JPS61257507A - Vibration mechanism of compaction mechine - Google Patents

Vibration mechanism of compaction mechine

Info

Publication number
JPS61257507A
JPS61257507A JP4943286A JP4943286A JPS61257507A JP S61257507 A JPS61257507 A JP S61257507A JP 4943286 A JP4943286 A JP 4943286A JP 4943286 A JP4943286 A JP 4943286A JP S61257507 A JPS61257507 A JP S61257507A
Authority
JP
Japan
Prior art keywords
eccentric
eccentric mass
passes
vibration
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4943286A
Other languages
Japanese (ja)
Inventor
貞広 久則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Heavy Industries Ltd
Original Assignee
Sakai Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Heavy Industries Ltd filed Critical Sakai Heavy Industries Ltd
Priority to JP4943286A priority Critical patent/JPS61257507A/en
Publication of JPS61257507A publication Critical patent/JPS61257507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Road Paving Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は締固め機械の振動機構に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a vibration mechanism for a compaction machine.

〔従来の技術〕[Conventional technology]

従来締固め機械において締固め能率を向上するため転動
輪を振動せしめるには、転動輪の回転中心線に沿って転
動輪に設けた回転軸に偏心荷重を取付け、該回転軸を回
転させることにより転動輪を該転動輪の接地部に対し上
下に振動せしめていた。
In conventional compaction machines, in order to vibrate the rolling wheels in order to improve compaction efficiency, an eccentric load is attached to the rotating shaft provided on the rolling wheel along the rotational center line of the rolling wheel, and the rotating shaft is rotated. The rolling wheels were made to vibrate up and down with respect to the ground contact portion of the rolling wheels.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この従来の締固め機械は地盤を通じて上
下振動が転回するので、住宅地や地盤振動を嫌う施設近
傍における施工で振動公害を発生する欠点のほか、舗装
合材の骨材をたたき破壊する欠点があった。また、この
上下振動を行う締固め機械は、上下振動が直接転動輪の
回転軸に働き、サスペンションゴムに剪断方向(上下方
向)の力として働くことにより機械本体の垂直荷重及び
駆動力と合成されて大きな剪断力となるから、これに耐
えるサスペンションゴムとして多少防振効果を損なって
も、バネ定数の高い(硬い)、大きな形状のものを採用
することとなり、コストも高くなり必然的にサスペンシ
ョンゴムで吸収できない振動が機械本体のフレームに伝
わるため、操縦者に大きな疲労を与えるという問題点も
あった。
However, since this conventional compaction machine causes vertical vibration to rotate through the ground, it has the disadvantage of generating vibration pollution when installed in residential areas or near facilities that do not like ground vibration, and also has the disadvantage of striking and destroying the aggregate of the paving mixture. was there. In addition, in a compaction machine that performs vertical vibration, the vertical vibration acts directly on the rotating shaft of the rolling wheel, and acts as a force in the shearing direction (vertical direction) on the suspension rubber, which is combined with the vertical load and driving force of the machine body. Therefore, suspension rubber that can withstand this has to have a high spring constant (hard) and a large shape, even if it loses some of its vibration-proofing effect, which increases the cost and inevitably requires suspension rubber. Another problem was that vibrations that could not be absorbed by the machine were transmitted to the frame of the machine, causing great fatigue to the operator.

本発明は上記の事情に鑑みなされたもので、振動公害の
発生を可及的に防止すると共に操縦者の疲労を低減する
ために、駆動源の回転力を転勤輪の半径方向に設けた複
数個の偏心質量の回転軸に水平振動可能に伝達する回転
変換機構を有する締固め機械の振動機構を提供すること
にある。
The present invention has been made in view of the above circumstances, and in order to prevent the occurrence of vibration pollution as much as possible and reduce operator fatigue, the present invention has a plurality of rotational forces provided in the radial direction of the transfer wheel. An object of the present invention is to provide a vibration mechanism for a compaction machine having a rotation conversion mechanism capable of transmitting horizontal vibration to a rotating shaft of an eccentric mass.

