JPS61257702A - Long canti lever cutting tool - Google Patents
Long canti lever cutting toolInfo
- Publication number
- JPS61257702A JPS61257702A JP10029185A JP10029185A JPS61257702A JP S61257702 A JPS61257702 A JP S61257702A JP 10029185 A JP10029185 A JP 10029185A JP 10029185 A JP10029185 A JP 10029185A JP S61257702 A JPS61257702 A JP S61257702A
- Authority
- JP
- Japan
- Prior art keywords
- tool
- heat treatment
- cutting tool
- cutting
- vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/04—Cutting-off tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/002—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor with vibration damping means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q11/00—Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
- B23Q11/0032—Arrangements for preventing or isolating vibrations in parts of the machine
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
Description
【発明の詳細な説明】
技術分野
本発明は、ボーリングバー(中ぐり捧)や素材切断バイ
ト(突っ切りバイト)等の長尺な片持切削工具に関し、
詳しくは、切削装置の把持手段より外方に突出する柄の
長さが長い切削工具でかっ耐振MIJ浩本在十ス初削丁
目2−朋十ス
従来技術
一般に、上記した長尺切削工具は、断面積に比べて突出
長が大きいため剛性の小さい工具であると云える。従っ
て、これらの工具を用いて切削加工を行なうと工具自体
を原因とするびびり振動が発生し易い。その結果、加工
能率や加工精度の低下をもたらす。 従来より、上記長
尺切削工具のびびり振動を緩和するために幾つかの対策
が講じられている。[Detailed Description of the Invention] Technical Field The present invention relates to a long cantilever cutting tool such as a boring bar or a material cutting tool.
In detail, a cutting tool with a long handle that protrudes outward from the gripping means of a cutting device is used. , it can be said that it is a tool with low rigidity because the protrusion length is large compared to the cross-sectional area. Therefore, when cutting is performed using these tools, chatter vibrations are likely to occur due to the tools themselves. As a result, machining efficiency and machining accuracy are reduced. Conventionally, several measures have been taken to alleviate the chatter vibration of the long cutting tool.
その対策の1つは、ボーリングバーに見られ、ボーリン
グバーの両側面を切り欠いてその断面が大略矩形状にな
るように形成し、これによりバーの剛性に方向性を持た
せると共に、該バーの先端に取り付けられる切削チップ
の回転方向位置を最適なところに設定するものである。One of the countermeasures is seen in boring bars.Both sides of the boring bar are cut out so that the cross section is approximately rectangular.This gives directionality to the rigidity of the bar, and The cutting tip attached to the tip of the cutting tip is set at an optimal position in the rotational direction.
第2の対策は、これもボーリングバーに見られるのであ
るが、該バーの外周にダンピング手段を付設して動剛性
(静剛性×減衰係数比)を大きくする方法である。これ
には、インパクトダンパーを用いるもの、或いはランチ
ェストダンパーを用いるものがある。インパクトダンパ
ーは、上記バーの柄の周囲にリング状ダンパーを摺動自
在に装着して、切削時におけるバー自体の振動を吸収す
るようにしたものである。一方、ランチェストダンパー
は上記バー内に形成した空間にブロックまたは粘性流体
を移動自在に充填し、これらによりバー自体の振動を吸
収するようにしたものである。The second countermeasure, which is also seen in boring bars, is to increase the dynamic rigidity (static rigidity x damping coefficient ratio) by attaching damping means to the outer periphery of the bar. This includes methods using an impact damper and methods using a launch chest damper. The impact damper is a ring-shaped damper that is slidably attached around the handle of the bar to absorb vibrations of the bar itself during cutting. On the other hand, the lunch chest damper is a device in which a space formed within the bar is movably filled with blocks or viscous fluid, thereby absorbing vibrations of the bar itself.
