JPS61258321A - Magneto-resistance effect type head - Google Patents

Magneto-resistance effect type head

Info

Publication number
JPS61258321A
JPS61258321A JP9890285A JP9890285A JPS61258321A JP S61258321 A JPS61258321 A JP S61258321A JP 9890285 A JP9890285 A JP 9890285A JP 9890285 A JP9890285 A JP 9890285A JP S61258321 A JPS61258321 A JP S61258321A
Authority
JP
Japan
Prior art keywords
flux guide
magnetoresistive
magnetoresistive element
magneto
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9890285A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Miura
義從 三浦
Hisashi Katahashi
片橋 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9890285A priority Critical patent/JPS61258321A/en
Publication of JPS61258321A publication Critical patent/JPS61258321A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3916Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
    • G11B5/3919Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path
    • G11B5/3922Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure
    • G11B5/3925Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure the two parts being thin films

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain a magneto-resistance effect type head which has high mass productivity and high electromagnetic conversion characteristics, by increasing sufficiently the horizontal width compared with the vertical width of the 2nd magnetic thin film of high permeability against a rubbing surface and also compared with the horizontal width of a magneto-resistance effect element against the rubbing surface. CONSTITUTION:A magneto-resistacne effect element 2 is provided on a substrate 1 and a front gap 5 of 0.1mum is formed against the element 2. Then a front flux guide 3 is set at the gap 5. While a rear gap of 0.1mum is provided also to the element 2 for a rear flux guide 4. There the film thickness of both guides 3 and 4 are set at 0.3mum and 2mum respectively. Then the film thickness of an insulated layer 11 is set at 1mum. The layer 11 is formed between the element 2 and a bias coil 7 of Al having 2mum film thickness. Then these guides 3 and 4 and the layer 11 are covered entirely with a protecting layer 8 of Al2O3 having 30mum film thickness. The layer 8 and the substrate 1 form a rubbing surface 10 against a medium.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、磁気抵抗効果型ヘッドに係り、とくに磁気抵
抗効果素子が媒体摺動画に露出しない、いわゆるリア型
磁気抵抗効果型ヘッドの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a magnetoresistive head, and particularly to the structure of a so-called rear magnetoresistive head in which a magnetoresistive element is not exposed to a moving image of a medium.

〔発明の背景〕[Background of the invention]

従来のリア型構造磁気抵抗効果型ヘッドの一例として、
信学技報Vo1.82. pp、33−41 (198
2)における高橋他3名による「垂直磁気記録の一再生
方式」と題する文献において論じられている構造のもの
が知られている。同構造のヘッドは、前述した文献でも
詳細に報じられているように、従来の磁気抵抗効果素子
が媒体摺動面に露出した、いわゆるフロント型構造磁気
抵抗効果型ヘッドに比べ、安定性及び電磁変換特性の点
で優れているという特徴がある。しかし、上記へ・ンド
を作成する場合、高精度の基板加工を施す必要があり、
量産性の向上を図かる点では問題となっていた。
As an example of a conventional rear structure magnetoresistive head,
IEICE Technical Report Vol. 1.82. pp, 33-41 (198
2), the structure discussed in the document entitled "One reproduction method of perpendicular magnetic recording" by Takahashi et al. is known. As reported in detail in the above-mentioned literature, a head with the same structure has better stability and electromagnetic stability than a conventional magnetoresistive head with a so-called front-type structure in which the magnetoresistive element is exposed on the sliding surface of the medium. It is characterized by excellent conversion characteristics. However, when creating the above board, it is necessary to perform high-precision board processing.
This has been a problem in terms of improving mass productivity.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来技術の欠点を除き、量産性に
冨みかつ電磁変換特性の優れた磁気抵抗型ヘッドを提供
するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetoresistive head that eliminates the drawbacks of the prior art described above, is easily mass-producible, and has excellent electromagnetic conversion characteristics.

