula below, and if this value is compared and observed with the above-mentioned actually measured furnace wall temperature and actual average furnace wall temperature, the cohesive zone shape at that time will be the same as that of the previous three types. I learned that it is possible to accurately estimate which pattern it falls under.

(Ts −Tav) * (TB −Tav) >Oの
とき5=TB/Ts (Ts−Tav) m (TB −Tav) <0(7
)ときS = −Te / Ts 但しTs :高炉上方部の炉壁温度 τB =高炉下方部の炉壁温度 Tav:測温領域における実績平均炉壁温度S :炉体
温度指数 即ち後記実施例でも明らかにする通り、上記式によって
求められる炉体温度指数1)がマイナス値を示すときの
融着帯形状は例外なく逆V型を呈している。一方上記(
S)値がプラス値を示す場合は、前記(T aマ)値に
対して(TO)が高温側にあるか低温側にあるかによっ
て融着帯形状はL型又はW型となり、TB≦Taマのと
きの融着帯形状は例外なくL型を呈し、TB>Tavの
ときの同形状は例外なくW型を呈していることが明らか
となった。こうした推定結果は、垂直水平ゾンデを用い
た融着帯の実測結果と対比することにより確認したもの
であり、結局のところ本発明によれば、高炉操業実績か
ら求めることのできる(Tav)と、その時々における
炉壁温度(Ts。
(Ts - Tav) * (TB - Tav) When > O, 5 = TB/Ts (Ts - Tav) m (TB - Tav) <0 (7
) when S = -Te/Ts where Ts: Furnace wall temperature in the upper part of the blast furnace τB = Furnace wall temperature in the lower part of the blast furnace Tav: Actual average furnace wall temperature in the temperature measurement area S: Furnace body temperature index, that is, also clear in the examples below As can be seen, when the furnace body temperature index 1) determined by the above formula shows a negative value, the cohesive zone shape exhibits an inverted V shape without exception. On the other hand, the above (
When the S) value shows a positive value, the cohesive zone shape will be L-shaped or W-shaped depending on whether (TO) is on the high temperature side or low temperature side with respect to the above (Ta) value, and TB≦ It has become clear that the shape of the cohesive zone when Ta is present is L-shaped without exception, and the shape of the cohesive zone when TB>Tav is W-shaped without exception. These estimation results were confirmed by comparing them with the actual measurement results of the cohesive zone using a vertical and horizontal sonde, and after all, according to the present invention, (Tav) can be determined from the blast furnace operation results. Furnace wall temperature (Ts) at each time.

TB )を基にして、融着帯形状が前記3種のいずれに
相当するかということを正確に推定することができ、こ
れらの推定は炉壁温度を連続的に測定することによって
連続して実施することが可能である。即ち本発明によれ
ば、高炉内部から算出データを抽出することなく、炉外
温度の測定結果を基にして融着帯形状を推定することが
できるので、推定操作が極めて簡単であるばかりでなく
格別高価な機器も全く不要であり、しかも高炉操業中常
時融着帯形状を把握しながら操業を続けることができる
、尚厳密には前記3種の融着帯パターンを更に細分化し
て定量化することも可能であろうが、現実の高炉操業に
おいては前記3種の融着帯パターンを識別し、これらの
うち最良の高炉操業効率が得られるL型の融着帯形状を
確保し得る様に操業条件をコントロールすることによっ
て、高炉操業本来の管理目的を十分に達成することがで
きる。
TB), it is possible to accurately estimate which of the three types the cohesive zone shape corresponds to, and these estimates can be made continuously by continuously measuring the furnace wall temperature. It is possible to implement it. That is, according to the present invention, the shape of the cohesive zone can be estimated based on the measurement results of the temperature outside the furnace without extracting calculation data from inside the blast furnace, so the estimation operation is not only extremely simple but also There is no need for particularly expensive equipment, and it is possible to continue operation while constantly grasping the cohesive zone shape during blast furnace operation.To be more precise, the above three types of cohesive zone patterns can be further subdivided and quantified. However, in actual blast furnace operation, it is necessary to identify the three types of cohesive zone patterns and ensure the L-shaped cohesive zone shape that provides the best blast furnace operating efficiency. By controlling operating conditions, the original management objectives of blast furnace operation can be fully achieved.