〔問題点を解決するための手段及びその作用〕上記問題
点を解決するため、本発明においては、偏心質量が取付
けられた複数個の回転軸を、転動輪の回転中心線上の少
なくとも二箇所以上において傘歯車を介して上記転動輪
の半径方向に位置するように回転自在に取付け、上記回
転軸の軸芯に対する夫々の偏心質量の偏心位置を選定し
て配置することにより構成したことを特徴とする。
[Means for solving the problem and its operation] In order to solve the above problem, in the present invention, a plurality of rotating shafts to which eccentric masses are attached are arranged at at least two or more locations on the center line of rotation of the rolling wheel. The eccentric mass is rotatably mounted in the radial direction of the rolling ring via a bevel gear, and the eccentric position of each eccentric mass with respect to the axis of the rotating shaft is selected and arranged. do.

上記構成を採用したことにより、極めて簡潔な傘歯車の
組合せによって転動輪にほぼ水平振動を発生させること
ができる。
By employing the above configuration, substantially horizontal vibration can be generated in the rolling wheels using a very simple combination of bevel gears.

〔実施例〕〔Example〕

以下本発明の実施例について図面に基づき説明をする。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明に係る振動機構を適用する締固め機械1
を例示する側面図である。2は原動機、走行装置、操向
装置、操縦席等が配備された車台、3は車台2に設けた
走行輪である。車台2は転動輪4を支持するフレーム5
が連接ビン6を介して取付けられている。
Figure 1 shows a compaction machine 1 to which the vibration mechanism according to the present invention is applied.
FIG. Reference numeral 2 denotes a vehicle chassis on which a prime mover, a traveling device, a steering device, a driver's seat, etc. are provided, and 3 indicates running wheels provided on the vehicle chassis 2. The chassis 2 includes a frame 5 that supports rolling wheels 4
is attached via a connecting pin 6.

第2図は本発明の第1実施例を示す断面図である。フレ
ーム5の左右にアクスル7.7が設けらし、該アクスル
7.7内にサスペンションゴム8゜8を介して取付体9
.9が固着される。一方転動輪4の内部に側板10.1
0が設けられ、側板10.10の中央に中空の輪軸11
.11が形成される。該輪軸11、11は前記取付体9
,9に軸受12.12.12.12を介して軸支されて
いる。
FIG. 2 is a sectional view showing a first embodiment of the present invention. Axles 7.7 are provided on the left and right sides of the frame 5, and a mounting body 9 is inserted into the axles 7.7 via suspension rubber 8.
.. 9 is fixed. On the other hand, inside the rolling wheel 4 there is a side plate 10.1.
0 is provided, and a hollow wheel shaft 11 is provided in the center of the side plate 10.10.
.. 11 is formed. The wheel axles 11, 11 are attached to the mounting body 9.
, 9 via bearings 12.12.12.12.

左右いずれかの取付体9の中央に正逆回転可能な起振用
の油圧モータ13が固着され、該油圧モータ13の出力
軸が前記中空の輪軸11.11の左右間に貫入された起
振駆動軸14にカップリングを介して接続されている。
A hydraulic motor 13 for vibration excitation, which can rotate forward and reverse, is fixed to the center of either the left or right mounting body 9, and the output shaft of the hydraulic motor 13 penetrates between the left and right sides of the hollow wheel shaft 11.11. It is connected to the drive shaft 14 via a coupling.

該駆動軸14は前記輪軸11.11内の中心にベアリン
グ15.15.15.15を介して枢支されると共に、
該駆動軸14の前記側板10.10内方に対向させて二
つの傘歯車16a、16bが設けられている。一方前記
側板10の内側面には転動輪4の回転中心線Aに直交す
る半径方向の直線上に各々回転中心線B及びCを有する
回転軸17a、17b及び17c、17dが各々ベアリ
ング1B、 18.18.18及ヒ+9.19.19.
19を介して軸支されている。前記回転軸17a、17
b及び17C,17dの内方端には傘歯車20a、20
b及び20C,20dが設けられ、各々前記駆動軸14
に設けられた傘歯車16a及び16bに噛合する。また
、各回転軸17a、17b及び17c。
The drive shaft 14 is centrally supported within the wheel axle 11.11 via a bearing 15.15.15.15, and
Two bevel gears 16a and 16b are provided on the inner side of the side plate 10.10 of the drive shaft 14, facing each other. On the other hand, on the inner surface of the side plate 10, bearings 1B, 18 are provided on the inner surface of the side plate 10. .18.18 and H+9.19.19.
It is pivotally supported via 19. The rotating shafts 17a, 17
Bevel gears 20a, 20 are provided at the inner ends of b, 17C, and 17d.
b, 20C, and 20d are provided, and each of the drive shafts 14
It meshes with bevel gears 16a and 16b provided in the. Moreover, each rotating shaft 17a, 17b, and 17c.