第3の対策は、切削工具の種類に関係なく見られるもの
であるが、静剛性の大きい材質、つまりヤング率の高い
材質、特に超硬合金、により工具を製作する方法である
。The third measure, which can be found regardless of the type of cutting tool, is to manufacture the tool from a material with high static rigidity, that is, a material with a high Young's modulus, especially cemented carbide.
第4の対策は、素材切断バイトの場合であるが、柄の厚
みを大きくする方法である。The fourth measure, which is applied to material cutting tools, is to increase the thickness of the handle.
上に4つの耐振対策を挙げたが、これらの従来技術はい
ずれも以下に述べる如き問題点を有している。Although four anti-vibration measures have been listed above, all of these conventional techniques have the following problems.
先ず、第1の対策では耐振効果が非常に小さい。First, the first measure has very little anti-vibration effect.
第2の対策ではボーリングバーの柄が大きくなりすぎる
。In the second measure, the handle of the bowling bar becomes too large.
第3の対策では工具が高価になる。The third measure makes tools expensive.
第4の対策では、必然的に切削幅が大きくなるため歩留
まりが悪いと共に、あまりにこの厚みを大きくすれば、
切削抵抗が大きくなり、その結果、びびり振動が逆に大
きくなる場合もある。In the fourth measure, the cutting width inevitably increases, resulting in poor yield, and if the thickness is made too large,
Cutting resistance increases, and as a result, chatter vibration may even increase.
本発明の技術的課題
従って、本発明の解決すべき技術的課題は、特別のダン
ピング手段を用いる方法や或いは工具の材質により静剛
性を大きくする方法等の従来方法に変えて、工具自体に
熱処理を施すことにより動剛性を大きクシ、これにより
上記従来例における諸問題を解消するにある。Technical problem of the present invention Therefore, the technical problem to be solved by the present invention is to heat-treat the tool itself instead of conventional methods such as using special damping means or increasing static rigidity by changing the material of the tool. By applying this, the dynamic rigidity can be increased, thereby solving the various problems in the conventional example.
本発明の要旨
上記技術的課題を解決するために本発明は以下の如く構
成した。SUMMARY OF THE INVENTION In order to solve the above technical problems, the present invention was constructed as follows.
すなわち、工具片持点よりの突出長をLとするとき、工
具片持点より距離(k×L)の部位に局部的に内部応力
を残留せしめるように構成した。但し、上記係数には、
0.35〜0.45の値であり、最も好ましい値は約0
.40である。That is, when the protrusion length from the tool cantilever point is L, the structure is such that internal stress is left locally at a distance (k×L) from the tool cantilever point. However, in the above coefficient,
The value is between 0.35 and 0.45, with the most preferred value being about 0.
.. It is 40.
上記構成によれば、後述の比較実験例よりも明らかな如
く、工具の動剛性が飛躍的に大きくなり、これにより耐
振効果も非常に優れたものとなる。According to the above structure, the dynamic rigidity of the tool is dramatically increased, as is clear from the comparative experiment example described later, and the vibration resistance effect is also very excellent.
本発明により工具の耐振性が向上する理由はいまだ明確
ではないが、局部的残留応力と切削中に作用する応力と
が合成されて工具内で局部的な塑性変形がおこりその結
果ヒステリシス減衰が大きくなるためではないかと推察
される。The reason why the vibration resistance of the tool is improved by the present invention is not yet clear, but the local residual stress and the stress that acts during cutting are combined and local plastic deformation occurs within the tool, resulting in a large hysteresis damping. It is speculated that this is to become
上記残留応力は熱処理を行なうことにより実現できる。The above residual stress can be realized by heat treatment.