〔発明の概要〕[Summary of the invention]

、この目的を達成するために、本発明は、第1および第
2の高透磁率磁性薄膜に挟まれた磁気抵抗効果素子を有
し、第1の高透磁率磁性薄膜の、磁気抵抗効果素子に対
向する側面の反対側側面が記録媒体との摺動面を形成し
ている磁気抵抗効果型ヘッドにおいて、第2の高透磁率
磁性薄膜の摺動面に対して平行方向の巾が、その垂直方
向の巾に比べて十分に大きく、かつ磁気抵抗効果素子の
摺動面に対して平行方向の巾に比べ十分大きくした点に
特徴がある。
In order to achieve this object, the present invention has a magnetoresistive element sandwiched between first and second high permeability magnetic thin films, and the magnetoresistive element of the first high permeability magnetic thin film is In a magnetoresistive head in which the side surface opposite to the side surface facing the recording medium forms a sliding surface, the width of the second high permeability magnetic thin film in the direction parallel to the sliding surface is It is characterized by being sufficiently larger than the width in the vertical direction and sufficiently larger than the width in the direction parallel to the sliding surface of the magnetoresistive element.

ここで、第4図〜第9図により、本発明を概略的に説明
する。
Here, the present invention will be schematically explained with reference to FIGS. 4 to 9.

第4図は本発明により成るフラックスガイド型磁気抵抗
効果ヘッドの側断面図、第5図は該フラックスガイド型
磁気抵抗効果ヘッドの概略正面図である。第4図中、■
は非磁性基板、2は磁気抵抗効果素子、3は高透磁率磁
性薄膜から成るフロントフラックスガイド、4は高透磁
率磁性薄膜から成るリアフラックスガイド、5はフロン
トフラックスガイド3と磁気抵抗効果素子との間に設け
られた非磁性材より成るフロントギャップ、6はリアフ
ラックスガイドと磁気抵抗効果素子との間に設けられた
リアギャップ、7は磁気抵抗効果素子をバイアスするた
めに必要な磁界を発生するための1ターンコイル、8は
保護材、9は引き出し線、10は媒体摺動面である。な
お第5図においては、保護材8、及び1ターンコイル7
は図示していない。本発明により成るフラックスガイド
型磁気抵抗効果型ヘッドの動作原理は以下に記述するよ
うなものである。
FIG. 4 is a side sectional view of a flux-guided magnetoresistive head according to the present invention, and FIG. 5 is a schematic front view of the flux-guided magnetoresistive head. In Figure 4, ■
2 is a non-magnetic substrate, 2 is a magnetoresistive effect element, 3 is a front flux guide made of a high permeability magnetic thin film, 4 is a rear flux guide made of a high permeability magnetic thin film, and 5 is a front flux guide 3 and a magnetoresistive effect element. 6 is a rear gap provided between the rear flux guide and the magnetoresistive element, and 7 generates a magnetic field necessary to bias the magnetoresistive element. 8 is a protective material, 9 is a lead wire, and 10 is a medium sliding surface. In addition, in FIG. 5, the protective material 8 and the one-turn coil 7
is not shown. The operating principle of the flux guided magnetoresistive head according to the present invention is as described below.

記録媒体(図示せず)からの信号磁束は、フロントフラ
ックスガイド3により磁気抵抗効果素子に導かれ、フロ
ントギャップ5を介して磁気抵抗効果素子2に流入する
。信号磁束は、磁気抵抗効果素子2で電気信号に変換さ
れる。その後、信号磁束はリアギャップ6を経て、リア
フラックスガイド4に流入し、最後にテープに帰還する
。なお、同構造の磁気抵抗効果ヘッドにおいて、リアフ
ラックスガイド4は、磁束利用率を向上させるという効
果をもつものである。また、リアフラックスガイド4の
膜厚が、フロンドブラックスガイド3に比べて大きい理
由は、バルクハウゼンノイズを抑圧するためである。
A signal magnetic flux from a recording medium (not shown) is guided to the magnetoresistive element by a front flux guide 3 and flows into the magnetoresistive element 2 via a front gap 5. The signal magnetic flux is converted into an electric signal by the magnetoresistive element 2. Thereafter, the signal magnetic flux passes through the rear gap 6, flows into the rear flux guide 4, and finally returns to the tape. In the magnetoresistive head having the same structure, the rear flux guide 4 has the effect of improving the magnetic flux utilization rate. Further, the reason why the film thickness of the rear flux guide 4 is larger than that of the front flux guide 3 is to suppress Barkhausen noise.

