JPS61258671A - Series resonance converter - Google Patents

Series resonance converter

Info

Publication number
JPS61258671A
JPS61258671A JP9899785A JP9899785A JPS61258671A JP S61258671 A JPS61258671 A JP S61258671A JP 9899785 A JP9899785 A JP 9899785A JP 9899785 A JP9899785 A JP 9899785A JP S61258671 A JPS61258671 A JP S61258671A
Authority
JP
Japan
Prior art keywords
series
resonant
circuit
capacitor
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9899785A
Other languages
Japanese (ja)
Other versions
JPH0697839B2 (en
Inventor
▲榊▼原 一彦
Kazuhiko Sakakibara
Yutaka Kuwata
豊 鍬田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9899785A priority Critical patent/JPH0697839B2/en
Priority to US06/859,680 priority patent/US4679129A/en
Priority to EP86106338A priority patent/EP0201876B1/en
Priority to DE8686106338T priority patent/DE3687999T2/en
Publication of JPS61258671A publication Critical patent/JPS61258671A/en
Publication of JPH0697839B2 publication Critical patent/JPH0697839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To narrow the varying range of an operating frequency for a variation in a load current by connecting in series a parallel resonator with the AC side terminal of a rectifier. CONSTITUTION:Semiconductor switches 11, 18 are complementarily turned ON and OFF to flow a DC resonance current i1 from DC power sources 12, 19 through a rectifier 13 to a load 14. In this case, a parallel resonator 23 is formed of an inductor 24 and a capacitor 23, and connected in series with a series resonator 26 of a capacitor 16 and an inductor 17. The resonance frequency fs of the resonator 23 is set to a lower value than the resonance frequency f0 of the resonator 26 as the lowest operating frequency of a converter. Thus, when the operating frequency approaches the frequency fs, the impedance of the resonator 23 abruptly increases. Accordingly, the current i1 is abruptly decreased to control an output voltage.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は直列共振回路とこれを直列に接続された整流
回路と半導体スイッチとを備え、直流電力を直流電力に
変換して負荷へ供給する直列共振コンバータに関する。
[Detailed description of the invention] "Industrial application field" This invention includes a series resonant circuit, a rectifier circuit and a semiconductor switch connected in series, converts DC power into DC power, and supplies the DC power to a load. Regarding series resonant converters.

「従来の技術」 直列共振コンバータはインダクタ及びキャパシタの直列
共振回路ど、その直列共振回路と直列に接続された整流
回路と、バイポーラトランジスタ(あるいはMOS)ラ
ンジスタ)、ダイオードなどの半導体スイッチとで構成
される。その半導体スイッチを流れる共振電流は自然消
弧し、半導体スイッチを強制的にオフする必要がないた
め、スイッチング損失が原理的に存在せず、従って高周
波化が容易であり、装置の無騒音化や小形、軽量化の効
果が期待できる。さらに出力特性が本質的に定電流特性
であるため、過負荷や負荷短絡が起っても装置の作護が
容易であるという特徴をもっている。
"Prior Art" A series resonant converter is composed of a series resonant circuit of an inductor and a capacitor, a rectifier circuit connected in series with the series resonant circuit, and a semiconductor switch such as a bipolar transistor (or MOS transistor) or a diode. Ru. The resonant current flowing through the semiconductor switch naturally extinguishes, and there is no need to forcibly turn off the semiconductor switch, so there is no switching loss in principle, and therefore it is easy to increase the frequency, making the device noiseless. The effect of compactness and weight reduction can be expected. Furthermore, since the output characteristics are essentially constant current characteristics, the device can be easily protected even if an overload or load short circuit occurs.

第3図は従来の直列共振コンバータを示す(例えばW8
Me MurraY −’l’he thyristo
r electronictransformer a
 power converter using a 
high −frequency 1ink  、  
IEEETrans on IGA 、 NO4。
Figure 3 shows a conventional series resonant converter (e.g. W8
Me MurraY -'l'he thyristo
r electronic transformer a
power converter using a
high-frequency 1ink,
IEEE Trans on IGA, NO4.

p451)。第4図は第3図の各部の動作波形である。p451). FIG. 4 shows operating waveforms of each part in FIG. 3.