一般的には、上記部位を局部的に、工具焼き戻し温度以
上でかつA、変態点温度以下の温度で急熱した上で急冷
し、上記部位に引張応力を残留せしめる方法が採用され
る。、急熱温度は高過ぎると工具が変形したり或いは焼
きが戻って軟化してしまう場合があり、また逆にこの急
熱温度が低過ぎると十分な大きさの内部応力を残留させ
ることができない。また、急熱温度がA、変態点温度以
上である場合は耐振効果が小さい。その理由は明らかで
はないが、オーステナイトを急冷することになるので針
状晶が発生し、このため熱処理された部位とこれに隣接
する他の部位との間の境界面における滑りが生じにくい
ためではないかと推察される。最適加熱温度はA1変態
点以下でかつ工具が変形しない最高温度である。Generally, a method is employed in which the above-mentioned region is locally rapidly heated to a temperature above the tool tempering temperature and below the transformation point temperature A, and then rapidly cooled to cause tensile stress to remain in the above-mentioned region. If the rapid heating temperature is too high, the tool may be deformed or the tool may become unheated and softened, and conversely, if the rapid heating temperature is too low, sufficient internal stress may not remain. . Moreover, when the rapid heating temperature is A, the transformation point temperature or higher, the vibration resistance effect is small. The reason for this is not clear, but it may be because the rapid cooling of austenite generates needle-shaped crystals, which makes it difficult for slippage to occur at the interface between the heat-treated area and other areas adjacent to it. It is speculated that there is. The optimum heating temperature is the highest temperature below the A1 transformation point and at which the tool does not deform.
上記急熱処理は一般には高周波加熱によりなされるが、
他の方法としてガスバーナー等の火炎方式を採用するこ
ともできる。また、柄の熱処理部に予めマスを装着して
おいて、柄を全体的に急熱した上で、これを急冷しても
よい。この場合には、マスの付設されている熱処理部の
冷却速度が遅いため他の部分との間に冷却速度の差が生
じ、その結果熱処理部に引張応力が残留することになる
。The rapid heat treatment mentioned above is generally performed by high frequency heating,
As another method, a flame method such as a gas burner can also be adopted. Alternatively, a mass may be attached to the heat-treated portion of the handle in advance, the entire handle may be rapidly heated, and then the mass may be rapidly cooled. In this case, since the cooling rate of the heat-treated part to which the mass is attached is slow, a difference in cooling rate occurs between the heat-treated part and other parts, and as a result, tensile stress remains in the heat-treated part.
実施例 第1.2図に本発明の一実施例を示している。Example An embodiment of the invention is shown in FIG. 1.2.
図示の実施例は素材切断バイトに関するものである。図
において、1は薄板状でかつ長尺の柄、2は該柄1の先
端部に装着した切削チップ、3はこのバイトの柄lを片
持するための固定手段である。The illustrated embodiment relates to a material cutting tool. In the figure, 1 is a thin plate-shaped and long handle, 2 is a cutting tip attached to the tip of the handle 1, and 3 is a fixing means for cantilevering the handle l of this cutting tool.
第2図に示すように、バイトはその柄lの所定位置に楕
円形状の熱処理部11を有している。この熱処理部11
の実施位置は次の通りである。すなわち、固定手段3の
工具片持点10よりの工具突出長をLとし、また熱処理
部11の工具片持点よりの距離をσとするとき、eは次
式で表わされる。As shown in FIG. 2, the cutting tool has an elliptical heat treatment part 11 at a predetermined position on its handle l. This heat treatment section 11
The implementation locations are as follows. That is, when the tool protrusion length from the tool cantilever point 10 of the fixing means 3 is L, and the distance from the tool cantilever point of the heat treatment section 11 is σ, e is expressed by the following equation.
Q#0.40×L0
比較実験例
本発明の効果は、本発明者等が行なった以下の比較実験
例より一層明らかになるであろう。Q#0.40×L0 Comparative Experimental Example The effects of the present invention will become clearer from the following comparative experimental example conducted by the inventors.
本発明者等は、第1.2図に示した素材切断バイトの柄
1の突出長部分の数ケ所に熱処理を行なうと共に、この
バイトを用いて実際に素材を切削してみた。The present inventors performed heat treatment on several parts of the protruding length of the handle 1 of the material cutting tool shown in FIG. 1.2, and also tried actually cutting a material using this tool.