第4図及び第5図に示したフラックスガイド型ヘッドの
場合、その作成プロセスにおいて、高精度の基板加工を
施す必要がなく、量産性に冨んでいることがわかる。し
かし、上述した磁気抵抗効果型ヘッドは、その系統的な
検討の結果、他の従来ヘッドに比べれば量産性に冨んで
いるが、バルクハウゼンノイズが発生し易(、かつその
発生頻度は、フラックスガイドの形状、とくにリアフラ
ックスガイドの形状に大きく依存することがわかった。
It can be seen that in the case of the flux guide type head shown in FIGS. 4 and 5, there is no need for high-precision substrate processing in the manufacturing process, and the head is suitable for mass production. However, as a result of a systematic study, the above-mentioned magnetoresistive head is more easily mass-produced than other conventional heads, but it is more likely to generate Barkhausen noise (and the frequency of occurrence is lower than that of flux). It was found that it greatly depends on the shape of the guide, especially the shape of the rear flux guide.

以下、バルクハウゼンノイズについて、その発生頻度と
、リアフラックスガイドの形状との関連について、第6
図ないし第9図を用いてさらに詳細に説明する。
Below, we will discuss the frequency of Barkhausen noise and its relationship with the shape of the rear flux guide in Part 6.
This will be explained in more detail with reference to FIGS. 9 to 9.

第6図及び第7図共、リアフラックスガイド4と磁気抵
抗効果素子2との相対的位置関係を示したものであり、
第8図及び第9図はビッタ−法で観察した、第6図及び
7図に示した形状のリアフラックスガイドの磁区構造を
模式的に示したものである。第8及び第9図において、
12は 1800磁壁、13は90″磁壁である。
6 and 7 both show the relative positional relationship between the rear flux guide 4 and the magnetoresistive element 2,
8 and 9 schematically show the magnetic domain structure of the rear flux guide having the shape shown in FIGS. 6 and 7, as observed by the Bitter method. In Figures 8 and 9,
12 is a 1800 domain wall, and 13 is a 90'' domain wall.

すなわち、バルクハウゼンノイズの発生頻度とリアフラ
ックスガイド形状との関連性に関する系統的検討の結果
、第6図に示した構造のヘッドにおけるバルクハウゼン
ノイズの発生頻度は、第7図に示したヘッドに比べて非
常に大きいことが明らかとなった。前述した結果は、実
験的かつ理論的に、以下に説明するように裏付けされる
In other words, as a result of a systematic study on the relationship between the frequency of occurrence of Barkhausen noise and the shape of the rear flux guide, the frequency of occurrence of Barkhausen noise in the head with the structure shown in Fig. 6 is the same as that in the head shown in Fig. 7. It became clear that it was very large. The aforementioned results are supported experimentally and theoretically as explained below.

周知の如く、バルクハウゼンノイズは、磁壁の不可逆的
移動に起因するものである。第8図及び第9図に模式的
に示したように、リアフラックスガイドの磁区構造はそ
の形状により大きく異なる。
As is well known, Barkhausen noise is caused by irreversible movement of domain walls. As schematically shown in FIGS. 8 and 9, the magnetic domain structure of the rear flux guide differs greatly depending on its shape.

