JPS61260709A - Tuning fork type crystal resonator - Google Patents

Tuning fork type crystal resonator

Info

Publication number
JPS61260709A
JPS61260709A JP10248085A JP10248085A JPS61260709A JP S61260709 A JPS61260709 A JP S61260709A JP 10248085 A JP10248085 A JP 10248085A JP 10248085 A JP10248085 A JP 10248085A JP S61260709 A JPS61260709 A JP S61260709A
Authority
JP
Japan
Prior art keywords
axis
crystal
frequency
tuning fork
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10248085A
Other languages
Japanese (ja)
Inventor
Tadashi Ishii
正 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP10248085A priority Critical patent/JPS61260709A/en
Publication of JPS61260709A publication Critical patent/JPS61260709A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To improve resonance frequency temperture characteristic by selecting the Z' axis obtained by turning a crystal by an angle of alpha (2 deg.-6 deg.) around the X axis as the thickness direction and selecting the X' axis obtained by turning the crystal by an angle of theta (6 deg.-10 deg.) around the Z' axis as the broadwise direction and using the cut crystal chip. CONSTITUTION:A crystal chip (a) is a crystal chip while being turned by an angle alpha with respect to the X axis by, e.g., alpha=2 deg.-6 deg., and a crystal chip (b) is a crystal chip cut out by turning the crystal around the Z' axis by an angle theta, e.g., theta=6 deg.-10 deg.. Then a crystal chip C forming a tuning fork is cut out while the lengthwise direction is taken as the Y'' axis, the broadwise direction is taken as the X' axis, the thickness direction is takes as the Z' axis on the plane comprising the X' axis and the Y'' axis. An exciting voltage is fed to each electrode provided to vibration arms 12, 13 of the crystal chip 1 through the leads 15, 16. The vibration of the vibration arms 12, 13 is vibrated at a prescribed frequency region by making the torsional vibrating frequency of the part (m) coincident with the bending vibration frequency of the part (n).

Description

【発明の詳細な説明】 (産業−(二の利用分野) 本発明は音叉形水晶振動子に係り、特に小形で共振周波
数温度特性の良好な音叉形水晶振動子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industry - (Second Field of Application)) The present invention relates to a tuning fork crystal resonator, and particularly to a tuning fork crystal resonator that is small and has good resonance frequency temperature characteristics.

(従来技術) 時計用水晶振動子としては従来+5°×Y屈曲振動を利
用した音叉形水晶振動子が最も多く用いられている。そ
して、この屈曲振動を利用した音叉形水晶振動子は小形
であり、また、共振周波数も低いので発振回路として消
費電力の小さいC〜MO5集積回路が用いられている。
(Prior Art) Tuning fork crystal oscillators that utilize +5°×Y bending vibration are most commonly used as quartz crystal oscillators for watches. Since the tuning fork crystal resonator that utilizes this bending vibration is small and has a low resonance frequency, a C to MO5 integrated circuit with low power consumption is used as an oscillation circuit.

また一方、時計用水晶振動子として、周波数温度特性が
3次曲線であり、その特性のモ担部の温度範囲の広いA
Tカット水晶振動子も用いられている。
On the other hand, as a watch crystal oscillator, the frequency temperature characteristic is a cubic curve, and the temperature range of the characteristic portion is wide.
T-cut crystal resonators are also used.

(従来技術の問題点) 上述の屈曲振動を利用した音叉形水晶振動子の周波数温
度特性は第4図のBに示す曲線の如く、放物線を描く2
次曲線である。
(Problems with the prior art) The frequency-temperature characteristics of the above-mentioned tuning fork-shaped crystal resonator using bending vibration form a parabola, as shown in the curve B in Figure 4.
The following curve is

従って、その頂点温度を規定しても実際に使用する温度
との間には次の様な周波数偏差を生じる。
Therefore, even if the peak temperature is defined, the following frequency deviation occurs between it and the temperature actually used.

Δ f/ f=   k  (To   T+)2Δf
/f:Toに於る周波数からのズレT1 :使用温爪 に:2次係数 To :頂点温度 1、式より温度差が広がれば広がる程、周波数の変化が
問題となり、また、周波数温度特性のモ担となる温度範
囲も狭いので、例えば、置き時計などに使用した場合に
は、環境の温度変化に直接影響され一般に歩度のSれと
なる誤差を生じ、高精度の時計が得られない欠点を生ず
る。
Δf/f=k (To T+)2Δf
/f: Deviation from the frequency in To: T1: For the temperature used: Quadratic coefficient To: Peak temperature 1. From the formula, the wider the temperature difference, the more the frequency change becomes a problem, and the frequency temperature characteristic Since the temperature range that can be used is narrow, for example, when used in a table clock, etc., it is directly affected by changes in the temperature of the environment and generally causes an error in the rate, making it impossible to obtain a highly accurate clock. arise.