(供試工具)
上に述べた様に供試工具は第1.2図に示した素材切断
バイトであり、その材質は工具11isK5(JIS規
格)であり、その諸元は以下に示す通りである。(Test tool) As mentioned above, the test tool is the material cutting tool shown in Figure 1.2, its material is Tool 11isK5 (JIS standard), and its specifications are as shown below. be.
・工具全長A:400y
・柄lの幅B:80mm
・柄lの厚みG: 3mrtt
・熱処理部11の幅CXD: 45X15xx上記熱
処理部11の熱処理は以下の方法で行なった。すなわち
、第3図に示すように、銅バイブ7に接続された高周波
コイル6(幅E X F =25X 10mm)をバイ
トの柄1の両面所定位置に設定し、加熱中央部を焼き戻
し温度(550°C)以上の6006C〜700℃に加
熱し、その後油冷した。熱処理の位置は、切削チップ先
端から34 u+(fl= 116mm)、75mmC
Q=75mm)、92xm((= 58mm)、150
xx((1= O)である。・Tool total length A: 400y ・Width B of handle 1: 80 mm ・Thickness G of handle 1: 3 mrtt ・Width CXD of heat treatment section 11: 45X15xx The heat treatment of the heat treatment section 11 was performed by the following method. That is, as shown in FIG. 3, the high frequency coil 6 (width E 550°C) or higher to 6006°C to 700°C, and then cooled in oil. The heat treatment position is 34 u+ (fl = 116 mm), 75 mm C from the tip of the cutting tip.
Q = 75mm), 92xm ((= 58mm), 150
xx((1=O).
尚、工具の焼き入れ温度は825℃である。また、切削
チップは超硬チップを使用した。Note that the hardening temperature of the tool is 825°C. In addition, a carbide tip was used as the cutting tip.
供試材
供試材5は炭素鋼545CCJIS規格)である(第4
図)。この供試材5の切断面の幅寸法P×0は50×4
0M11である。Test material Test material 5 is carbon steel 545CCJIS standard) (No. 4
figure). The width dimension P×0 of the cut surface of this sample material 5 is 50×4
It is 0M11.
実験方法
実験に用いた機械は横巾ぐり盤であり、第4図に示した
態様で実験を行なった。すなわち、素材切断バイトの柄
1を機械の面板3aに固定して(バイトの突出長L=1
50mm)回転半径H(=450mm)で回転させ、テ
ーブル12上に設置した供試材5をスライス切断した。Experimental Method The machine used in the experiment was a side boring machine, and the experiment was conducted in the manner shown in Figure 4. That is, the handle 1 of the material cutting tool is fixed to the face plate 3a of the machine (the protruding length L of the tool is 1).
The sample material 5 placed on the table 12 was cut into slices by rotating at a rotation radius H (=450 mm).
バイトは機械構造上の制約から下方へ送る方式とした。Due to mechanical structure constraints, we decided to send the tool downwards.
切削条件は、切削速度: 100.4m/m1n(35
,5rpm)、送り速度0 、11111/rev、乾
式切削である。素材切断バイトのびびり振動は、供試材
5より距離N(=20im)上方に固定した非接触変位
計4により測定した。The cutting conditions were: cutting speed: 100.4 m/m1n (35
, 5 rpm), feed rate 0, 11111/rev, dry cutting. The chatter vibration of the material cutting tool was measured by a non-contact displacement meter 4 fixed at a distance N (=20 im) above the sample material 5.
実験結果
上記実験方法により第5図(I)〜(V)に示される結
果を得た。各図において、横軸は時間を、縦軸はびびり
振動の振幅を示している。Experimental Results The results shown in FIGS. 5(I) to (V) were obtained by the above experimental method. In each figure, the horizontal axis shows time and the vertical axis shows the amplitude of chatter vibration.