すなわち、四角形の短辺と長辺が大略等しい場合、単位
長当たりの磁壁の発生頻度は、短辺と長辺が大きく異な
る場合に比べて大きくなり、かつ1806磁壁12にた
いする90°磁壁13の 比率も大きくなる。90″磁
壁13は、180’磁壁12に比べて、第8、及び第9
図に示した矢印方向の磁場Hに対して移動し易く、かつ
その移動は不可逆的移動となる。つまり、第6図に示し
た構造のヘッドにおいては、媒体からの信号磁界により
、磁壁の不可逆的移動が発生し易く、加えて、磁気抵抗
効果素子2の巾とリアフラックスガイドの巾とが大略等
しいため、磁気抵抗効果素子は、前述した磁壁の不可逆
的移動の影響を直接受けることになる。一方第7図の場
合、前述したように90”磁壁13の比率も小さく、か
つ、その位置が磁気抵抗効果素子2と離れているため、
第7図に示した場合に比べ、90°磁壁の不可逆的移動
の影響は小さくなる。
In other words, when the short and long sides of a quadrilateral are approximately equal, the frequency of domain walls per unit length is greater than when the short and long sides are significantly different, and the ratio of 90° domain walls 13 to 1806 domain walls 12 is also becomes larger. Compared to the 180′ domain wall 12, the 90″ domain wall 13 has the eighth and ninth domains.
It is easy to move with respect to the magnetic field H in the direction of the arrow shown in the figure, and the movement is irreversible. In other words, in the head having the structure shown in FIG. 6, irreversible movement of the domain wall is likely to occur due to the signal magnetic field from the medium, and in addition, the width of the magnetoresistive element 2 and the width of the rear flux guide are approximately equal to each other. Since they are equal, the magnetoresistive element is directly affected by the above-mentioned irreversible movement of the domain wall. On the other hand, in the case of FIG. 7, as mentioned above, the ratio of the 90" domain wall 13 is small and its position is far from the magnetoresistive element 2.
Compared to the case shown in FIG. 7, the influence of irreversible movement of the 90° domain wall is smaller.

以上のように、本発明により成るフラックスガイド型磁
気抵抗効果ヘッドにおけるバルクハウゼンノイズの発生
頻度は、リアフラックスガイドの磁区構造、すなわち同
形状と密接に関係があり、かつ同ヘッドにおいて磁気抵
抗効果素子2の巾に比べ、リアフラックスガイド4の巾
を充分大きく、かつその長辺と短辺との比率を大きくと
ることによりバルクハウゼンノイズを抑圧できることが
明らかとなった。
As described above, the frequency of occurrence of Barkhausen noise in the flux-guided magnetoresistive head according to the present invention is closely related to the magnetic domain structure of the rear flux guide, that is, the same shape, and It has become clear that Barkhausen noise can be suppressed by making the width of the rear flux guide 4 sufficiently larger than the width of No. 2, and by making the ratio of the long side to the short side large.

なお、磁区構造とパターン形状との理論的考察は、既に
先人により成されており、例えば、丸善出版の「磁性薄
膜工学」に詳細に記されている。
Note that theoretical considerations regarding the magnetic domain structure and pattern shape have already been made by our predecessors, and are described in detail in, for example, "Magnetic Thin Film Engineering" published by Maruzen Publishing.

上述した結果は、その理論的考察結果と一致するもので
ある。
The above-mentioned results are consistent with the theoretical considerations.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面によって説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による磁気抵抗効果型ヘッドの一実、施
例を示す側断面図、第2図は第1図における磁気抵抗効
果素子とフラックスガイドとの関係を示す正面図であっ
て、1は基板、2は磁気抵抗効果素子、3はフロントフ
ラックスガイド、4はリアフラックスガイド、5.6は
ギャップ、7はバイアスコイル、8は保護層、9は引き
出し電極、10は媒体摺動面、11は絶縁層である。な
お、第2図には、バイアスコイル7および保護層8は示
していない。
FIG. 1 is a side sectional view showing an embodiment of the magnetoresistive head according to the present invention, and FIG. 2 is a front view showing the relationship between the magnetoresistive element and the flux guide in FIG. 1 is a substrate, 2 is a magnetoresistive element, 3 is a front flux guide, 4 is a rear flux guide, 5.6 is a gap, 7 is a bias coil, 8 is a protective layer, 9 is an extraction electrode, 10 is a medium sliding surface , 11 are insulating layers. Note that the bias coil 7 and the protective layer 8 are not shown in FIG.