[実施例] 高炉操業時における融着帯形状と炉壁温度の相関々係を
調べる為、第3図に示す如く高炉(内容積3850朧3
)1のシャフト部から炉腹部にかけて炉壁に複数の温度
計を配設し、垂直水平ゾンデにより実測される融着体の
形状と炉壁温度分布を調べた結果、第4図に示す結果が
得られた0図中Taマは、前記測温点55〜B1間にお
ける、当該高炉の操業実績から求められる平均炉壁温度
であり、この温度は夫々の高炉特有の温度として求めら
れるが、実験に用いた高炉におけるTBマは75℃であ
った・ 第4図からも明らかな様に、融着帯の形状に応じて炉壁
温度分布は夫々異なったパターンを示しており、このう
ちシャフト部上方側(S5 。
[Example] In order to investigate the correlation between the cohesive zone shape and the furnace wall temperature during blast furnace operation, a blast furnace (inner volume 3850 Oboro 3
) Multiple thermometers were installed on the furnace wall from the shaft part of 1 to the furnace wall, and the shape of the fused material and the furnace wall temperature distribution were investigated using vertical and horizontal sondes. The results shown in Figure 4 were obtained. Ta in the obtained diagram 0 is the average furnace wall temperature between the temperature measurement points 55 and B1, which is determined from the operational history of the blast furnace.This temperature is determined as a temperature unique to each blast furnace, but it is The TB temperature in the blast furnace used for Upper side (S5.

S4.33)の温度(Ts )とシャフト部下方側(3
2,51,82)の温度(TB)に注目すると、融石帯
形状がL型であるときのTs、Taは何れもTBマより
も低温を示し、融着帯形状が逆V型であるときのTsは
TBマよりも低くTBはTBマよりも高い、また融着帯
形状がW型であるときのTs、TBは何れもTBマより
も高温となっている。
S4.33) temperature (Ts ) and the lower side of the shaft (3
2, 51, 82), when the cohesive zone shape is L-shaped, both Ts and Ta are lower than the TB ma, and the cohesive zone shape is inverted V-shape. In this case, Ts is lower than that of TB, and TB is higher than that of TB, and when the cohesive zone shape is W-shaped, both Ts and TB are higher than that of TB.

これらの図からも明らかな様に、高炉内における融着帯
の形状は、シャフト上部側及び下部側における各炉壁温
度と実績平均炉壁温度TBマとの相対値を求めることに
よってかなり正確に推定し得ることが分かる。但しこの
様な炉壁温度分布をその都度求めて図式化し融着帯形状
を推定することは煩雑に耐えず、且つ推定の連続化とい
う観点からしても好ましいことではないので、上記測温
結果を指数化することによって融着帯形状を直ちに知る
ことはできないかと考え更に研究を進めた。
As is clear from these figures, the shape of the cohesive zone in the blast furnace can be determined fairly accurately by determining the relative values of each furnace wall temperature at the upper and lower sides of the shaft and the actual average furnace wall temperature TB. It turns out that it can be estimated. However, it is not comfortable to calculate the temperature distribution of the furnace wall each time and visualize it to estimate the shape of the cohesive zone, and it is not desirable from the viewpoint of continuous estimation. We thought that it would be possible to immediately know the shape of the cohesive zone by converting it into an index, so we proceeded with further research.