第3図におい丁半導体スイッチ11をオンすると、直流
電源12より半導体スイッチ11−整流回路13−負荷
14(キャパシタ15)−整流回路13−キャパシタ1
6−インダクタ17を通って直流電源12に戻る直列共
振電流’s(実線)が第4図A己示すように流れる。イ
ンダクタ17のインダクタンスを10、キャパシタ16
のキャパシタンスなC11%キャパシタ15のキャパシ
タン−14tC@tとするとC,t>>C,とされであ
るから、i8は流れはじめてからπシーQ−後t:第4
図Aに示すように零となり、その時のキャパシタ16の
電圧が出力電圧(負荷14の電圧)voと直流型@12
の電圧旦との和より大きいと、今度は逆方向にダイ第−
ド21を通じて点線で示すように電流11が流れる。こ
の共振電流i:もインダクタ17とキャパシタ16との
直列共振電流で半周期はπf石]7である。これにとも
なって整流回路13を通してフィルタ用のキャパνり1
5::電流i、が第4図Bに示すように流れる。
When the semiconductor switch 11 is turned on in FIG.
6-A series resonant current 's (solid line) flowing through the inductor 17 and returning to the DC power supply 12 as shown in FIG. 4A. Inductance of inductor 17 is 10, capacitor 16
If the capacitance of C11% capacitor 15 is -14tC@t, then C, t>>C, so i8 is πC Q-after t: 4th from the beginning of flow.
As shown in Figure A, the voltage of the capacitor 16 becomes zero, and the voltage of the capacitor 16 at that time is the output voltage (voltage of the load 14) vo and the DC type @12
If the voltage is larger than the sum of the voltage of
A current 11 flows through the lead 21 as shown by the dotted line. This resonant current i: is also a series resonant current between the inductor 17 and the capacitor 16, and its half period is πf stone]7. Along with this, the capacitor ν1 for the filter is passed through the rectifier circuit 13.
5:: A current i flows as shown in FIG. 4B.

つぎに半導体スイッチ18をオンにすると、第4図Aに
示すように電流i、(実線)が直流電源19よりインダ
クタ17−キャパシタ16−整流回路13−負荷14(
キャパVり15)−整流回路13−半導体スイッチ18
を通して直流電源19に戻るように流れ、一旦零になっ
た後ダイオード22を通じて電流i8が流れる。これら
の電流は整流回路i3を通してフィルタ用のキャパシタ
15を充電する電流i、となり、負荷14に直流電圧を
供給する。
Next, when the semiconductor switch 18 is turned on, as shown in FIG.
Capacitor voltage 15) - Rectifier circuit 13 - Semiconductor switch 18
The current i8 flows through the diode 22 and returns to the DC power supply 19, and once it becomes zero, the current i8 flows through the diode 22. These currents become a current i that charges the filter capacitor 15 through the rectifier circuit i3, and supply a DC voltage to the load 14.

−〜 上述のように半導体スイッチ11.18に流れる電流は
直列共振電流であるから、これら半導体スインf11.
18はオンしてから時間πs/17ス5−の後には電流
が零となるため、これら半導体スイッチ11.18に流
れている電流を強制的に切る必要はなく、従って本質的
にスイッチング損失が存在せず、高周波動作が可能であ
る。
-~ As mentioned above, since the current flowing through the semiconductor switches 11.18 is a series resonance current, these semiconductor switches f11.
18 becomes zero after the time πs/17s 5- after it is turned on, so there is no need to forcibly cut off the current flowing through these semiconductor switches 11 and 18, and therefore there is essentially no switching loss. High frequency operation is possible.