また、時計用水晶振動子としてはすべり振動を利用した
ATカット水晶振動子も用いられており、このATカッ
ト水晶振動子にてはその周波数温度特性は3次曲線なっ
ている。そして、その特性のi+ztuとなっている温
度範囲が広いので1例えば年差数秒程度の高精度の時計
が得られるが、共振周波数が数MH1と高いため、動作
速度の遅いC−MO3集積回路の利用ができない。従っ
て、C−MO3集積回路を利用するには、周波数の分周
段数を多くするか、またはATカンl木晶振動r−の厚
さを大にしてその共振周波数を低くせねばならず、前者
の場合には回路が複雑になるとともに消費電力が増加と
なり、後者の場合には水晶揚動f−自体の寸法が大きく
なってしまう等の欠点を生ずる。
Furthermore, an AT-cut crystal oscillator that utilizes shear vibration is also used as a watch crystal oscillator, and the frequency-temperature characteristic of this AT-cut quartz crystal oscillator has a cubic curve. Since the temperature range of its characteristic i + ztu is wide, it is possible to obtain a highly accurate clock with a difference of a few seconds per year, for example, but because the resonance frequency is as high as several MH1, it is difficult to use the C-MO3 integrated circuit, which has a slow operating speed. Not available. Therefore, in order to use the C-MO3 integrated circuit, it is necessary to increase the number of frequency division stages or increase the thickness of the AT can l wood crystal vibration r- to lower its resonant frequency. In the latter case, the circuit becomes complicated and the power consumption increases, and in the latter case, there are disadvantages such as the size of the crystal lift itself becomes large.

(発明の目的) 本発明の目的は、L記の如き従来の欠点を解消し、小形
で消費電力が少なく、共振周波数温度特性の良好な音叉
形水晶振動f−を提供するにある。
(Object of the Invention) An object of the present invention is to eliminate the conventional drawbacks as described in L, and to provide a tuning fork-shaped crystal vibrating f- that is small, consumes little power, and has good resonance frequency temperature characteristics.

(発明の概要) 本発明では音叉形水晶振動子において、該水晶振動子は
、水晶結晶体のX軸を中心軸としてα(2°〜6°)の
角度を回転して得たZ′軸を厚み方向とし、該Z′軸を
中心軸としてθ(6°〜lO°)の角度を回転して得た
X′軸を幅方向として切取られた水晶片より作られ、f
g叉を形成する振動腕の表裏面および両側面に、該振動
腕の所定の部分に捩り振動を、他の所定の部分に屈曲振
動な生ぜしめる電極を設けた音叉形水晶振動子が提供さ
れる。
(Summary of the Invention) In the present invention, in a tuning fork-shaped crystal resonator, the crystal resonator has a Z' axis obtained by rotating an angle of α (2° to 6°) around the X axis of the crystal. is the thickness direction, and is made from a crystal piece cut with the X' axis obtained by rotating the Z' axis at an angle of θ (6° to lO°) as the central axis, and the width direction is f.
A tuning fork-shaped crystal resonator is provided in which electrodes are provided on the front and back surfaces and both side surfaces of a vibrating arm forming a g-fork to generate torsional vibration in a predetermined portion of the vibrating arm and bending vibration in another predetermined portion. Ru.

(実施例) つぎに本発明の実施例について図面を用いて詳細に説明
する。
(Example) Next, an example of the present invention will be described in detail using the drawings.

第1図は本発明に係る音叉形水晶振動子の一実施例を示
す斜視図であり、第2図は水晶の結晶体の座標軸よりの
切出し角度の説明図である。
FIG. 1 is a perspective view showing an embodiment of a tuning fork-shaped crystal resonator according to the present invention, and FIG. 2 is an explanatory diagram of the cutting angle from the coordinate axis of the crystal body of the crystal.