17dの外方端には偏心質量21 a 、 21 b及
び21c。
At the outer end of 17d are eccentric masses 21a, 21b and 21c.

21dが取付けられている。21d is attached.

該偏心質量21a、21b及び21c、21dの偏心位
置は第1実施例として次のように定められている。
The eccentric positions of the eccentric masses 21a, 21b, 21c, and 21d are determined as follows in the first embodiment.

即ち、偏心質量21a、21bの偏心位置の相互関係及
び偏心質121 c 、 21 dの偏心位置の相互関
係は、転動輪4の回転中心線上の軸方向に同一方向に偏
心し、且つ転動輪4の半径方向に対し180度相反する
位置に配置されたものである。また、偏心質量21a、
21cの偏心位置の相互関係及び偏心質量21b、21
dの偏心位置の相互関係は、転動輪4の回転中心線上の
軸方向に同一方向に偏心し、且つ離間して同じ半径方向
に位置するものである。
That is, the mutual relationship between the eccentric positions of the eccentric masses 21a and 21b and the mutual relationship between the eccentric positions of the eccentric masses 121c and 21d is such that they are eccentric in the same direction in the axial direction on the rotation center line of the rolling wheel 4, and They are placed at positions 180 degrees opposite to each other in the radial direction. Moreover, the eccentric mass 21a,
Correlation of eccentric positions of 21c and eccentric masses 21b, 21
The mutual relationship of the eccentric positions d is such that they are eccentric in the same direction in the axial direction on the rotational center line of the rolling wheel 4, and are spaced apart and located in the same radial direction.

次にこの第1実施例に係る振動機構の作用について説明
をする。締固め機械1の走行を停止した状態で油圧モー
タ13により回転軸17 a 、 17 b 、 17
c、17dを矢印の如く回転させると、第3図において
偏心質量21aの外周端は回転中心線Bを中心として位
置り、E、F、Gの順に回転し、偏心質量21bの外周
端は逆に位置り、G、F、Hの順に回転し、偏心質量2
1cの外周端は回転中心線Cを中心として位置H,に、
J、Iの順に回転し、偏心質量21dの外周端は逆にH
,I、J、にの順に回転をする。この回転中に偏心質1
i21aの外周端が位置りを通過するとき、偏心質量2
1bの外周端も位置りを通過し、偏心’Jt121cの
外周端が位置Hを通過するとき、偏心質量21dの外周
端も位置Hを通過するので、転動輪4にBからDに向う
方向の遠心力及びCからHに向う方向の遠心力が相乗し
て作用する。同様に回転中に偏心質量21aの外周端が
位置Fを通過するとき、偏心質ff121 bの外周端
も位置Fを通過し、偏心質量21Cの外周端が位置Jを
通過するとき、偏心質量21dの外周端も位置Jを通過
するので、転動輪4にBからFに向う方向の遠心力及び
CからJに向う方向の遠心力が相乗して作用する。
Next, the operation of the vibration mechanism according to the first embodiment will be explained. With the compaction machine 1 stopped running, the hydraulic motor 13 rotates the rotating shafts 17a, 17b, 17.
c and 17d are rotated as indicated by the arrows, the outer circumferential end of the eccentric mass 21a is located around the rotation center line B in FIG. The eccentric mass 2 rotates in the order of G, F, and H.
The outer peripheral end of 1c is at position H, centering on the rotation center line C,
Rotates in the order of J and I, and the outer peripheral end of the eccentric mass 21d conversely rotates as H.
, I, J, in this order. During this rotation, eccentricity 1
When the outer peripheral end of i21a passes through the position, the eccentric mass 2
1b also passes the position, and when the outer circumferential end of the eccentric 'Jt121c passes the position H, the outer circumferential end of the eccentric mass 21d also passes the position H, so the rolling wheel 4 has a direction from B to D. The centrifugal force and the centrifugal force in the direction from C to H act synergistically. Similarly, when the outer peripheral end of the eccentric mass 21a passes through the position F during rotation, the outer peripheral end of the eccentric mass ff121b also passes through the position F, and when the outer peripheral end of the eccentric mass 21C passes through the position J, the eccentric mass 21d Since the outer peripheral end of the wheel also passes through position J, the centrifugal force in the direction from B to F and the centrifugal force in the direction from C to J act on the rolling wheel 4 in synergy.