第5図(1)は熱処理を行なわない場合の結果を示す。FIG. 5(1) shows the results without heat treatment.
第5図(II)は、(1= 116+xに0.77×L
)の場合を示す。第5図(DI )ハ、(1= 75J
fm(=0.50×L)の場合を示す。第5図(■)は
、ρ=581tIIに0.40xt、)の場合を示す。Figure 5 (II) shows (1=116+x0.77×L
) is shown. Figure 5 (DI) C, (1=75J
The case of fm (=0.50×L) is shown. FIG. 5 (■) shows the case where ρ=581tII and 0.40xt.
第5図(V)は、Q=0の場合を示す。各図を比較すれ
ば明らかなように、第5図(IV)の場合最もびびり振
動が少ない。FIG. 5(V) shows the case where Q=0. As is clear from comparing each figure, the chatter vibration is the least in the case of FIG. 5 (IV).
上記実験結果において、熱処理位置が、e=58mmの
場合について考察した結果、興味あるJv実を発見する
に至った。第6図はバイトの一次モードの振動8および
二次モードの振動9を示しているが、eは略0.40×
Lに値し、この部位は二次モード9の曲げ振動の腹に丁
度該当することが判った。このことから、熱処理部位の
最適位置を二次モードの曲げ振動の腹の位置と即断する
ことはできないが、つまり二次、三次・・・その他の高
次モードが関係している可能性はあるが、一般的にはこ
の熱処理の最適位置は二次モードの腹の位置ということ
ができる。In the above experimental results, as a result of considering the case where the heat treatment position was e=58 mm, an interesting Jv fact was discovered. Figure 6 shows the vibration 8 of the first mode of the cutting tool and the vibration 9 of the second mode, where e is approximately 0.40×
It was found that this part corresponds exactly to the antinode of the bending vibration of the second-order mode 9. From this, it is not possible to immediately determine the optimal position of the heat-treated part to be the position of the antinode of the bending vibration of the secondary mode, but it is possible that other higher-order modes such as secondary, tertiary, etc. are involved. However, in general, the optimum position for this heat treatment can be said to be the position of the antinode of the secondary mode.
熱処理を施した素材切断バイトの耐振性が優れている理
由として、熱処理がバイトの動特性を向上させたことが
考えられる。そこで、本発明者等はインパルスハンマー
法(インパルスハンマー装置により工具に打撃を与えて
工具に取り付けた振動計により工具の振動を検出し、動
剛性測定機を用いて各曲げ振動モードの振幅と減衰係数
比を求める方法)により、バイトの動特性を測定し、び
びり振幅との関係を調べた。加振は切削抵抗が付加され
る方向・位置と同一とし、応答点も刃先よリ40mmの
箇所とした。また、バイトの厚み方向の静間性も同時に
測定した。この結果を第7図に示している。第7図にお
いて横軸は工具先端からの熱処理位置を示し、縦軸は各
特性の値を示している。図に示されるように、熱処理位
置が工具先端かう92xtBD箇所つます(2=58m
mに0.40xL)の近傍において静間性が小さくなる
一方減衰係数比が比較的大きく、従って静間性×減衰係
数比で表わされる動剛性が最大となり、その結果びびり
振動の全振幅が最低になっていることがよく判る。The reason why the heat-treated material cutting tool has excellent vibration resistance is that the heat treatment improves the dynamic characteristics of the tool. Therefore, the present inventors developed the impulse hammer method (impulse hammer device gives a blow to the tool, a vibration meter attached to the tool detects the vibration of the tool, and a dynamic stiffness measuring device is used to measure the amplitude and damping of each bending vibration mode. The dynamic characteristics of the cutting tool were measured using the method of determining the coefficient ratio, and the relationship with the chatter amplitude was investigated. The vibration was applied in the same direction and position as the cutting resistance, and the response point was also 40 mm from the cutting edge. In addition, the static properties of the cutting tool in the thickness direction were also measured at the same time. The results are shown in FIG. In FIG. 7, the horizontal axis shows the heat treatment position from the tip of the tool, and the vertical axis shows the values of each characteristic. As shown in the figure, the heat treatment position is 92xtBD beyond the tool tip (2 = 58m
