JPS6126225Y2 - - Google Patents
Info
- Publication number
- JPS6126225Y2 JPS6126225Y2 JP1981086942U JP8694281U JPS6126225Y2 JP S6126225 Y2 JPS6126225 Y2 JP S6126225Y2 JP 1981086942 U JP1981086942 U JP 1981086942U JP 8694281 U JP8694281 U JP 8694281U JP S6126225 Y2 JPS6126225 Y2 JP S6126225Y2
- Authority
- JP
- Japan
- Prior art keywords
- shell
- concrete
- outermost
- inner cylindrical
- cylindrical shell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004567 concrete Substances 0.000 claims description 29
- 229910000831 Steel Inorganic materials 0.000 claims description 10
- 239000010959 steel Substances 0.000 claims description 10
- 239000011211 glass fiber reinforced concrete Substances 0.000 claims description 6
- 125000006850 spacer group Chemical group 0.000 claims description 6
- 230000002093 peripheral effect Effects 0.000 claims 1
- 238000009415 formwork Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011210 fiber-reinforced concrete Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011378 shotcrete Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Landscapes
- Storage Of Harvested Produce (AREA)
Description
【考案の詳細な説明】
本考案はサイロ等の筒状構造物に関するもので
ある。[Detailed Description of the Invention] The present invention relates to a cylindrical structure such as a silo.
例えばサイロは、大別して鋼製のサイロとコン
クリート製のサイロとからなる。このうち鋼製の
サイロは、軽量で、その製作の殆んどが作業場で
できるため、短期間で、精度も高く、複雑な構造
でも製作可能であり、また気密性に優れている。
しかし、太陽熱による温度が直接サイロ内部に達
し、内容物の変質を招いたり、予期せぬ荷重によ
る外殻の座屈を生じたり、耐食性に劣る欠点があ
る。 For example, silos can be broadly classified into steel silos and concrete silos. Among these, steel silos are lightweight, and most of the manufacturing can be done in the workshop, so they can be manufactured in a short period of time, with high precision, even complex structures, and have excellent airtightness.
However, the temperature from the sun directly reaches the inside of the silo, leading to deterioration of the contents, buckling of the outer shell due to unexpected loads, and poor corrosion resistance.
他方、コンクリート製のサイロは、逆に、重量
が大きく、その製作の殆んどが現場となるため、
施工は長期間となり、複雑な形状も困難であり、
また気密性に欠ける。しかし、コンクリート自体
は断熱体で、気温の変化を内部に及ぼさない。ま
た耐食性に優れ、安全性にも優れている。 On the other hand, concrete silos are heavy and most of the manufacturing is done on-site.
Construction takes a long time, and complex shapes are difficult.
It also lacks airtightness. However, concrete itself is an insulator and does not allow temperature changes to occur inside. It also has excellent corrosion resistance and safety.
そこで、サイロの外殻構造として、内面に気密
性にすぐれ、工作精度の高い鋼製殻を用い、そし
て外面に、耐食性、断熱性、安全性に優れたコン
クリートを用いればよいことがわかる。このよう
な考え方のサイロは他所にいろいろ考案されてい
る。しかし、鋼製枠はともかくとして、コンクリ
ートは現場打ちとなるため、足場や型枠に相当の
経費を必要とする。そこで、外殻コンクリート
を、小部分のブレキヤストシエルにすればよいと
考えられるが、サイロは十分に大きいものである
ことから、鋼製との接合の問題や、ブレキヤスト
シエルの運搬が困難となる。また鋼製殻にコンク
リートを吹付ける工法が考えられるが、吹付場所
が非常な高所作業となる他、コンクリートの養生
条件は非常に悪いといえる。 Therefore, it has been found that for the outer shell structure of the silo, a steel shell with excellent airtightness and high precision workmanship should be used for the inner surface, and concrete, which has excellent corrosion resistance, heat insulation, and safety, should be used for the outer surface. Silos of this kind of thinking have been devised elsewhere. However, apart from the steel frame, the concrete must be cast on site, which requires considerable expense for scaffolding and formwork. Therefore, it would be possible to make a small part of the concrete shell into a brake cast shell, but since the silo is sufficiently large, there would be problems with joining it to the steel shell, and it would be difficult to transport the brake cast shell. Become. Another option is to spray concrete onto a steel shell, but this would require work at a very high place and the curing conditions for the concrete would be very poor.
本考案は上記問題点を解決し得るサイロ等の筒
状構造物を提案するもので、以下その一実施例を
第1図〜第3図に基づいて説明する。 The present invention proposes a cylindrical structure such as a silo that can solve the above-mentioned problems, and one embodiment thereof will be described below with reference to FIGS. 1 to 3.