一方、回転中に偏心質量21aの外周端が位置Eを通過
するとき、偏心質121 bの外周端が位置Gを通過す
るが、同時に偏心質量21cの外周端が位置Kを通過し
、偏心質f21 dの外周端が位置■を通過するので、
転動輪4の円周方向に作用する力は打ち消し合いキャン
セルされる。
On the other hand, when the outer peripheral end of the eccentric mass 21a passes through position E during rotation, the outer peripheral end of eccentric mass 121b passes through position G, but at the same time, the outer peripheral end of eccentric mass 21c passes through position K, Since the outer peripheral edge of f21 d passes through position ■,
The forces acting in the circumferential direction of the rolling wheels 4 cancel each other out.

同様に回転中に偏心質量21aの外周端が位置Gを通過
するとき、偏心質量21bの外周端が位置Eを通過する
が、同時に偏心質量21cの外周端が位置■を通過し、
偏心質量21dの外周端が位置Kを通過するので、同じ
(転動輪4の円周方向に作用する力は打ち消し合いキャ
ンセルされる。
Similarly, when the outer circumferential end of the eccentric mass 21a passes through the position G during rotation, the outer circumferential end of the eccentric mass 21b passes through the position E, but at the same time, the outer circumferential end of the eccentric mass 21c passes through the position
Since the outer peripheral end of the eccentric mass 21d passes through the position K, the same (forces acting in the circumferential direction of the rolling wheels 4) cancel each other out.

従って、偏心質量21 a 、 21 b 、 21 
c 、 21 dが回転をするとBからDに向う方向の
遠心力、CからHに向う方向の遠心力及びBからFに向
う方向の遠心力、CからJに向う方向の遠心力が作用す
る。
Therefore, the eccentric masses 21 a , 21 b , 21
c, 21 When d rotates, centrifugal force acts in the direction from B to D, centrifugal force in the direction from C to H, centrifugal force in the direction from B to F, and centrifugal force in the direction from C to J. .

即ち、この遠心力は転動輪4に働き該転動輪4の接地部
を水平面内で左右方向に振動させる。
That is, this centrifugal force acts on the rolling wheel 4 and causes the ground contact portion of the rolling wheel 4 to vibrate in the left-right direction within a horizontal plane.

また、締固め機械1を走行させながら偏心質量’ 21
a、21b、21c、21dを回転させると、転動輪4
の接地部は、上記の左右方向の振動と走行に伴なう前進
又は後退運動とが合成された水平運動を行うことになる
。従って締固め機械1が走行している状態においても走
行を停止している状態においても、偏心質量21a、2
1b、21c、21dを回転させて締固め作業を行なう
と、転動輪4が接地面の土粒子を揺動するように又はこ
ねるように運動するから、舗装合材の骨材の破壊及びヘ
アクラックの発生がなく且つ締固めの能率向上が図られ
る。
In addition, while running the compaction machine 1, the eccentric mass ' 21
When a, 21b, 21c, and 21d are rotated, the rolling wheel 4
The ground-contacting portion of the vehicle performs a horizontal motion that is a combination of the above-mentioned left-right vibration and the forward or backward motion associated with running. Therefore, whether the compaction machine 1 is running or not running, the eccentric masses 21a, 2
When compaction work is performed by rotating the wheels 1b, 21c, and 21d, the rolling wheels 4 move to shake or knead the soil particles on the contact surface, resulting in damage to the aggregate of the paving mix and hair cracks. There is no occurrence of this, and the efficiency of compaction is improved.