第1図および第2図において、Znフェライト焼結体の
基板1上に膜厚0.04μmの131wt%Niパーマ
ロイからなる磁気抵抗効果素子2が設けられ、この磁気
抵抗効果素子2との間に長さ0.1μmのフロントギャ
ップ5を設けて81wt%Niパーマロイからなるフロ
ントガイド3を配置し、また、5iChからなる絶縁層
11により、磁気抵抗効果素子2の間に長さ0.1μm
のリアギャップ6を設けて81wt%′Niパーマロイ
からなるリアフラックスガイドを配置している。
In FIGS. 1 and 2, a magnetoresistive element 2 made of 131wt% Ni permalloy with a film thickness of 0.04 μm is provided on a substrate 1 of a Zn ferrite sintered body, and a A front gap 5 with a length of 0.1 μm is provided, and a front guide 3 made of 81 wt% Ni permalloy is arranged, and an insulating layer 11 made of 5iCh is provided between the magnetoresistive elements 2 with a length of 0.1 μm.
A rear gap 6 of 100 mm is provided, and a rear flux guide made of 81 wt% Ni permalloy is arranged.

ここで、フロントフラックスガイド3の膜厚を0゜3μ
m1リアフラツクスガイド4の膜厚を2μmとしている
。さらに、膜厚2μmのAIからなるバイアスコイル7
と磁気抵抗効果素子2との間の絶縁層11の膜厚を1μ
mとし、これら全体を膜厚30μmのAJ2Chからな
る保暉層8で覆い、この保護層8と基板1とで媒体摺動
面10を形成している。
Here, the film thickness of the front flux guide 3 is set to 0°3μ.
The film thickness of the m1 rear flux guide 4 is 2 μm. Furthermore, a bias coil 7 made of AI with a film thickness of 2 μm
The film thickness of the insulating layer 11 between and the magnetoresistive element 2 is set to 1 μm.
The entire structure is covered with a protection layer 8 made of AJ2Ch having a thickness of 30 μm, and the protection layer 8 and the substrate 1 form a medium sliding surface 10.

次に、この実施例の磁気抵抗効果型ヘッドの製造方法を
第3図でもって説明する。なお、同図(a)はその製造
方法の工程図、同図(b)は各工程での磁気抵抗効果型
たヘッドの概略側断面図である。
Next, a method of manufacturing the magnetoresistive head of this embodiment will be explained with reference to FIG. In addition, FIG. 5A is a process diagram of the manufacturing method, and FIG. 2B is a schematic side sectional view of the magnetoresistive head at each step.

鏡面ラップされたZnされたフェライト焼結体上に、磁
場中蒸着法(磁場強度;約500e)で81wt%Ni
パーマロイを、基板温度が300”Cの条件下で0.0
4μm形成する。その後、イオンエツチング法を用いて
、磁気抵抗効果素子2のパターニング形成を行なう。こ
のとき、磁気抵抗効果素子2の長手方向と、前述した磁
場方向とが一敗するように磁気抵抗効果素子を形成する
81wt%Ni was deposited on the mirror-wrapped Zn-coated ferrite sintered body using a magnetic field deposition method (magnetic field strength: approx. 500e).
permalloy at a substrate temperature of 300"C.
Form 4 μm. Thereafter, the magnetoresistive element 2 is patterned using an ion etching method. At this time, the magnetoresistive element is formed so that the longitudinal direction of the magnetoresistive element 2 and the above-described magnetic field direction are aligned.

磁気抵抗効果素子2を形成した後、RFバッタリング法
により、膜厚0.1μmのStow膜を形成し、フロン
ト及びリアギャップ5.6を形成する。
After forming the magnetoresistive element 2, a Stow film with a thickness of 0.1 μm is formed by RF battering to form front and rear gaps 5.6.

フロントおよびリアギャップを形成後、膜厚が0.3μ
mの$1wt%N+パーマロイをDC対向スパッタリン
グ法により形成し、第2図および第3図(b)に示した
フロントフラックスガイド3をバターニング形成する。
After forming the front and rear gaps, the film thickness is 0.3μ
A $1 wt % N+ permalloy of m is formed by DC facing sputtering method, and the front flux guide 3 shown in FIGS. 2 and 3(b) is formed by patterning.

その後、更に2.0μm厚の81wt%Niパーマロイ
を同様の方法で形成し、リアフラックスガイド4をバタ
ーニング形・成する。このときも、磁気抵抗効果素子2
のバターニング時と同様、イオンエツチング法によりバ
ターニングする。
Thereafter, 81 wt% Ni permalloy having a thickness of 2.0 μm is further formed in the same manner, and the rear flux guide 4 is patterned and formed. Also at this time, the magnetoresistive element 2
Buttering is performed using the ion etching method as in the case of buttering.