ところでこの従来のコンバータにおいて、整流回路13
を通して負荷側へ伝達される電荷量はキャパシタ16の
電圧変化から計算できる。定常状態では第4図Cの電圧
波形においてV、、=V、;と考えられるから半サイク
ル当りの移動電荷I QoはQO=CG ((V11+
V1! )+(Vtx−Vtx ))=2CeV1g・
・・・・・・・・・・・・・・(1)である。ここでV
llは共振電流が流れる前のキャパシタ16の電圧、v
llは次に共振電流が流れる前のキャパシタ16の電圧
、vllはキャパシタ16のピーク電圧である。動作周
波数、すなわち半導体スイッチ11.18を交互にオン
する周波数なfとすると、電流i、の平均値1.は I、 = QO/1/2 f = 4 CoVl、 f
   ・・・・・・・・・(2)となる。定常状態では
フィルタキャパシタ15の電圧は一定値であるから、電
流I8はすべて負荷14へ供給される。負荷14の抵抗
値をRとすると出力電圧v0は V0= R−1,=(4C,V、、 f )−R−・−
・−・(3)「発明が解決しようとする問題点」 (3)式から直流電圧v0の制御はC0* V1!又は
fのいずれかを制御することにより可能である。C0を
連続的に制御することは現在のところ困難である。
By the way, in this conventional converter, the rectifier circuit 13
The amount of charge transferred to the load side through the capacitor 16 can be calculated from the voltage change of the capacitor 16. In the steady state, the voltage waveform shown in Figure 4C is considered to be V, , = V,; therefore, the moving charge I Qo per half cycle is QO = CG ((V11+
V1! )+(Vtx-Vtx))=2CeV1g・
・・・・・・・・・・・・・・・(1). Here V
ll is the voltage of the capacitor 16 before the resonance current flows, v
ll is the voltage of the capacitor 16 before the next resonant current flows, and vll is the peak voltage of the capacitor 16. Letting f be the operating frequency, that is, the frequency at which the semiconductor switches 11.18 are turned on alternately, the average value of the current i is 1. is I, = QO/1/2 f = 4 CoVl, f
......(2). In a steady state, the voltage across filter capacitor 15 is constant, so all current I8 is supplied to load 14. If the resistance value of the load 14 is R, the output voltage v0 is V0=R-1,=(4C,V,,f)-R-・-
...(3) "Problem to be solved by the invention" From equation (3), the control of DC voltage v0 is C0*V1! or by controlling either f. It is currently difficult to control C0 continuously.

またvl、は定常状態ではトランジスタ11.18とそ
れぞれ並列のダイオード21又は22を通して帰還電流
i:又はi;が流れるので直流電源12゜19でクラン
プされ、Eとなり直流型I!A12.19の電圧を変え
ないと制御できない。従って一般にV、を〒定に保持す
るための電圧制御は動作周波数fを制御することにより
行っている。
In addition, in a steady state, vl flows through the transistors 11 and 18 and the diodes 21 and 22 in parallel with each other, so that the feedback current i: or i; flows, so it is clamped by the DC power source 12°19 and becomes E, which is the DC type I! It cannot be controlled without changing the voltage of A12.19. Therefore, voltage control to maintain V at a constant value is generally performed by controlling the operating frequency f.

しかじの)式かCわかるようにRの値が増加した場合に
はfの値は減少しfが可聴周波数となり、騒音が発生す
るという問題点があった。また動作周波数が負荷変化と
ともに変化することになり雑音対策が困難であった。
As can be seen from equation (C), when the value of R increases, the value of f decreases, and f becomes an audible frequency, causing a problem in that noise is generated. In addition, the operating frequency changes with load changes, making it difficult to take measures against noise.

この発明の目的は無負荷から全負荷まで定電圧制御を行
う場合、動作周波数の変化範囲を少なくするとともに、
最低動作周波数をクランプできる「間軸点を解決するた
めの手段」 この発明は直列共振回路と直列に、共振用キャパνり、
共振用インダクタを並列に接続した並列共振回路を接続
し、その並列共振回路の共振周波数を直列共振回路より
低く選び、直列共振コンバータの動作周波数下限値を並
列共振回路の共振周波数にクランプする。このようにし
て従来の直列共振コンバータでは、出力電圧を無負荷か
ら全負荷まで定電圧制御するための動作周波数の下限値
をクランプすることができなかったが、この発明では下
限周波数をクランプすることができる。
The purpose of this invention is to reduce the range of change in operating frequency when performing constant voltage control from no load to full load.
``Means for solving inter-axis points'' that can clamp the lowest operating frequency This invention uses a resonance capacitor ν in series with a series resonant circuit.
A parallel resonant circuit in which resonant inductors are connected in parallel is connected, the resonant frequency of the parallel resonant circuit is selected to be lower than that of the series resonant circuit, and the lower limit of the operating frequency of the series resonant converter is clamped to the resonant frequency of the parallel resonant circuit. In this way, with conventional series resonant converters, it was not possible to clamp the lower limit of the operating frequency for constant voltage control of the output voltage from no load to full load, but in this invention, it is possible to clamp the lower limit of the frequency. I can do it.