その結果、と記測温結果と実績平均炉壁温度を基に前記
[I]、[11式から炉体温度指数Sを算出し、該S値
及び前記TBとTBマの相対値から融着帯形状を直ちに
判別し得ることを知った。即ち融着帯形状が逆V型であ
るときは前記S値がマイナスとなる。また融着帯形状が
L型であるときはS値がプラスとなる他TB≦Tavと
なり、同形状がW型であるときのS値はプラスでTB>
TBマとなり、これらの関係には殆んど例外を生じない
ことが確認された。ちなみに第5図は、内容積3850
m3の大を高炉を用いた7か月間実操業で得たデータを
集計して整理したグラフである0図中風圧指数とは操業
時における高炉内の通風状況を示すもので、この間多数
回に亘って垂直水平ゾンデを用いて融着帯形状を実測し
たところ、ゾーン■で囲まれる測定時の融着帯形状は逆
V型。
As a result, the furnace body temperature index S is calculated from the above [I] and [11 equations] based on the temperature measurement results and the actual average furnace wall temperature, and the fusion bond is calculated from the S value and the relative value of the TB and TB I learned that the band shape can be immediately determined. That is, when the cohesive zone shape is an inverted V shape, the S value becomes negative. Also, when the cohesive zone shape is L-shaped, the S value is positive and TB≦Tav, and when the cohesive zone shape is W-shaped, the S value is positive and TB>
It has been confirmed that there are almost no exceptions to these relationships. By the way, Figure 5 shows an internal volume of 3850
The wind pressure index in Figure 0, which is a graph that aggregates and organizes the data obtained from 7 months of actual operation using a blast furnace, indicates the ventilation status inside the blast furnace during operation. When the shape of the cohesive zone was actually measured using a vertical and horizontal sonde, the shape of the cohesive zone at the time of measurement surrounded by zone ■ was an inverted V shape.

ゾーン■で囲まれる測定時の融着帯形状はL型、ゾーン
■で囲まれる測定時の融着帯形状はW型を夫々示し、本
発明の推定法が高い精度を有するものであることが確認
された。
The shape of the cohesive zone during measurement surrounded by zone ■ is L-shaped, and the shape of the cohesive zone during measurement surrounded by zone ■ is W-shaped, indicating that the estimation method of the present invention has high accuracy. confirmed.

第6〜8図は、高炉操業状況の良否を表わす代表的な指
標である風圧指数、補正燃料比及び溶銑温度と、上記方
法により推定した融着帯パターンとの関係を調べた結果
を示したものである。一般に最良の高炉操業性が得られ
るのは融着帯形状がL型のときであるとされているが、
第6〜8図の何れの結果を見ても同様の傾向があること
を確認することができる。即ち第6図は風圧指数との関
係を示したものであり、この指数が低いほど風圧変動が
少なく炉況が安定していることを確認できる訳であるが
、L型のものではこの指数が他の融着帯形状のものに比
べて低い値で安定していることが分かる。また第7図は
補正燃料比との関係を示したものであり、この値が低い
程溶銑の単位生産量に対する燃費を低減し得る訳である
が、L型の場合の燃費が最も低いことを確認することが
できる。更に第8図は溶銑温度との関係を示したもので
あり、この温度が高温で安定化している程炉内の熱効率
がよく、出銑後の予備処理等にも有利な訳であるが、L
型の場合は該溶銑温度も高温側で安定していることを確
認することができる。
Figures 6 to 8 show the results of investigating the relationship between the wind pressure index, corrected fuel ratio, and hot metal temperature, which are typical indicators of the quality of blast furnace operating conditions, and the cohesive zone pattern estimated by the above method. It is something. It is generally said that the best blast furnace operability is obtained when the cohesive zone shape is L-shaped.
It can be confirmed that a similar tendency exists in any of the results shown in FIGS. 6 to 8. In other words, Figure 6 shows the relationship with the wind pressure index, and it can be confirmed that the lower this index is, the less the wind pressure fluctuations are and the more stable the furnace condition is. It can be seen that the value is stable and lower than that of other cohesive zone shapes. In addition, Figure 7 shows the relationship with the corrected fuel ratio, and the lower this value is, the lower the fuel consumption per unit production of hot metal can be, but it is clear that the L type has the lowest fuel consumption. It can be confirmed. Furthermore, Fig. 8 shows the relationship with hot metal temperature, and the higher and more stable this temperature is, the better the thermal efficiency inside the furnace is, which is also advantageous for preliminary treatment after tapping, etc. L
In the case of molds, it can be confirmed that the temperature of the hot metal is also stable on the high temperature side.

但し上記風圧指数及び補正燃料比は下記の方法により求
めた。
However, the above wind pressure index and corrected fuel ratio were determined by the following method.