フラックスガイド3.4を形成後、RFスパッタリング
法により、膜厚が1μmの5fO2膜11を形成し、真
空蒸着法を用いて膜厚が2μmのA/膜を形成する。A
l膜を通常の湿式エツチングを用いた方法でパターンニ
ングし、バイアスコイル7を形成する。
After forming the flux guide 3.4, a 5fO2 film 11 having a thickness of 1 μm is formed by RF sputtering, and an A/film having a thickness of 2 μm is formed by using a vacuum evaporation method. A
The bias coil 7 is formed by patterning the 1 film using a conventional wet etching method.

その後、保護層であるAuto、薄膜を30μm形成し
、所定のヘッド構造に加工を施し、本発明により成るヘ
ッドは完成する。
Thereafter, a 30 μm thick Auto thin film as a protective layer is formed and processed into a predetermined head structure, completing the head according to the present invention.

なお、前述した場合の、リアフラックスガイド4の媒体
刷動面に対し平行方向の巾は、磁気抵抗効果素子2の約
10倍である。
In the case described above, the width of the rear flux guide 4 in the direction parallel to the medium brushing surface is about 10 times that of the magnetoresistive element 2.

前述せる方法で形成した磁気抵抗効果型ヘッドをメタル
パウダーテープ(Hj 15000e。
The magnetoresistive head formed by the method described above was attached to a metal powder tape (Hj 15000e).

Br;2500G)を用いて動作せしめた結果、バルク
ハウゼンノイズは、実用上はぼ問題とならない程度にま
で抑圧できることがわかった。
Br; 2500G), it was found that Barkhausen noise could be suppressed to such an extent that it would not be a problem in practice.

また、バルクハウゼンノイズの頻度は、フラックスガイ
ドの磁区構造によって依存し、磁気的に等方性の場合に
比べて、媒体刷動面10に平行な一軸異方性をもつ磁区
構造の場合の方がバルクハウゼンノイズの発生はより少
ない。これは、等方性の磁区構造の場合、第10図に示
すように、信号磁界Hに対してフラックスガイドの磁区
が移動し易く、かつその移動は不可逆的であって、この
ことがバルクハウゼンノイズの発生原因となる。
Furthermore, the frequency of Barkhausen noise depends on the magnetic domain structure of the flux guide, and is higher in the case of a magnetic domain structure with uniaxial anisotropy parallel to the media brushing surface 10 than in the case of magnetic isotropy. However, the occurrence of Barkhausen noise is less. This is because in the case of an isotropic magnetic domain structure, as shown in FIG. 10, the magnetic domain of the flux guide easily moves with respect to the signal magnetic field H, and the movement is irreversible. This may cause noise.

これに対し、媒体刷動面10に平行な1軸異方性のけ区
構造の場合には、第11図に示すように、互いに硫化方
向が逆の磁区の境界である1806磁壁12と、これら
磁区とこれら磁区の磁化方向と90°をなす磁化方向の
磁区との境界である906磁壁13とがあり、信号磁界
Hが加わることによって90°磁壁13が不可逆的に移
動してバルクハウゼンノイズが生ずるが、フラックスガ
イド内の90°磁壁13が占める比率は180”磁壁1
2のそれぞれに比べて非常に小さく、かつ90°磁壁1
3の位置は磁気抵抗効果素子の中心部から光分離れてお
り、このことからバルクハウゼンノイズは極めて少ない
。以上のことは、実験的にも確認された。
On the other hand, in the case of a uniaxially anisotropic boundary structure parallel to the media brushing surface 10, as shown in FIG. There is a 906 domain wall 13 that is the boundary between these magnetic domains and the domain whose magnetization direction is 90° with the magnetization direction of these domains, and when the signal magnetic field H is applied, the 90° domain wall 13 moves irreversibly, causing Barkhausen noise. However, the ratio occupied by the 90° domain wall 13 in the flux guide is 180" domain wall 1
2, and the 90° domain wall 1
The position No. 3 is optically separated from the center of the magnetoresistive element, and therefore Barkhausen noise is extremely small. The above was also confirmed experimentally.