「実施例」 !J1図はこの発明の第1の実施例を示す回路図である
。この例において並列共振回路23がインダクタ24と
キャパシタ25とで構成され、この並列共振回路23は
、キャパシタ16及びインダクタ17の直列共振回路2
6と直列に接続されている。その池、第3図と同一符号
は同一部分を示す。
"Example" ! Figure J1 is a circuit diagram showing a first embodiment of the present invention. In this example, the parallel resonant circuit 23 is composed of an inductor 24 and a capacitor 25, and the parallel resonant circuit 23 is composed of a series resonant circuit 2 of a capacitor 16 and an inductor 17.
6 is connected in series. In the pond, the same reference numerals as in FIG. 3 indicate the same parts.

並列共振回路23のインダクタ24のインダクタンスを
ノ3.キャパシタ25のキャパシタンスなCsとすれば
、並列共振回路23の共振周波数fs=V2 /π/J
石]7を、インダクタ17及びキャパシタ16で構成さ
れる直列共振回路26の共振周波数fo ;V2/π/
Vノ。C0より低く設定し、fsをコンバータの最低動
作周波数とする。直列共振回路26のインピーダンスは
共振周波数fsの点で最大となり動作川波数がf、より
高くなるとインピーダンスは急減する。
The inductance of the inductor 24 of the parallel resonant circuit 23 is expressed as No.3. If the capacitance of the capacitor 25 is Cs, then the resonance frequency of the parallel resonant circuit 23 is fs=V2/π/J
7 is the resonant frequency fo of the series resonant circuit 26 composed of the inductor 17 and the capacitor 16; V2/π/
V no. Set lower than C0, and let fs be the lowest operating frequency of the converter. The impedance of the series resonant circuit 26 reaches its maximum at the resonant frequency fs, and as the operating wave number becomes higher than f, the impedance rapidly decreases.

今、第1図において半導体スイッチ11をオンすると、
直流電源12から半導体スイッチ11−整流回路13−
負荷14(キャバνり15) −Ill。
Now, in FIG. 1, when the semiconductor switch 11 is turned on,
From the DC power supply 12 to the semiconductor switch 11 - rectifier circuit 13 -
Load 14 (Cover νri 15) -Ill.

流口路13−キャパνり16−インダクタ17−並列共
振回路23のループで電流五〇が流れ、負荷14に電力
が供給される。並列共振回路23を通る電流18の周期
は半導体スイッチ11と18を交互にオン、オフさせる
周期、すなわち動作周期となり、大きさは回路のインピ
ーダンス、従って動作周波数によって変わる。動作周波
数が並列共振回路23の共振周波数より充分に大きい場
合には並列共振回路23のインピーダンスは十分に低い
ため電流18の周期は第3図に示した従来例と同じくほ
ぼ1/2/π/V−61−−である。動作周波数が並列
共振回路23の共振周波数に近づくと並列共振回路23
のインピーダンスが急増するため11は急激に減少する
Current 50 flows through the loop of the flow path 13, the capacitor 16, the inductor 17, and the parallel resonant circuit 23, and power is supplied to the load 14. The period of the current 18 passing through the parallel resonant circuit 23 is the period of alternately turning on and off the semiconductor switches 11 and 18, ie, the operating period, and the magnitude changes depending on the impedance of the circuit and therefore the operating frequency. When the operating frequency is sufficiently higher than the resonant frequency of the parallel resonant circuit 23, the impedance of the parallel resonant circuit 23 is sufficiently low, so the period of the current 18 is approximately 1/2/π/ as in the conventional example shown in FIG. V-61--. When the operating frequency approaches the resonant frequency of the parallel resonant circuit 23, the parallel resonant circuit 23
11 decreases rapidly because the impedance of .

次に半導体スイッチ18をオンすると直流電源19−を
列共振回路23−インダクタ17−キャパシタ16−整
流回路13−負荷14(キャパシタ15)−整流回路1
3−半導体スイッチ18を通して共振電流l、が流れる
。電流i、の値も前記の場合と同様、動作周波数によっ
て変化する。
Next, when the semiconductor switch 18 is turned on, the DC power supply 19- is connected to the column resonant circuit 23-inductor 17-capacitor 16-rectifier circuit 13-load 14 (capacitor 15)-rectifier circuit 1
3-A resonant current l, flows through the semiconductor switch 18. Similarly to the above case, the value of the current i also changes depending on the operating frequency.