In the vicinity of m (0.40 It is clearly seen that
図面は本発明の実施例を示し、第1.2図は素材切断バ
イトの平面図および正面図、第3図は上記素材切断バイ
トの柄の所定位置に高周波加熱を行なう状態を示す要部
正面図、第4図は実験方法を示す概略図、第5図(I)
〜(V)は第4図に示した実験方法により得られた結果
を示すグラフ、第6図はバイトの曲げ振動の構成モード
および二次モードと熱処理位置との関係を示す説明図、
第7図は熱処理位置と静間性並びに動剛性等との関係を
示すグラフである。
l・・・柄、2・・・切刃チップ、3・・・固定手段、
4・・・非接触変位計、5・・・被削材、6・・・高周
波コイル、7・・・銅パイプ、8・・・−次モードの振
動、9・・・二次モードの振動、lO・・・工具片持点
、11・・・熱処理部、12・・・テーブル。
特 許 出 願 人 株式会社神戸製鋼所代 理 人
弁理士 青白 葆 はが2名第1図
第2図
第5図(工)
第5図(m)
第5図(IV)
第5図M
吟間
第6図The drawings show an embodiment of the present invention, and FIG. 1.2 is a plan view and a front view of the material cutting tool, and FIG. 3 is a front view of the main part showing a state in which high-frequency heating is applied to a predetermined position of the handle of the material cutting tool. Figure 4 is a schematic diagram showing the experimental method, Figure 5 (I)
~(V) is a graph showing the results obtained by the experimental method shown in FIG. 4, FIG. 6 is an explanatory diagram showing the relationship between the constituent modes and secondary modes of bending vibration of the cutting tool and the heat treatment position,
FIG. 7 is a graph showing the relationship between the heat treatment position, static property, dynamic stiffness, etc. l...handle, 2...cutting blade tip, 3...fixing means,
4... Non-contact displacement meter, 5... Work material, 6... High frequency coil, 7... Copper pipe, 8... Vibration in the -th mode, 9... Vibration in the second mode , lO... tool cantilever point, 11... heat treatment section, 12... table. Patent applicant: Agent of Kobe Steel, Ltd.
Two patent attorneys: Aohaku Ao Haga Figure 1 Figure 2 Figure 5 (Eng) Figure 5 (m) Figure 5 (IV) Figure 5 M Ginma Figure 6
Claims (1)
工具片持点(10)より距離(k×L)の部位に局部的
に内部応力を残留存せしめたことを特徴とする長尺片持
切削鋼工具。 但し、上記係数には0.35〜0.45の値である。 2、上記部位を局部的に、工具焼き戻し温度以上でかつ
A_3変態点温度以下の温度で急熱した上で急冷し、上
記部位に引張応力を残留せしめたことを特徴とする第1
項に記載の長尺片持切削工具。[Claims] 1. When the protrusion length from the tool cantilever point (10) is L,
A long cantilevered cutting steel tool characterized by locally retaining internal stress at a distance (k×L) from a tool cantilever point (10). However, the above coefficient has a value of 0.35 to 0.45. 2. The first method characterized in that the above-mentioned region is locally rapidly heated to a temperature higher than the tool tempering temperature and lower than the A_3 transformation point temperature, and then rapidly cooled to cause tensile stress to remain in the above-mentioned region.