また水平面内の振動は、上下振動に比較して地盤の特性
上振動減衰効率が高く、従って地盤振動を嫌う施設近傍
における転圧作業や住居の多い生活道路の施工に振動公
害を大幅に減少し得ると共に、発生した左右方向の振動
はサスペンションゴムに左右方向の力として働くことに
なり機械本体の垂直荷重及び駆動力とは力の方向が変る
ため小さな剪断力となるから、これに耐えるサスペンシ
ョンゴムとしてバネ常数の小さい(柔かい)ものとなり
、必然的に防振効果が高くフレーム本体への振動の伝達
が小さくなり、操縦者の疲労を軽減させる利点がある。
In addition, vibrations in the horizontal plane have a higher vibration damping efficiency than vertical vibrations due to the characteristics of the ground. Therefore, vibration pollution can be greatly reduced in compaction work near facilities where ground vibrations are averse, and in construction on residential roads where there are many residences. At the same time, the generated left and right vibration acts on the suspension rubber as a force in the left and right directions, and the vertical load and driving force of the machine body change the direction of the force, resulting in a small shearing force, so the suspension rubber can withstand this force. As a result, the spring constant is small (soft), which naturally has a high vibration-proofing effect and reduces the transmission of vibration to the frame body, which has the advantage of reducing operator fatigue.

次に第2実施例を第4図に基づき説明する。この第2実
施例では偏心質量の取付は方以外の構成は第1実施例と
同じであるので、同一部材には同符号を付し説明は省略
する。
Next, a second embodiment will be explained based on FIG. 4. In this second embodiment, the configuration other than the mounting of the eccentric mass is the same as the first embodiment, so the same members are given the same reference numerals and explanations will be omitted.

偏心質!22a、22b及び22C,22dの偏心位置
は第2実施例として次のように定められている。
Eccentricity! The eccentric positions of 22a, 22b, 22C, and 22d are determined as follows in the second embodiment.

即ち、偏心質量22a、22bの偏心位置の相互関係及
び偏心質量22c、22dの偏心位置の相互関係は、転
動輪4の回転中心線上の軸方向に同一方向に偏心し、且
つ転動輪4の半径方向に対し180度相反する位置に配
置されたものである。また、偏心質量22a、22cの
偏心位置の相互関係及び偏心質量22b、22dの偏心
位置の相互関係は、転動輪4の回転中心線上の軸方向に
180度位相をずらして偏心し、且つ離間して同じ半径
方向に位置するものである。
That is, the mutual relationship between the eccentric positions of the eccentric masses 22a and 22b and the mutual relationship between the eccentric positions of the eccentric masses 22c and 22d is such that the eccentric masses 22a and 22b are eccentric in the same direction in the axial direction on the rotation center line of the rolling wheel 4, and the radius of the rolling wheel 4 is They are placed at positions 180 degrees opposite to each other. Further, the mutual relationship between the eccentric positions of the eccentric masses 22a and 22c and the mutual relationship between the eccentric positions of the eccentric masses 22b and 22d are such that the eccentric masses 22a and 22c are eccentric with a phase shifted by 180 degrees in the axial direction on the rotation center line of the rolling wheel 4, and are spaced apart. They are located in the same radial direction.