第2図において、x、y、zは結晶体の電気軸、機械軸
、光軸の各軸方向を示し、aはX軸について角度α、例
えばα=2°〜6°を回転した状態で切出した水晶片で
ある。そして、回転以前のY軸、X軸を、該回転以後の
それぞれY′軸、Z′軸とする。つぎに、bはZ′軸を
中心軸とし、角度0、例えばθ−6°〜10’として回
転して切出した水晶片であり、該回転以前のX軸、Y′
軸をそれぞれ回転以後のX′軸、Y ”軸とする。そし
て、X′軸、Y ″軸よりなる面上に、長手方向をY′
軸、幅方向をX′軸、厚み方向をZ′軸とした音叉形を
形成する水晶片Cを切出す。
In Fig. 2, x, y, and z indicate the electrical, mechanical, and optical axes of the crystal, and a indicates the rotation angle α, e.g., α=2° to 6°, about the X axis. This is a cut out piece of crystal. The Y-axis and the X-axis before the rotation are defined as the Y'-axis and the Z'-axis after the rotation, respectively. Next, b is a crystal piece cut out by rotating it at an angle of 0, for example θ-6° to 10', with the Z' axis as the central axis, and before the rotation, the X axis, Y'
Let the axes be the X' axis and Y'' axis after rotation, respectively. Then, on the plane consisting of the X' axis and Y'' axis, the longitudinal direction is Y'
A crystal piece C forming a tuning fork shape with the axis and width direction as the X' axis and the thickness direction as the Z' axis is cut out.

従って、水晶片Cの幅方向のX′軸、および厚み方向の
Z′軸は、前記結晶体のX軸より角度θ、およびX軸よ
り角度αをそれぞれ有している。
Therefore, the X' axis in the width direction and the Z' axis in the thickness direction of the crystal piece C have an angle θ from the X axis of the crystal and an angle α from the X axis, respectively.

第1図において、lは水晶片Cの長手方向の端部から切
込み11を刻設し、基部14にて連結された一対の振動
腕12.13を有する音叉形状の水晶片である。そして
、第1図(b)は第1図(a)に示す水晶片1を矢印A
の逆方向より示した斜視図である。
In FIG. 1, reference numeral 1 designates a tuning fork-shaped crystal piece having a notch 11 cut from the longitudinal end of the crystal piece C and a pair of vibrating arms 12 and 13 connected at a base 14. FIG. 1(b) shows the crystal piece 1 shown in FIG. 1(a) as indicated by the arrow A.
It is a perspective view shown from the opposite direction.

水晶片1の一方の振動腕12の長さ皇の、L方より所定
の長さmの部分の表裏面には、それぞれ一対の電極12
1.122と電極123.124が配設され、振動腕1
2を介して相対する電極121と123、電極122と
124とはそれぞれ接続電極125および126とによ
り接続され、それぞれ回−極性の電極を構成している。
A pair of electrodes 12 are provided on the front and back surfaces of a portion of the crystal piece 1 at a predetermined length m from the L side of the length of one vibrating arm 12.
1.122 and electrodes 123 and 124 are arranged, and the vibrating arm 1
Electrodes 121 and 123 and electrodes 122 and 124, which face each other via 2, are connected by connection electrodes 125 and 126, respectively, and constitute polarity electrodes, respectively.

また、他方の振動腕13の長さ2の、−F方より所定の
長さmの部分の表裏面には、それぞれ一対の電極131
.132と電極133と134が配設され、振動腕13
を介して相対する電極131と133、電極132と1
34とはそれぞれ接続電極135および136とにより
接続され、それぞれ回−極性の電極を構成している。
In addition, a pair of electrodes 131 are respectively provided on the front and back surfaces of a portion of the length 2 of the other vibrating arm 13 that is a predetermined length m from the −F direction.
.. 132 and electrodes 133 and 134 are arranged, and the vibrating arm 13
Electrodes 131 and 133, electrodes 132 and 1 facing each other via
34 are connected to connection electrodes 135 and 136, respectively, and constitute polarity electrodes.

第3図(a)は第1図(a)1こ示す切断線I−■に沿
った断面図であり、振動腕12.13のmの部分の断面
を示している。
FIG. 3(a) is a cross-sectional view taken along the cutting line I--■ shown in FIG. 1(a), and shows the cross section of the vibrating arm 12.

つぎに、水晶片1の一方の振動腕12の前記mの部分の
下方nの部分(n=1−m)の表裏面および両側面に、
それぞれ電極127a、127bおよび電極128a、
128bが配設されている。そして、電極127aと1
27bとは前記接続電極125により、電極128aと
128bとは接続電極129bによりそれぞれ同一極性
の電極となる如く接続されている。
Next, on the front and back surfaces and both sides of the n portion (n=1-m) below the m portion of one vibrating arm 12 of the crystal piece 1,
electrodes 127a, 127b and electrode 128a, respectively;
128b is provided. Then, the electrodes 127a and 1
27b is connected to the connecting electrode 125, and the electrodes 128a and 128b are connected to the connecting electrode 129b so that they have the same polarity.