The long cantilever cutting tool described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10029185A JPS61257702A (en) | 1985-05-10 | 1985-05-10 | Long canti lever cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10029185A JPS61257702A (en) | 1985-05-10 | 1985-05-10 | Long canti lever cutting tool |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61257702A true JPS61257702A (en) | 1986-11-15 |
Family
ID=14270073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10029185A Pending JPS61257702A (en) | 1985-05-10 | 1985-05-10 | Long canti lever cutting tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61257702A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170173701A1 (en) * | 2015-12-21 | 2017-06-22 | Iscar, Ltd. | Cutting Tool Holder With Vibration Damping Weight Assembly |
CN107344247A (en) * | 2017-05-18 | 2017-11-14 | 平湖市海辰机械有限公司 | A kind of processing technology of knife tower and cutterhead |
US11534834B2 (en) | 2019-07-17 | 2022-12-27 | Kennametal Inc. | Cutting tool holder with improved dampening effect |
-
1985
- 1985-05-10 JP JP10029185A patent/JPS61257702A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170173701A1 (en) * | 2015-12-21 | 2017-06-22 | Iscar, Ltd. | Cutting Tool Holder With Vibration Damping Weight Assembly |
US9993876B2 (en) * | 2015-12-21 | 2018-06-12 | Iscar, Ltd. | Cutting tool holder with vibration damping weight assembly |
CN107344247A (en) * | 2017-05-18 | 2017-11-14 | 平湖市海辰机械有限公司 | A kind of processing technology of knife tower and cutterhead |
CN107344247B (en) * | 2017-05-18 | 2020-05-19 | 海辰精密机械(嘉兴)股份有限公司 | Machining process of cutter head |
US11534834B2 (en) | 2019-07-17 | 2022-12-27 | Kennametal Inc. | Cutting tool holder with improved dampening effect |
US12053826B2 (en) | 2019-07-17 | 2024-08-06 | Kennametal Inc. | Cutting tool holder with improved dampening effect |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rashid et al. | Design and implementation of tuned viscoelastic dampers for vibration control in milling | |
JP3735584B2 (en) | Step drill | |
Ostasevicius et al. | An approach based on tool mode control for surface roughness reduction in high-frequency vibration cutting | |
TWI280996B (en) | Device for insulating a building from earthquake | |
US4794835A (en) | Plate-like rotary body with vibration-suppressing characteristics and method of manufacturing same | |
JPH11240730A (en) | Break cutting of brittle material | |
US7730813B2 (en) | Variable tuned holder for machine tools | |
Lee et al. | Manufacturing and testing of chatter free boring bars | |
JPS61257702A (en) | Long canti lever cutting tool | |
JP6389324B2 (en) | Device for isolating acoustic vibrations in metal processing systems | |
KR100676934B1 (en) | Long life rotating body with excellent fatigue strength and method of manufacturing the rotating body | |
CN109375578B (en) | Efficient machining control method for deep hole in engine oil pump shell | |
Salahshoor et al. | Continuous model for analytical prediction of chatter in milling | |
US20080060465A1 (en) | Vibration Damping Member For Machine Part And Method Of Manufacturing The Same | |
Jian-hua et al. | Modeling study on surface roughness of ultrasonic-assisted micro end grinding of silica glass | |
Liu et al. | Design and fabrication of a skew-typed longitudinal-torsional composite ultrasonic vibrator for titanium wire drawing | |
Yuvaraju et al. | Investigation of Stability in Internal Turning Using a Boring Bar with a Passive Constrained Layer Damping. | |
JP2006504060A (en) | Viscous torsional vibration damper with cooling passage | |
JP3895904B2 (en) | Drill bit | |
Harrison et al. | Tuned constrained layer damping of a cantilevered plate | |
JPS6240121B2 (en) | ||
Nagaya et al. | Vibration control of milling machine by using auto-tuning magnetic damper and auto-tuning vibration absorber | |
JPH07100987A (en) | Damping metal pipe | |
JPH0631852A (en) | Vibration-damping metal pipe | |
CN115169081A (en) | Method for identifying ultrasonic stress |