く風圧指数〉 (但し、ΔPiは該々測定される送風圧の実測値の差を
示す) く補正燃料比〉 補正燃料比=計算コークス比(kg/1−p)十計算吹
込燃料比(kg/1−p)+0−1x (送風温度−1
100) −0,2X [計算スラグ比(kg/1−P
)−3001−0,7X [送風湿度(g/Nm3)−
151−10X [:I−ケス中灰分($)−111−
0,15X [石灰比(kg/1−p) −30] [発明の効果] 本発明は以上の様に構成されており、要は高炉炉壁部の
測温結果を基に炉体温度指数を求めるという極めて簡単
な手段で炉内の融着帯形状を正確に推定し得ることにな
った。しかも推定要素となるデータはすべて炉壁の測温
によって求めることができるので推定の連続化が可能で
あり、また自動測温機器と簡単な演算・表示機構を設け
るだけで融着帯形状の推移を自動的に検知・表示するこ
とができ、融着帯形状が悪化した場合でもそれを直ちに
知ることができる。従って炉況不良に対する応答も迅速
に行なうことができ、高炉操業効率の向上に著しく貢献
し得るものである。
(However, ΔPi indicates the difference between the actual values of the blowing pressures measured.) Corrected fuel ratio> Corrected fuel ratio = Calculated coke ratio (kg/1-p) + Calculated blown fuel ratio (kg /1-p)+0-1x (blow temperature-1
100) -0,2X [Calculated slag ratio (kg/1-P
)-3001-0,7X [Blow humidity (g/Nm3)-
151-10X [:I-Ash content ($)-111-
0.15 It was now possible to accurately estimate the shape of the cohesive zone inside the furnace by using the extremely simple method of determining . Moreover, all the data that serve as estimation elements can be obtained by measuring the temperature of the furnace wall, so estimation can be made continuously, and changes in the shape of the cohesive zone can be made by simply installing an automatic temperature measurement device and a simple calculation/display mechanism. can be automatically detected and displayed, and even if the shape of the cohesive zone has deteriorated, it can be immediately known. Therefore, it is possible to quickly respond to poor furnace conditions, which can significantly contribute to improving the efficiency of blast furnace operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高炉操業時における内部状況を示す模式図、第
2図は融着帯形状の代表的なパターンを示す略図、第3
.4図は本発明における炉壁測温例を示す説明図、第5
図は本発明による推定値と実測融着帯形状の相関々係を
示す実験結果のグラフ、第6〜8図は高炉操業時におけ
る風圧指数、補正燃料比及び溶銑温度と本発明で推定し
た融着帯形状との関係を示すグラフである。
Figure 1 is a schematic diagram showing the internal situation during blast furnace operation, Figure 2 is a schematic diagram showing a typical pattern of cohesive zone shape, and Figure 3 is a schematic diagram showing the internal situation during blast furnace operation.
.. Figure 4 is an explanatory diagram showing an example of furnace wall temperature measurement in the present invention;
The figure is a graph of experimental results showing the correlation between the estimated value according to the present invention and the actually measured cohesive zone shape. It is a graph showing the relationship with the shape of the belt.

Claims (1)

【特許請求の範囲】 高炉における高さ方向に異なった任意の複数点で炉壁温
度を測定する一方、上記測温領域における平均炉壁温度
を当該高炉の操業実績から求めておき、これらの温度を
基に高炉内の軟化融着帯形状を推定する方法であって、
上部側炉壁温度:T_s、下部側炉壁温度:T_B及び
実績平均炉壁温度:Tavから次式によって炉体温度指
数:Sを求め、 (T_s−Tav)・(T_B−Tav)>0のときS
=T_B/T_s (T_s−Tav)・(T_B−Tav)<0のときS
=−T_B/T_s 該S値を基に S<0のときの軟化融着帯形状は逆V型、 S>0で且つT_B≦Tavのときの軟化融着帯形状は
L型、 S>0で且つT_B<Tavのときの軟化融着帯形状は
W型、 であることを夫々承知することを特徴とする高炉内にお
ける軟化融着帯形状の推定法。
[Scope of Claims] While the furnace wall temperature is measured at arbitrary plural points different in the height direction of the blast furnace, the average furnace wall temperature in the temperature measurement area is determined from the operational history of the blast furnace, and these temperatures are A method for estimating the shape of a softened cohesive zone in a blast furnace based on
From the upper furnace wall temperature: T_s, the lower furnace wall temperature: T_B, and the actual average furnace wall temperature: Tav, the furnace body temperature index: S is determined by the following formula, and (T_s-Tav)・(T_B-Tav)>0. Toki S
=T_B/T_s (T_s-Tav)・(T_B-Tav)<0 when S
=-T_B/T_s Based on the S value, when S<0, the shape of the softened cohesive zone is an inverted V-shape; when S>0 and T_B≦Tav, the shape of the softened cohesive zone is L-shaped, and when S>0 and the shape of the softened cohesive zone when T_B<Tav is W-shaped. A method for estimating the shape of the softened cohesive zone in a blast furnace.
JP9867085A 1985-05-09 1985-05-09 Method for estimating configuration of softened fused strip in shaft furnace Granted JPS61262644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9867085A JPS61262644A (en) 1985-05-09 1985-05-09 Method for estimating configuration of softened fused strip in shaft furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9867085A JPS61262644A (en) 1985-05-09 1985-05-09 Method for estimating configuration of softened fused strip in shaft furnace