また、他方の振動腕13の前記mの部分の下方、nの部
分の表裏面および両側面に、それぞれ電極137a、1
37bおよび電極138a、138bが配設されている
。そして、電極137aと137bとは前記接続電極1
35により、電極138aと138bとは接続電極13
9aによりそれぞれ同一極性の電極となる如く接続され
ている。
Furthermore, electrodes 137a and 1 are provided below the m portion of the other vibrating arm 13, and on the front and back surfaces and both side surfaces of the n portion, respectively.
37b and electrodes 138a, 138b are provided. The electrodes 137a and 137b are the connection electrode 1.
35, the electrodes 138a and 138b are connected to the connecting electrode 13.
The electrodes 9a are connected to each other so that the electrodes have the same polarity.

第3図(b)は第1図(a)に示す切断線U−1に沿っ
た断面図であり、振動腕12.13のnの部分の断面を
示している。
FIG. 3(b) is a sectional view taken along the cutting line U-1 shown in FIG. 1(a), and shows a cross section of a portion n of the vibrating arm 12.13.

つぎに、第1図において、水晶片lの基部14に設けた
129aは電極127aと電極138bとを接続する接
続電極であり、139bは電極137bと電極128a
とを接続する接続電極である。従って、上述の振動腕1
2.13に配設した電極はすべて対の電極を有する如く
接続されている。そして、例えば、接続電極129a、
139bにリード線15.16を接続し、C−MO3集
積回路などにて励振すれば水晶片1は音叉形水晶振動子
として振動する。
Next, in FIG. 1, 129a provided on the base 14 of the crystal piece l is a connecting electrode that connects the electrode 127a and the electrode 138b, and 139b is a connecting electrode that connects the electrode 137b and the electrode 128a.
It is a connection electrode that connects the Therefore, the above-mentioned vibrating arm 1
The electrodes arranged in 2.13 are all connected to have a pair of electrodes. For example, the connection electrode 129a,
When lead wires 15 and 16 are connected to 139b and excited by a C-MO3 integrated circuit or the like, the crystal piece 1 vibrates as a tuning fork crystal resonator.

つぎに、このような構成の本実施例の作動について説明
する。水晶片lの振動腕12.13に配設した各電極に
C−MO3集積回路などの発振回路より、リード線15
.16を通じて励振電圧を加えると、振動腕12.13
の前記mの部分の電極121,123,131および1
33には一方の同一極性の電圧が与えられ、電極122
,124.132および134には他方の同一極性の電
圧が印加される。このため、$3図(0)に示す如く、
振動腕12.13は交互に捩れて所定の周波数で振動す
る。そして、捩りの主な振動はすべり振動であるため、
その周波数温度特性は第4図Aに示す様な曲線となる。
Next, the operation of this embodiment having such a configuration will be explained. A lead wire 15 is connected to each electrode arranged on the vibrating arm 12 and 13 of the crystal piece l from an oscillation circuit such as a C-MO3 integrated circuit.
.. When an excitation voltage is applied through 16, the vibrating arm 12.13
The electrodes 121, 123, 131 and 1 of the m portion of
33 is given one voltage of the same polarity, and the electrode 122
, 124, 132 and 134 are applied with the other voltage of the same polarity. Therefore, as shown in Figure 3 (0),
The vibrating arms 12,13 alternately twist and vibrate at a predetermined frequency. And since the main vibration of torsion is sliding vibration,
Its frequency-temperature characteristic becomes a curve as shown in FIG. 4A.

また、リード線15.16に励振電圧を加えることによ
り、振動腕12.13の前記nの部分には、電極127
a、127b、138aおよび138bが一方の同一極
性であり、電極128a。
Further, by applying an excitation voltage to the lead wire 15.16, the electrode 127 is placed on the n portion of the vibrating arm 12.13.
a, 127b, 138a and 138b are of the same polarity, and electrode 128a.