したがって、本発明においても、フロントフラックスガ
イド3およびリアフラックスガイド4の磁区を一軸異方
性とすることにより、さらにバルクハウゼンノイズを抑
圧できる。
Therefore, in the present invention, Barkhausen noise can be further suppressed by making the magnetic domains of the front flux guide 3 and the rear flux guide 4 uniaxially anisotropic.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、第2の高透磁率
磁性薄膜の刷動面に対して平行方向の巾が、その垂直方
向の巾に比べて十分大きく、かつ磁気抵抗効果素子の刷
動面に対して平行方向の巾に比べて充分大きいことによ
り、量産性に富みかつ電磁変換特性が良好で、またバル
クハウゼンノイズを実用上無視し得る程度に抑圧でき、
上記従来技術の欠点を除いて優れた機能の磁気抵抗効果
型ヘッドを提供することができる。
As explained above, according to the present invention, the width of the second high permeability magnetic thin film in the direction parallel to the brushing surface is sufficiently larger than the width in the perpendicular direction, and By being sufficiently large compared to the width parallel to the brushing surface, it is easy to mass produce and has good electromagnetic conversion characteristics, and can suppress Barkhausen noise to a practically negligible level.
It is possible to provide a magnetoresistive head with excellent functionality by eliminating the drawbacks of the prior art described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による磁気抵抗効果型ヘッドの一実施例
を示す側断面図、第2図は第1図における磁気抵抗効果
素子とフラックスガイドとの関係を示す正面図、第3図
は第1図に示した磁気抵抗効果型ヘッドの製造方法を示
す説明図、第4図は本発明の概略説明のためのフラック
スガイド型磁気抵抗効果型ヘッドの側断面図、第5図は
同じく正面図、第6図および第7図は磁気抵抗効果素子
とフラックスガイドとの相対関係を示した模式図、第8
図および第9図はフラックスガイドの磁区構造を示した
模式図、第10図および第11図はフラックスガイドの
磁壁によるバルクハウゼンノイズの発生原因を説明する
ための模式図である。 1・・・基板、2・・・磁気抵抗効果素子、3・・・フ
ロンドブラックスガイド、4・・・リアフラックスガイ
ド、7・・・バイアスコイル、8・・・保護層、9・・
・引き出し電極、10・・・媒体刷動面、11・・・絶
縁層。 代 理 人 弁理士 武 顕次部(ばか1名)第1図 第3図 第4図 第6図 第7図 第8図 第9 図
FIG. 1 is a side sectional view showing an embodiment of the magnetoresistive head according to the present invention, FIG. 2 is a front view showing the relationship between the magnetoresistive element and the flux guide in FIG. 1, and FIG. FIG. 1 is an explanatory diagram showing a method of manufacturing the magnetoresistive head shown in FIG. 1, FIG. 4 is a side sectional view of the flux-guided magnetoresistive head for explaining the outline of the present invention, and FIG. 5 is a front view of the same. , FIGS. 6 and 7 are schematic diagrams showing the relative relationship between the magnetoresistive element and the flux guide, and FIG.
9 and 9 are schematic diagrams showing the magnetic domain structure of the flux guide, and FIGS. 10 and 11 are schematic diagrams for explaining the cause of Barkhausen noise caused by the domain walls of the flux guide. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Magnetoresistive element, 3... Front blacks guide, 4... Rear flux guide, 7... Bias coil, 8... Protective layer, 9...
- Extracting electrode, 10... Medium brushing surface, 11... Insulating layer. Agent Patent Attorney Kenji Take (1 idiot) Figure 1 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 Figure 9

Claims (3)