第1図はサイロ1の外観図を示し、第2図にそ
の縦断面図を示す。サイロ1は、上部は下に広い
円錐台で、下部は排出口2をもつロート形であ
る。内筒殻3は鋼製からなり、また最外殻4は薄
いガラス繊維補強コンクリート製からなる。そし
て内筒殻3と最外殻4との間に充てんコンクリー
ト5が打設され、その打設は現場で行なわれる。
また内筒殻3の外面には、充てんコンクリート5
とのずれ止めとしてジベル6が溶接されている。
第3図にさらに詳細な断面図を示す。すなわち7
は内筒殻3と最外殻4とを連結するH形のスペー
サで、この内筒殻3には溶接8で結合されると共
に、最外殻4には接着剤9で結合される。10は
鉄筋で、充てんコンクリート5は鉄筋コンクリー
トとなる。最外殻4をガラス繊維補強コンクリー
ト製にすることで、表面のコーテングと埋殺し型
枠の役目をもたせることができ、また例えば6mm
板厚の、薄型シエルが製作可能である。第1図に
おいて11は脚体を示す。 FIG. 1 shows an external view of the silo 1, and FIG. 2 shows its longitudinal sectional view. The silo 1 has a truncated cone with a wide bottom at the top and a funnel shape with a discharge port 2 at the bottom. The inner cylinder shell 3 is made of steel, and the outermost shell 4 is made of thin glass fiber reinforced concrete. Filler concrete 5 is placed between the inner cylindrical shell 3 and the outermost shell 4, and the filling is done on site.
In addition, the outer surface of the inner cylinder shell 3 is filled with concrete 5.
A dowel 6 is welded to prevent slippage.
FIG. 3 shows a more detailed sectional view. i.e. 7
An H-shaped spacer connects the inner cylindrical shell 3 and the outermost shell 4, and is bonded to the inner cylindrical shell 3 by welding 8 and to the outermost shell 4 by adhesive 9. 10 is a reinforcing steel, and the filling concrete 5 is reinforced concrete. By making the outermost shell 4 made of glass fiber reinforced concrete, it can serve as a surface coating and a burial formwork.
It is possible to manufacture thick and thin shells. In FIG. 1, 11 indicates a leg body.
次にサイロ1の建設方法を第4図に基づいて説
明する。内筒殻3は工場で製作され、現場に輸送
される。この内筒殻3の外面にはジベル6が溶接
されている。最外殻4が工場で製作される。最外
殻4は夫々が円錐台であるので、例えば台車12
によつて嵩張らないように重ねて輸送できる。最
外殻4の重量は、径が6mのもので板厚を6mm、
幅を1m、単位重量を2t/m3とすると1枚は約
230Kgである。サイロ1の高さが20mであつたと
しても輸送総重量は5tonですむ程、最外殻シエル
は軽量である。現場に着いた最外殻4はクレーン
13で1個づつ持ち上げられ、内筒殻3に上方か
ら嵌めこまれる。嵌め込み後にスペーサ7が取付
けられ、最外殻4は内筒殻3に一体化される。そ
して両者3,4間に鉄筋10が組込まれる。セツ
トされた最外殻4の下部接合線の水密性を例えば
接着剤などで十分にした後、生コンプラントで作
られたコンクリートをコンクリートポンプ14な
らびにコンクリートパイプ15で輸送し、内筒殻
3と最外殻4との間に充てんする。この隙間は約
20cm〜5cmと考える。その後、内筒殻3の内面の
各所に取付けた型枠バレプレータを作動させて締
め固める。なお充てんコンクリートを鋼繊維補強
コンクリートにすれば鉄筋組みを減少でき、コン
クリート打設も容易である。 Next, a method of constructing the silo 1 will be explained based on FIG. 4. The inner cylinder shell 3 is manufactured at a factory and transported to the site. A dowel 6 is welded to the outer surface of the inner cylindrical shell 3. The outermost shell 4 is manufactured in a factory. Since each of the outermost shells 4 is a truncated cone, for example, the cart 12
They can be stacked and transported to avoid bulk. The weight of the outermost shell 4 is one with a diameter of 6 m and a thickness of 6 mm.