次にこの第2実施例に係る振動機構の作用について説明
をする。締固め機械1の走行を停止した状態で油圧モー
タ13により回転軸17a、 17b、 17c、17
dを矢印の如く回転させると、第5図において偏心質量
22aの外周端は回転中心線Bを中心として位置り、E
、F、Gの順に回転し、偏心質量22bの外周端は逆に
位置り、G、F、Eの順に回転し、偏心質量22cの外
周端は回転中心′hAcを中心として位置J、I、H,
にの順に回転し、偏心質量22dの外周端は逆にJ、に
、H,Iの順に回転をする。この回転中に偏心質量22
aの外周端が位置りを通過するとき、偏心質量22bの
外周端も位置りを通過するが、偏心質量22cの外周端
及び偏心質!22dの外周端が位置Jを通過するので、
そのBからDに向う方向の遠心力はCからJに向う遠心
力により打消される。同様に回転中に偏心質量22aの
外周端が位置Fを通過するとき、偏心質量22bの外周
端も位置Fを通過するが、偏心質量22cの外周端及び
偏心質量22dの外周端が位置Hを通過するので、その
BからFに向う方向の遠心力はCからHに向う遠心力に
より打消される。
Next, the operation of the vibration mechanism according to the second embodiment will be explained. With the compaction machine 1 stopped running, the hydraulic motor 13 rotates the rotating shafts 17a, 17b, 17c, 17.
When d is rotated as shown by the arrow, the outer peripheral end of the eccentric mass 22a is located around the rotation center line B in FIG.
. H,
The outer peripheral end of the eccentric mass 22d rotates in the order of J, H, I. During this rotation, the eccentric mass 22
When the outer peripheral end of a passes through the position, the outer peripheral end of the eccentric mass 22b also passes through the position, but the outer peripheral end of the eccentric mass 22c and the eccentric mass ! Since the outer peripheral end of 22d passes through position J,
The centrifugal force in the direction from B to D is canceled by the centrifugal force in the direction from C to J. Similarly, when the outer peripheral end of the eccentric mass 22a passes through position F during rotation, the outer peripheral end of the eccentric mass 22b also passes through position F, but the outer peripheral end of the eccentric mass 22c and the outer peripheral end of the eccentric mass 22d pass through position H. As it passes, the centrifugal force in the direction from B to F is canceled by the centrifugal force in the direction from C to H.

しかし、回転中に偏心質1122aの外周端が位置Eを
通過するとき、偏心質量22bの外周端は位置Gを通過
し、偏心質!22cの外周端が位置Iを通過するとき、
偏心質量22dの外周端が位置Kを通過するので、第6
図において転動輪4にL方向(円周方向)に回転する力
が相乗して作用する。
However, when the outer circumferential end of the eccentric mass 1122a passes through position E during rotation, the outer circumferential end of the eccentric mass 22b passes through position G, and the eccentric mass! When the outer peripheral end of 22c passes through position I,
Since the outer peripheral end of the eccentric mass 22d passes through the position K, the sixth
In the figure, forces that rotate in the L direction (circumferential direction) act synergistically on the rolling wheels 4.

同様に回転中に偏心質1122aの外周端が位置Gを通
過するとき、偏心質量22bの外周端が位iIEを通過
し、偏心質量22cの外周端が位置Kを通過するとき、
偏心質量22dの外周端が位置Iを通過するので、前記
し方向と反対のM方向(円周方向)に回転する力が相乗
して作用する。
Similarly, when the outer peripheral end of the eccentric mass 1122a passes through the position G during rotation, the outer peripheral end of the eccentric mass 22b passes through the position iIE, and when the outer peripheral end of the eccentric mass 22c passes through the position K,
Since the outer circumferential end of the eccentric mass 22d passes through the position I, forces that rotate in the M direction (circumferential direction), which is opposite to the above-mentioned direction, act synergistically.

従って、偏心lt量22 a 、 22 b 、 22
 c 、 22 dが回転すると転動輪4をL方向に回
転させる力及びM方向(L方向の反対)に回転させる力
が作用する。
Therefore, the eccentricity lt amounts 22 a , 22 b , 22
When c and 22 d rotate, a force to rotate the rolling wheel 4 in the L direction and a force to rotate it in the M direction (opposite to the L direction) acts.

即ち、この力は接地部を水平面内で前後方向に振動させ
る。
In other words, this force causes the ground contact portion to vibrate back and forth within the horizontal plane.