これで1サイクルの動作が終了する。並列共振回路23
のインピーダンスは動作周波数が共振周波数f、から離
れているときは小さいが、fsに近づくと急激に増加す
る。従ってfs付近においては動作周波数をわずかに変
えることにより、共振電流11、すなわち出力電圧を制
御することができる。
This completes one cycle of operation. Parallel resonant circuit 23
The impedance of is small when the operating frequency is far from the resonant frequency f, but increases rapidly as it approaches fs. Therefore, by slightly changing the operating frequency near fs, the resonant current 11, that is, the output voltage can be controlled.

82図はこの発明の第2の実施例を示す回路図で、直流
入力と出力を絶縁するためにトランスな使った直列共振
コンバータにこの発明を応用したものである。すなわち
トランス27の1次側1を直列共振回路26と直列に接
続し、トランス27の2次側は整流回路13の交流側端
子と接続する。
FIG. 82 is a circuit diagram showing a second embodiment of the present invention, in which the present invention is applied to a series resonant converter using a transformer to isolate DC input and output. That is, the primary side 1 of the transformer 27 is connected in series with the series resonant circuit 26, and the secondary side of the transformer 27 is connected to the AC side terminal of the rectifier circuit 13.

さらにトランス27の1次側と直列に並列共振回路23
を接続する。つまり直列共振回路23と整流回路13と
はトランス27を介して直列に接続される。
Furthermore, a parallel resonant circuit 23 is connected in series with the primary side of the transformer 27.
Connect. That is, the series resonant circuit 23 and the rectifier circuit 13 are connected in series via the transformer 27.

この第2の実施例による動作は第1図に示した第1の実
施例6:よる動作と同一であるため説明は省略する。こ
の第2の実施例によれば入力側と出力側とを絶縁でき、
トランス27の巻数比nL/nsにより出力電圧を自由
に設定できる。
The operation according to the second embodiment is the same as the operation according to the first embodiment 6 shown in FIG. 1, so a description thereof will be omitted. According to this second embodiment, the input side and the output side can be isolated,
The output voltage can be freely set by adjusting the turns ratio nL/ns of the transformer 27.

「発明の効果」 以上説明したようにこの発明は並列共振回路を整流回路
の交流側端子と直列に接続したので、負荷電流の変化に
対して動作周波数の変化範囲を狭くすることができ、直
列共振コンバータを可聴領域外で動作させることが可能
である。従ってバイポーラトランジスタ、MOS)ラン
ジスタ等の高周波動作の可能な半導体スイッチを使った
コンバータにこの発明を適用すれば、可聴領域以上の局
波数で動作させることが可能となり、無騒音で大容量の
装隨が実現できる利点がある。
"Effects of the Invention" As explained above, in this invention, the parallel resonant circuit is connected in series with the AC side terminal of the rectifier circuit. It is possible to operate a resonant converter outside the audio range. Therefore, if this invention is applied to a converter using a semiconductor switch capable of high-frequency operation such as a bipolar transistor or MOS transistor, it will be possible to operate at a frequency above the audible range, and it will be possible to implement a large-capacity device with no noise. There are advantages that can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例を示す回路図、第2図
はこの発明のW12の実施例を示す図、第3・  図は
従来の直列共振コンバータを示す回路図、第4図は第3
図の動作を示す波形図である。 11.18:半導体スイッチ、12.19:直流電源、
13:整流回路、14:負荷、15゜16.25:キャ
パシタ、17.24:インダクタ、21.22:ダイオ
ード、23:並列共振回路、26:直列共振回路。 特許出願人  日本電信電話味式会社 代  理  人   草  野     卓ヤ1回 才 2回
Fig. 1 is a circuit diagram showing a first embodiment of the present invention, Fig. 2 is a diagram showing an embodiment of W12 of the invention, Fig. 3 is a circuit diagram showing a conventional series resonant converter, and Fig. 4 is a circuit diagram showing a conventional series resonant converter. is the third
FIG. 3 is a waveform chart showing the operation shown in FIG. 11.18: Semiconductor switch, 12.19: DC power supply,
13: Rectifier circuit, 14: Load, 15° 16.25: Capacitor, 17.24: Inductor, 21.22: Diode, 23: Parallel resonant circuit, 26: Series resonant circuit. Patent applicant Takuya Kusano, agent of Nippon Telegraph and Telephone Ajishiki Company, once twice