Publications (2)

Publication Number Publication Date
JPS61262644A true JPS61262644A (en) 1986-11-20
JPH0376859B2 JPH0376859B2 (en) 1991-12-06

Family

ID=14225947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9867085A Granted JPS61262644A (en) 1985-05-09 1985-05-09 Method for estimating configuration of softened fused strip in shaft furnace

Country Status (1)

Country Link
JP (1) JPS61262644A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468296A (en) * 1977-11-11 1979-06-01 Nippon Steel Corp Method and apparatus for measuring dynamic properties of packed layer
JPS5752922A (en) * 1980-09-17 1982-03-29 Toshihiro Funayama Electron controlling method for ac power

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468296A (en) * 1977-11-11 1979-06-01 Nippon Steel Corp Method and apparatus for measuring dynamic properties of packed layer
JPS5752922A (en) * 1980-09-17 1982-03-29 Toshihiro Funayama Electron controlling method for ac power

Also Published As

Publication number Publication date
JPH0376859B2 (en) 1991-12-06

Similar Documents

Publication Publication Date Title
CN102758032B (en) Method for real-time predication of blast furnace pipeline fault probability
CN103439999A (en) Method for controlling abnormal furnace temperature of blast furnace according to temperature changes of cooling wall
US20220390928A1 (en) Production facilities monitoring method, production facilities monitoring device, and operation method for production facilities
JPS61262644A (en) Method for estimating configuration of softened fused strip in shaft furnace
Agrawal et al. Advances in thermal level measurement techniques using mathematical models, statistical models and decision support systems in blast furnace
JP6927461B1 (en) Operation method and operation system of production equipment
JP2678767B2 (en) Blast furnace operation method
JPS6121284B2 (en)
JP4336262B2 (en) In-furnace pressure fluctuation prediction method and apparatus
JP2724365B2 (en) Blast furnace operation method
JP3624658B2 (en) Evaluation method of in-furnace deposition shape stability in blast furnace
WO2023008170A1 (en) Blast furnace slag level estimation method, operation guidance method, hot metal production method, blast furnace slag level estimation device, and operation guidance device
TW201331373A (en) Method for estimating temperature of iron water of a blast furnace
JPH09227911A (en) Operation of blast furnace
JPS58213806A (en) Operating method of blast furnace
WO1997012064A9 (en) A method for the determination of the gas flux distribution in a blast furnace
SU1068486A1 (en) Method for controlling thermal condition of blast furnace hearth
JPS6293304A (en) Method for operating blast furnace
JPS5974209A (en) Detection of distribution of gaseous flow in blast furnace
JPH10280020A (en) Operation of smelting reduction
JP2000212618A (en) Operation of blast furnace
CN117051190A (en) System and method for monitoring slag iron storage quantity of blast furnace hearth
JPS61117208A (en) Operating method of blast furnace
JP2001073013A (en) Method for deciding variation of furnace heat in blast furnace
JP2024029910A (en) Blast furnace gas flow determination method, blast furnace equipment, and blast furnace operating method