128b、137aおよび137bに他方の同一極性の
電圧が印加される。このため、第3図(d)に示す如く
、振動腕12.13は逆ハ字形を開閉する如く交互に屈
伸して所定の周波数で振動する。そして、該振動の周波
数温度特性は第4図のBに示す如く2次曲線となる。
The other voltage of the same polarity is applied to 128b, 137a and 137b. For this reason, as shown in FIG. 3(d), the vibrating arms 12 and 13 alternately bend and extend as if opening and closing in an inverted V shape, and vibrate at a predetermined frequency. The frequency-temperature characteristic of the vibration becomes a quadratic curve as shown in B of FIG.

従って、振動子としては振動腕12.13の振動は、m
の部分の捩り振動周波数と、nの部分の屈曲振動周波数
を一致させる事により、所定の周波数領域に於て振動す
る振動子となる。
Therefore, as a vibrator, the vibration of the vibrating arm 12.13 is m
By matching the torsional vibration frequency of the portion n with the bending vibration frequency of the n portion, a vibrator that vibrates in a predetermined frequency range is obtained.

そして、その周波数温度特性は、第4図のCに示す如く
、第4図のAとBとの周波数温度特性を合成したものと
なり、広い温度範囲にわたって平担な周波数温度特性と
なる。これは円振動モードが、ある周波数範囲で結合を
起した場合にのみ、生じる引込み現象であり両者の特性
が、共合されたものとなるからである。なお、振動腕1
2,13のmの部分とLの部分の比率を変化すると周波
数温度特性を変えることが可能であり、本実施例にては
、m/n=1/3〜2/3 (m+n=f)として、m
およびnを選定しており、広い温度範囲にわたって周波
数温度特性の平担な音叉形水晶振動子を得ている。
The frequency-temperature characteristic is a combination of the frequency-temperature characteristics of A and B in FIG. 4, as shown in C in FIG. 4, and is a flat frequency-temperature characteristic over a wide temperature range. This is because the circular vibration mode is an entrainment phenomenon that occurs only when coupling occurs in a certain frequency range, and the characteristics of both modes are combined. In addition, vibrating arm 1
It is possible to change the frequency temperature characteristics by changing the ratio of the m part and the L part of 2 and 13, and in this example, m/n=1/3 to 2/3 (m+n=f) As, m
and n are selected to obtain a tuning fork crystal resonator with flat frequency-temperature characteristics over a wide temperature range.

なお本発明を一実施例により説明したが、本発明の主旨
の範囲内で種々の変形が可能であり、これらを本発明の
範囲から排除するものではない。
Although the present invention has been described by way of one embodiment, various modifications can be made within the scope of the gist of the present invention, and these are not excluded from the scope of the present invention.

(発明の効果) 以上詳細に説明したように、本発明は水晶片の切断角度
を結晶体のX軸を0:=6°〜lO0の範囲で傾けたX
 軸とし、結晶体のZ軸をα−2゜〜6°の範囲で傾け
たZ′軸として切断し、前記の各’il極を設けて紬振
電極として音叉形水晶振動rを構成[7たので13.衷
1“1叉形水晶振動rは捩り振動と屈曲振動iを合成し
た振動モードにて所足の周波数にて振動し、その周波数
温度特性も合成された広い温I片範囲にわたり+−担部
の広い良tl’fな周波数温度時+’Iを44)ること
がnl能である。
(Effects of the Invention) As explained in detail above, the present invention provides a cutting angle of the crystal piece with the X axis of the crystal tilted in the range of 0:=6° to
The Z axis of the crystal is cut as the Z' axis tilted within the range of α-2° to 6°, and each of the above-mentioned 'il poles is provided to form a tuning fork-shaped crystal vibrating r as a pongee vibration electrode [7 So 13. 1. The single-pronged crystal vibration r vibrates at a desired frequency in a vibration mode that is a combination of torsional vibration and bending vibration i, and its frequency temperature characteristics also vary over a wide range of temperature I parts. It is possible to increase +'I at a wide frequency temperature of 44).