【特許請求の範囲】[Claims] (1)第1および第2の高透磁率磁性薄膜に挟まれた磁
気抵抗効果素子を有し、前記第1の高透磁率磁性薄膜の
、前記磁気抵抗効果素子に対向する側面の反対側側面が
記録媒体との摺動面を形成している磁気抵抗効果型ヘッ
ドにおいて、前記第2の高透磁率磁性薄膜の前記摺動面
に対して平行方向の巾が、その垂直方向の巾に比べて十
分大きく、かつ前記磁気抵抗効果素子の前記摺動面に対
して平行方向の巾に比べて充分大きいことを特徴とする
磁気抵抗効果型ヘッド。
(1) having a magnetoresistive element sandwiched between first and second high permeability magnetic thin films, a side surface opposite to the side surface of the first high permeability magnetic thin film that faces the magnetoresistive element; In the magnetoresistive head in which the second high permeability magnetic thin film forms a sliding surface with the recording medium, the width of the second high permeability magnetic thin film in the direction parallel to the sliding surface is compared to the width in the perpendicular direction. 1. A magnetoresistive head, characterized in that the width of the magnetoresistive element is sufficiently large, and the width of the magnetoresistive element is sufficiently larger than the width of the magnetoresistive element in a direction parallel to the sliding surface.
(2)特許請求の範囲第(1)項において、前記第2の
高透磁率磁性薄膜の膜厚が、前記第1の高透磁率磁性薄
膜の膜厚よりも大きく設定したことを特徴とする磁気抵
抗効果型ヘッド。
(2) Claim (1) is characterized in that the thickness of the second high permeability magnetic thin film is set to be larger than the thickness of the first high permeability magnetic thin film. Magnetoresistive head.
(3)特許請求の範囲第(1)項または第(2)項にお
いて、前記第1および第2の高透磁率磁性薄膜の磁区構
造を前記摺動面に平行な一軸異方性としたことを特徴と
する磁気抵抗効果型ヘッド。
(3) In claim (1) or (2), the magnetic domain structure of the first and second high permeability magnetic thin films is uniaxially anisotropic parallel to the sliding surface. A magnetoresistive head featuring:
JP9890285A 1985-05-11 1985-05-11 Magneto-resistance effect type head Pending JPS61258321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9890285A JPS61258321A (en) 1985-05-11 1985-05-11 Magneto-resistance effect type head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9890285A JPS61258321A (en) 1985-05-11 1985-05-11 Magneto-resistance effect type head

Publications (1)

Publication Number Publication Date
JPS61258321A true JPS61258321A (en) 1986-11-15

Family

ID=14232058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9890285A Pending JPS61258321A (en) 1985-05-11 1985-05-11 Magneto-resistance effect type head

Country Status (1)

Country Link
JP (1) JPS61258321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995339A (en) * 1993-03-18 1999-11-30 Fujitsu Limited Magnetoresistive head with a front flux guide and an embedded MR element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995339A (en) * 1993-03-18 1999-11-30 Fujitsu Limited Magnetoresistive head with a front flux guide and an embedded MR element

Similar Documents

Publication Publication Date Title
JP6100990B2 (en) Magnetoresistive sensor and manufacturing method thereof
US6151193A (en) Thin film magnetic head
US5379172A (en) Laminated leg for thin film magnetic transducer
JPH05290331A (en) Thin-film magnetic converter
JP2953401B2 (en) Manufacturing method of magnetoresistive composite head
US10748559B1 (en) Magnetic head including spin torque oscillator and manufacturing method for the same
JP2914343B2 (en) Magnetoresistive head, method of manufacturing the same, and magnetic storage
JPS61258321A (en) Magneto-resistance effect type head
US5959809A (en) Magnetoresistive head and method of manufacturing the same and magnetic recording apparatus
JPS61258320A (en) Magneto-resistance effect type head
JP2718242B2 (en) Magnetoresistive head
JPH0719343B2 (en) Method of manufacturing magnetoresistive type magnetic head
JPS63138513A (en) Thin film magnetic head and its production
JPH0594603A (en) Perpendicular magnetic head
JPH0473210B2 (en)
JPH05151533A (en) Magneto-resistance effect type thin-film magnetic head
JP2007172669A (en) Magnetoresistive effect head
JP3082003B2 (en) Method of manufacturing magnetoresistive head
JPS63138515A (en) Thin film magnetic head and its reproduction system
JPS61196418A (en) Thin film magnetic head
JPS5821328B2 (en) Tasoshijiki head
JP3164050B2 (en) Manufacturing method of magnetoresistive composite head
JPS63138512A (en) Thin film magnetic head and its production
JPS588051B2 (en) Magnetoresistive head
JPS6371914A (en) Reproducing head