また、締固め機械1を走行させながら偏心質量22 a
 、 22 b 、 22 c 、 22 dを回転さ
せると、転動輪4の接地部は、上記の前後方向の振動と
走行に伴なう前進又は後退運動とが合成された水平運動
を行うことになる。従って締固め機械1が走行している
状態においても走行を停止している状態においても偏心
質量22 a 、 22 b 、 22 c 、 22
 dを回転させて締固め作業を行なうと、転動輪4が接
地面の土粒子を揺動するように又はこねるように運動す
るから、舗装合材の骨材の破壊及びヘアクラックの発生
がなく且つ締固め能率の向上が図られる。
Moreover, while running the compaction machine 1, the eccentric mass 22 a
, 22 b , 22 c , and 22 d are rotated, the ground contact portion of the rolling wheel 4 performs a horizontal movement that is a combination of the above-mentioned longitudinal vibration and the forward or backward movement associated with running. . Therefore, the eccentric masses 22 a , 22 b , 22 c , 22 are present both when the compaction machine 1 is running and when it is not running.
When the compaction work is performed by rotating d, the rolling wheels 4 move to shake or knead the soil particles on the ground surface, so there is no destruction of the aggregate of the paving mix and no hair cracks. Moreover, compaction efficiency can be improved.

また、水平面内の振動は、上下振動に比較して地盤の特
性上振動減衰効率が高く、従って地盤振動を嫌う施設近
傍における転圧作業や住居の多い生活道路の施工に振動
公害を大幅に減少し得ると共に、発生した前後方向の振
動は転動輪の回転軸を中心に転動輪廻りのモーメントと
してのみ働くから転動輪の回転軸は振動を受けず、従っ
てサスペンションゴムには振動が働かないことになり、
操縦者に振動による疲労を全く与えない利点がある。
In addition, vibrations in the horizontal plane have a higher vibration damping efficiency than vertical vibrations due to the characteristics of the ground. Therefore, vibration pollution can be significantly reduced when compaction work is performed near facilities that are sensitive to ground vibrations, and when constructing residential roads with many residences. At the same time, the longitudinal vibration that occurs acts only as a moment around the rolling wheels around the rotating shaft of the rolling wheels, so the rotating shafts of the rolling wheels are not subjected to vibration, and therefore no vibrations act on the suspension rubber. Become,
This has the advantage of not causing any fatigue to the operator due to vibration.

なお、第1.第2実施例では回転軸の長さと、偏心質量
の重さを一定のものとして示したが、これに限定せず、
回転軸の長さと偏心質量の重さの積が一定のものであれ
ばよい。
In addition, 1. In the second embodiment, the length of the rotating shaft and the weight of the eccentric mass are shown as constant, but the invention is not limited to this.
It is sufficient that the product of the length of the rotating shaft and the weight of the eccentric mass is constant.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明した如く、締固め機械において駆動源
の回転力を、転動輪の半径方向に設けた複数個の偏心質
量の回転軸に水平振動可能に伝達する回転変換機構を傘
歯車で構成したので、極めて簡潔に転動輪にほぼ水平振
動を発生させる効果を存する。
As explained above, the present invention includes a rotation conversion mechanism using bevel gears that transmits the rotational force of a drive source in a compaction machine to the rotating shafts of a plurality of eccentric masses provided in the radial direction of a rolling wheel so as to be able to horizontally vibrate. Therefore, it has the effect of generating almost horizontal vibration in the rolling wheels in a very simple manner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は締固め機械の側面図、第2図は本発明の第1実
施例を示す転動輪の断面図、第3図は第2図の■矢視説
明図、第4図は本発明の第2実施例を示す転動輪の断面
図、第5図は第4図の■矢視説明図、第6図は第4図の
■矢視説明図である。 4・・・転圧輪、 5・・・フレーム、 9・・・取付
体、10・・・側板、 11・・・輪軸、 12・・・
軸受、13・・・油圧モータ、 14・・・起振駆動軸
、15・・・ベアリング、 16a、16b・・・傘歯
車、17a、17b、17c、17d−・・回転軸、1
8、19・・・ベアリング、
Fig. 1 is a side view of the compaction machine, Fig. 2 is a sectional view of a rolling wheel showing the first embodiment of the present invention, Fig. 3 is an explanatory view in the direction of the ■ arrow in Fig. 2, and Fig. 4 is the invention of the present invention. FIG. 5 is an explanatory view taken in the direction of the ■ arrow in FIG. 4, and FIG. 6 is an explanatory view taken in the direction of the ■ arrow in FIG. 4. 4... Rolling wheel, 5... Frame, 9... Mounting body, 10... Side plate, 11... Wheel axle, 12...
Bearing, 13... Hydraulic motor, 14... Vibrating drive shaft, 15... Bearing, 16a, 16b... Bevel gear, 17a, 17b, 17c, 17d-... Rotating shaft, 1
8, 19...Bearing,