If the width is 1m and the unit weight is 2t/ m3 , one piece is approximately
It is 230Kg. The outermost shell is so light that even if the height of silo 1 is 20 m, the total transportation weight is only 5 tons. The outermost shells 4 that have arrived at the site are lifted one by one by a crane 13 and fitted into the inner cylindrical shell 3 from above. After fitting, the spacer 7 is attached, and the outermost shell 4 is integrated with the inner cylindrical shell 3. A reinforcing bar 10 is then installed between both 3 and 4. After making the lower joint line of the set outermost shell 4 sufficiently watertight with adhesive, for example, the concrete made from the ready-mixed concrete is transported by the concrete pump 14 and concrete pipe 15, and the inner and outermost shells 3 and the outermost shell 4 are connected to each other. It is filled between the outer shell 4 and the outer shell 4. This gap is approximately
Think 20cm to 5cm. Thereafter, the formwork valve platers attached to various locations on the inner surface of the inner cylindrical shell 3 are operated to compact it. Furthermore, if the filling concrete is made of steel fiber reinforced concrete, the number of reinforcing bars can be reduced and concrete pouring becomes easier.
第5図にサイロ1の別な建設方法を示す。この
場合に内筒殻3も複数に分割されており、相対応
する分割体同士がスペーサ7を介して一体化して
ある。この一体化したブロツクを現場に搬入し、
現場でそのブロツクを積みあげ、分割した内筒殻
3を溶接(うらなみ溶接)し、コンクリートを打
設するものである。16は打設時のシールを示
す。 Figure 5 shows another method of constructing silo 1. In this case, the inner cylindrical shell 3 is also divided into a plurality of parts, and the corresponding divided bodies are integrated with each other via a spacer 7. This integrated block is delivered to the site,
The blocks are piled up on site, the divided inner cylinder shell 3 is welded (backside welding), and concrete is poured. 16 shows a seal at the time of pouring.
以上述べたように本考案のサイロ等の筒状構造
物によると、鋼製の内筒殻と、ガラス繊維補強コ
ンクリート製の最外殻と、これら内筒殻と最外殻
との間に打設した充てんコンクリートとからなる
から、次のような効果を期待できる。 As described above, according to the cylindrical structure such as a silo of the present invention, the inner cylindrical shell made of steel, the outermost shell made of glass fiber reinforced concrete, and the space between the inner cylindrical shell and the outermost shell. The following effects can be expected because the concrete is made of concrete.
Γ 気密性、断熱性、防湿性、耐候性、座屈性、
耐震性が優れている。Γ Airtightness, heat insulation, moisture resistance, weather resistance, buckling resistance,
Excellent earthquake resistance.
Γ ガラス繊維補強コンクリート製の最外殻を埋
設し型殺し型枠として用いることができ、特別
な型枠や強固な足場を必要としない。Γ The outermost shell made of glass fiber-reinforced concrete can be buried and used as a mold-killing formwork, and special formwork or strong scaffolding is not required.
Γ ガラス繊維補強コンクリート製の最外殻は非
常に軽量であり、現場工事が楽になる。Γ The outermost shell made of glass fiber reinforced concrete is extremely lightweight, making site construction easier.
Γ 最外殻の存在によつて、充てんコンクリート
の表面にクラツクが発生することを抑えること
ができ、またコントロールができる。Γ Due to the presence of the outermost shell, it is possible to suppress and control the occurrence of cracks on the surface of the filled concrete.
Γ 最外殻が円錐台状で上部の充てんコンクリー
トの厚みが小さいため筒状構造物を軽量化で
き、若しくは背を高くすることができる。Γ Since the outermost shell is shaped like a truncated cone and the thickness of the filled concrete at the top is small, the cylindrical structure can be made lighter or taller.
Γ 最外殻はその表面を美麗に製作できるため、
特別な表面処理、化粧を行なわなくても外観は
美しいものにできる。特に最外殻にカラーセメ
ントを用いたり、表面にレリーフを施したりす
れば商品価値が増加する。Γ Because the outermost shell can be made with a beautiful surface,
A beautiful appearance can be achieved without special surface treatment or makeup. In particular, the commercial value will increase if colored cement is used for the outermost shell or relief is applied to the surface.
Γ 最外殻は円周方向に接合部がないので、打設
時のコンクリートの側圧を十分に受け止められ
る。Γ Since the outermost shell has no joints in the circumferential direction, it can sufficiently absorb the lateral pressure of concrete during pouring.
Γ 吹付コンクリートに比べると養生条件がよ
い。Γ Curing conditions are better than shotcrete.
Γ 最外殻は円筒軸方向に分割されているので、
コンクリート打設はこの最外殻を現場でセツト
するごとく行なえばよく、スペーーサにより内
筒殻と最外殻の間隔を適正に保つて充てんコン
クリートを打設することができ、またジベルに
より充てんコンクリートのずれや分離を防止で
きる。Γ Since the outermost shell is divided in the direction of the cylinder axis,
Concrete pouring can be carried out by setting this outermost shell on site, and the spacer allows the filling concrete to be placed while maintaining the appropriate distance between the inner cylinder shell and the outermost shell, and the dowel allows the filling concrete to be placed. It can prevent misalignment and separation.