また、本発明によれば、小形で低消費電力である1゛1
−叉形水晶振動fの利点をそのまま維持できるので、腕
時、11に使用の場合、長B!fl’lにわたって誤X
・の少ない時、;1の提供かり能である。
Further, according to the present invention, the 1゛1 is small and has low power consumption.
- Since the advantages of the forked crystal vibration f can be maintained, it is possible to use long B when used on the arm and 11! False over fl'l
When ・is small, it is possible to provide ;1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るB′f叉形水晶振動子の一実施例
を示す斜視図、第2図は結晶体の座標軸よりの切出し角
度の説明図、第3図は振動腕の断面図および振動状態の
説明図、第4図は水晶振動子の周波数変化率と温度との
関連を示す曲線図である。 l・・・水晶片、12.13・・・振動腕、121.1
22,123,124,131,132.133,13
4・・・電極。 1 2 7  a  、  l  2 7  b  、
1 2 8  a  、  l  2 8  b  、
  137a 、137b 、138a、138b・・
・電極、C・・・水晶J1゜
Fig. 1 is a perspective view showing an embodiment of the B'f forked crystal resonator according to the present invention, Fig. 2 is an explanatory view of the cutting angle from the coordinate axis of the crystal, and Fig. 3 is a cross-sectional view of the vibrating arm. and an explanatory diagram of the vibration state, and FIG. 4 is a curve diagram showing the relationship between the frequency change rate of the crystal resonator and the temperature. l... Crystal piece, 12.13... Vibrating arm, 121.1
22,123,124,131,132.133,13
4... Electrode. 1 2 7 a, l 2 7 b,
1 2 8 a, l 2 8 b,
137a, 137b, 138a, 138b...
・Electrode, C...Crystal J1゜

Claims (1)

【特許請求の範囲】[Claims]  音叉形水晶振動子において、該水晶振動子は、水晶結
晶体のx軸を中心軸としてα(2°〜6°)の角度を回
転して得たZ′軸を厚み方向とし、該Z′軸を中心軸と
してθ(6°〜10°)の角度を回転して得たX′軸を
幅方向として切取られた水晶片より作られ、音叉を形成
する振動腕の表裏面および両側面に、該振動腕の所定の
部分に捩り振動、他の所定の部分に屈曲振動を生ぜしめ
る電極を設けたことを特徴とする音叉形水晶振動子。
In a tuning fork-shaped crystal resonator, the thickness direction of the crystal resonator is the Z' axis obtained by rotating the crystal by an angle of α (2° to 6°) about the x-axis of the crystal. It is made from a crystal piece cut out with the width direction of the X' axis obtained by rotating the angle of θ (6° to 10°) around the central axis, and is attached to the front and back surfaces and both sides of the vibrating arm that forms the tuning fork. A tuning fork crystal resonator, characterized in that electrodes are provided for producing torsional vibration in a predetermined part of the vibrating arm and bending vibration in another predetermined part.
JP10248085A 1985-05-14 1985-05-14 Tuning fork type crystal resonator Pending JPS61260709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10248085A JPS61260709A (en) 1985-05-14 1985-05-14 Tuning fork type crystal resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10248085A JPS61260709A (en) 1985-05-14 1985-05-14 Tuning fork type crystal resonator

Publications (1)

Publication Number Publication Date
JPS61260709A true JPS61260709A (en) 1986-11-18

Family

ID=14328615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10248085A Pending JPS61260709A (en) 1985-05-14 1985-05-14 Tuning fork type crystal resonator

Country Status (1)

Country Link
JP (1) JPS61260709A (en)

Similar Documents

Publication Publication Date Title
US4418299A (en) Face-shear mode quartz crystal vibrators and method of manufacture
US5274297A (en) Quartz resonator vibrating in a fundamental torsion mode
JPS583602B2 (en) Suishiyo Shindoushi
JPH0232807B2 (en)
JPS6013608B2 (en) Thickness sliding piezoelectric vibrator
JP3096472B2 (en) SC-cut crystal unit
JPS6316169Y2 (en)
JPS5851687B2 (en) Tuning fork crystal oscillator
JPS61260709A (en) Tuning fork type crystal resonator
JPH11177376A (en) Sc-cut crystal resonator
WO2002031975A1 (en) Torsional vibrator
JPH06112761A (en) Tortion crystal vibrator
JPS5851689B2 (en) Tuning fork crystal oscillator
JPH11225040A (en) Sc-cut crystal vibrator
JP2000040937A (en) Crystal resonator for sc cut
JP3231055B2 (en) SC-cut crystal unit
JPS587702Y2 (en) Width-slip crystal oscillator
JPS5827547Y2 (en) crystal oscillator
JP3135307B2 (en) Torsional crystal oscillator
JPS5850046B2 (en) crystal unit
JPH077363A (en) Crystal oscillator of sc cut
JPS5850049B2 (en) Tuning fork type piezoelectric vibrator
JPS5828767B2 (en) Width shear oscillator
JPS5837150Y2 (en) piezoelectric crystal resonator
JPS583411A (en) Piezoelectric oscillator