Claims (1)

【特許請求の範囲】[Claims] 偏心質量が取付けられた複数個の回転軸を、転動輪の回
転中心線上の少なくとも二箇所以上において傘歯車を介
して上記転動輪の半径方向に位置するように回転自在に
取付け、上記回転軸の軸芯に対する夫々の偏心質量の偏
心位置を選定して配置することにより構成したことを特
徴とする締固め機械の振動機構。
A plurality of rotating shafts to which eccentric masses are attached are rotatably mounted so as to be positioned in the radial direction of the rolling wheels via bevel gears at at least two or more locations on the rotational center line of the rolling wheels, and A vibration mechanism for a compaction machine, characterized in that it is constructed by selecting and arranging the eccentric positions of each eccentric mass with respect to the shaft center.
JP4943286A 1986-03-06 1986-03-06 Vibration mechanism of compaction mechine Pending JPS61257507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4943286A JPS61257507A (en) 1986-03-06 1986-03-06 Vibration mechanism of compaction mechine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4943286A JPS61257507A (en) 1986-03-06 1986-03-06 Vibration mechanism of compaction mechine

Publications (1)

Publication Number Publication Date
JPS61257507A true JPS61257507A (en) 1986-11-15

Family

ID=12830942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4943286A Pending JPS61257507A (en) 1986-03-06 1986-03-06 Vibration mechanism of compaction mechine

Country Status (1)

Country Link
JP (1) JPS61257507A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861408A (en) * 1981-10-07 1983-04-12 Matsushita Electric Ind Co Ltd Transmission type optical coupler
JPS6156724A (en) * 1984-08-24 1986-03-22 Sumitomo Metal Ind Ltd Cold extension method of outer face plating metal tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861408A (en) * 1981-10-07 1983-04-12 Matsushita Electric Ind Co Ltd Transmission type optical coupler
JPS6156724A (en) * 1984-08-24 1986-03-22 Sumitomo Metal Ind Ltd Cold extension method of outer face plating metal tube

Similar Documents

Publication Publication Date Title
JPS6156724B2 (en)
JP3728179B2 (en) Vibration roller
US3897165A (en) Vibratory roller
US5788408A (en) Vibratory pneumatic tire roller
JP2010047206A (en) Cargo conveying vehicle
US2812696A (en) Vibratory-type road-rolling device
JP3962344B2 (en) Vibration mechanism and vibration roller
JP4746209B2 (en) Vibration mechanism and vibration roller
JPS61257507A (en) Vibration mechanism of compaction mechine
JPH0240084Y2 (en)
JPS61257508A (en) Vibration roller
CN113966424B (en) Self-balancing single-drum compactor
JPH06287908A (en) Vibratory rotor vibrated by two shafts
JP2775168B2 (en) Vibration roller
JPH0747445Y2 (en) Vibratory roller of triaxial vibration mechanism
JPH0768683B2 (en) Vibration roller vibration generator
JPH0527522Y2 (en)
JPH0516481B2 (en)
JPS62178604A (en) Vibration mechanism of solidifying machine
JPH0136967Y2 (en)
JPH0516483B2 (en)
CN216941283U (en) Mixing drum driving system and mixing transport vehicle
JPH0830326B2 (en) Vibration roller
JPH01315503A (en) Vibration roller
JPH01290801A (en) Oscillation roller