第1図〜第3図は本考案の一実施例を示し、第
1図は外観図、第2図は縦断正面図、第3図は要
部の斜視図、第4図、第5図は夫々建設状態を示
す説明図である。
1……サイロ、3……内筒殻、4……最外殻、
5……充てんコンクリート、6……ジベル、7…
…スペーサ、10……鉄筋。
Figures 1 to 3 show an embodiment of the present invention, with Figure 1 being an external view, Figure 2 being a vertical front view, Figure 3 being a perspective view of the main parts, and Figures 4 and 5 being It is an explanatory view showing a construction state, respectively. 1... Silo, 3... Inner cylinder shell, 4... Outermost shell,
5... Filled concrete, 6... Jibel, 7...
...Spacer, 10...Reinforcing bar.
Claims (1)
された鋼製の内筒殻と、前記内筒殻を囲んで配設
された円錐台状のガラス繊維補強コンクリート製
最外殻と、前記内筒殻と最外殻を連結するスペー
サと、これら内筒殻と最外殻との間に打設した充
てんコンクリートからなることを特徴とするサイ
ロ等の筒状構造物。 An inner cylindrical shell made of steel with a dowel for preventing concrete slipping protruding from the outer peripheral surface, a truncated conical outermost shell made of glass fiber-reinforced concrete surrounding the inner cylindrical shell, and the inner cylindrical shell. A cylindrical structure, such as a silo, characterized by comprising a spacer connecting the inner cylindrical shell and the outermost shell, and filled concrete placed between the inner cylindrical shell and the outermost shell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981086942U JPS6126225Y2 (en) | 1981-06-12 | 1981-06-12 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981086942U JPS6126225Y2 (en) | 1981-06-12 | 1981-06-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57199594U JPS57199594U (en) | 1982-12-18 |
JPS6126225Y2 true JPS6126225Y2 (en) | 1986-08-06 |
Family
ID=29882153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1981086942U Expired JPS6126225Y2 (en) | 1981-06-12 | 1981-06-12 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6126225Y2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5777493A (en) * | 1980-10-27 | 1982-05-14 | Kajima Corp | Concrete structure manufactured in consideration of temperature stress |
-
1981
- 1981-06-12 JP JP1981086942U patent/JPS6126225Y2/ja not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5777493A (en) * | 1980-10-27 | 1982-05-14 | Kajima Corp | Concrete structure manufactured in consideration of temperature stress |
Also Published As
Publication number | Publication date |
---|---|
JPS57199594U (en) | 1982-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100743913B1 (en) | Volumetric modular building system | |
CN108316477B (en) | Node connecting structure in flat steel tube concrete column and section steel beam and construction method | |
US3824751A (en) | Precast concrete wall structure for waste treatment tanks | |
CN107269085B (en) | A kind of construction method of large-diameter concrete silo top conical shell structure | |
CN107165273A (en) | A kind of assembled beam-column Joint design method of explosion-proof protecting against shock | |
CN111749346B (en) | Extension joint containing prefabricated concrete-filled steel tube core column component and construction method | |
JPS6126225Y2 (en) | ||
US4878329A (en) | Structural panels for walls, floors and roofs having exterior metal layers and an insulating concrete core | |
JPH0154511B2 (en) | ||
JPH01268971A (en) | Transfer construction of masonry wall body of existing structure | |
JPH0314483Y2 (en) | ||
JPH0434161A (en) | Centrifugally molded hollow pc concrete column and column construction method | |
CN112030990A (en) | Assembled concrete-filled steel tube supporting system and construction method thereof | |
CA3062147A1 (en) | Prefabricated self-supporting module for making building structures, more particularly swimming pools | |
CN211974016U (en) | Prefabricated component connected node structure | |
CN220225782U (en) | Structure heat preservation integrated double-sided superposed outer wall | |
US20070094968A1 (en) | Lightweight concrete panel and method of building structural members | |
CN211647522U (en) | Steel pipe bundle concrete structure of circular silo bottom of storehouse decompression awl | |
JPS64550B2 (en) | ||
JPS6353350B2 (en) | ||
JPH059363Y2 (en) | ||
JP2677159B2 (en) | Structure using covered steel tube concrete columns | |
JPH03156074A (en) | Construction method for sheet-lined reinforced concrete silo | |
JP2561132Y2 (en) | Column / beam mixed structure | |
JPH0414221B2 (en) |