Claims (1)

【特許請求の範囲】[Claims] (1)共振用キャパシタ及び共振用インダクタよりなる
直列共振回路と整流回路の交流側端子とが直列に接続さ
れ、この直列共振回路と整流回路との直列回路に、複数
の半導体スイッチをオンオフ制御して直流電源より正電
流と負電流とを交互に流し、前記整流回路から直流電圧
を得る直列共振コンバータにおいて、 共振用キャパシタと共振用インダクタを並列に接続した
並列共振回路が前記直列共振回路と直列に接続され、 かつその並列共振回路の共振周波数は前記直列共振回路
の共振周波数より低く選定されていることを特徴とする
直列共振コンバータ。
(1) A series resonant circuit consisting of a resonant capacitor and a resonant inductor is connected in series with the AC side terminal of a rectifier circuit, and a plurality of semiconductor switches are controlled to turn on and off in the series circuit of the series resonant circuit and the rectifier circuit. In a series resonant converter which obtains a DC voltage from the rectifier circuit by alternately passing a positive current and a negative current from a DC power supply, a parallel resonant circuit in which a resonant capacitor and a resonant inductor are connected in parallel is connected in series with the series resonant circuit. A series resonant converter connected to the converter, wherein the resonant frequency of the parallel resonant circuit is selected to be lower than the resonant frequency of the series resonant circuit.
JP9899785A 1985-05-10 1985-05-10 Series resonance converter Expired - Fee Related JPH0697839B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9899785A JPH0697839B2 (en) 1985-05-10 1985-05-10 Series resonance converter
US06/859,680 US4679129A (en) 1985-05-10 1986-05-05 Series resonant converter
EP86106338A EP0201876B1 (en) 1985-05-10 1986-05-07 Series resonant converter
DE8686106338T DE3687999T2 (en) 1985-05-10 1986-05-07 SERIES VIBRATION CONVERTER.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9899785A JPH0697839B2 (en) 1985-05-10 1985-05-10 Series resonance converter

Publications (2)

Publication Number Publication Date
JPS61258671A true JPS61258671A (en) 1986-11-17
JPH0697839B2 JPH0697839B2 (en) 1994-11-30

Family

ID=14234614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9899785A Expired - Fee Related JPH0697839B2 (en) 1985-05-10 1985-05-10 Series resonance converter

Country Status (1)

Country Link
JP (1) JPH0697839B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514504A (en) * 1999-11-19 2003-04-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Power supply with inverter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012010463A (en) * 2010-06-23 2012-01-12 Fujitsu Telecom Networks Ltd Switching power supply apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514504A (en) * 1999-11-19 2003-04-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Power supply with inverter
JP4653370B2 (en) * 1999-11-19 2011-03-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Power supply with inverter

Also Published As

Publication number Publication date
JPH0697839B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
US10355591B2 (en) Multilevel boost DC to DC converter circuit
US6304065B1 (en) Power electronic circuits with all terminal currents non-pulsating
US4713742A (en) Dual-inductor buck switching converter
EP0508664B1 (en) DC to DC converter
JP5156774B2 (en) Charge pump device and output power generation method
US4729088A (en) Regulated high frequency power supply
JPH04351465A (en) Dc/dc converter
US4845605A (en) High-frequency DC-DC power converter with zero-voltage switching of single primary-side power device
US6272023B1 (en) High efficiency coupled inductor soft switching power converters
JPS62114471A (en) Zero current switching current feeding advance type converter
JPH0213262A (en) Dc/dc converter
JPS6359763A (en) Inductor current control circuit
JPS62178169A (en) Single ended type dc-dc converter without switching loss
JPH05191981A (en) Power converter which is continuously operated in boost mode and back mode
US4055791A (en) Self commutated SCR power supply
JPH05316665A (en) Low-loss resonance circuit for capacity driving gear
US6166927A (en) Push-pull power converter circuit
JPH02146959A (en) Single ended conduction type converter with transformer and demagnetizer
JPS61258671A (en) Series resonance converter
JPS62163581A (en) High frequency and high voltage power source
JPS5812029A (en) Control circuit for switching regulator
JP2003088105A (en) Switching regulator
JP2614056B2 (en) DC / DC converter
RU2075153C1 (en) Single-cycle direct-to-direct voltage converter
SU1615848A1 (en) High-frequency single-end converter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees