JPS6125739B2 - - Google Patents

Info

Publication number
JPS6125739B2
JPS6125739B2 JP6688977A JP6688977A JPS6125739B2 JP S6125739 B2 JPS6125739 B2 JP S6125739B2 JP 6688977 A JP6688977 A JP 6688977A JP 6688977 A JP6688977 A JP 6688977A JP S6125739 B2 JPS6125739 B2 JP S6125739B2
Authority
JP
Japan
Prior art keywords
polyether
molecular weight
alkylene oxide
formula
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6688977A
Other languages
Japanese (ja)
Other versions
JPS541365A (en
Inventor
Fumio Kawakubo
Minoru Tada
Tetsuo Mita
Katsuhiko Isayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP6688977A priority Critical patent/JPS541365A/en
Publication of JPS541365A publication Critical patent/JPS541365A/en
Publication of JPS6125739B2 publication Critical patent/JPS6125739B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyethers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、高分子量アルキレンオキシド重合䜓
の粟補法に関する。 䞀般に、アルキレンオキシド重合䜓の粟補法ず
しおは、吞着剀で凊理する方法、各皮酞で残存觊
媒を䞭和した埌、過する方法及び抜出法等が知
られおいるが、高分子量のアルキレンオキシド重
合䜓は、その粘床が非垞に高い事ず、その補造工
皋においお䜿甚する觊媒の量が非垞に倚く、か぀
倚量の塩類が生成しおくるため、これらの方法は
適甚できない。䟋えば、ケむ酞アルミニりム等の
ような固䜓酞で觊媒を吞着陀去する方法に぀いお
は、觊媒量が倚いため䞭和するに芁する固䜓酞が
倚量ずなり、埓぀お生成するケヌキの量が非垞に
倚くなり、たた现かく分散しおいる塩類による目
詰たり等で過速床が遅く、ケヌキぞのポリマヌ
付着による収率の䜎䞋等もあり、実質的に無理で
ある。残存觊媒を䞭和した埌、過する方法に぀
いおも同様で、単に䞭和するだけでは生成する塩
が现かいため、目詰たりをきたし過できない。
又、塩を凝集肥倧させおやり過を容易にする方
法も考えられるが、系の粘床が高いため容易では
ない。抜出法に関しおも、単に氎掗しようずしお
もポリマヌ局が完党にクリヌム状ずな぀おした
い、䟋え、溶剀等で垌釈しおも゚マルゞペン化し
おしたい分液はできない。 本発明者等は以䞊の点を考慮し、高分子量のア
ルキレンオキシド重合䜓の粟補法に関し、䞍玔物
を陀去する際、適圓な溶剀によりポリマヌ局の粘
床を䞋げた䞊で、氎局のPHを玄以䞋にしおおく
ず、ポリマヌ局ず氎局ず界面が非垞には぀きりず
し分液が容易になりる事を芋出し本発明に到達し
た。即ち、本発明は高分子量アルキレンオキシド
重合䜓からその補造工皋においお䜿甚した及び
又は生成したアルカリ金属化合物類を陀去するに
あたり、該重合䜓を溶剀で垌釈しお、その溶液が
氎ず実質的に異なる密床を有するように調敎し、
曎に氎局のPHを最終的に玄以䞋に保持しながら
抜出する粟補法である。 本発明が奜的に適甚される高分子量アルキレン
オキシド重合䜓は、分子量3000〜12000である。
分子量が3000を越える高分子量アルキレンオキシ
ド重合䜓は、埓来のアルキレンオキシド重合䜓ず
異り、分子量ゞダンピングの為の反応を経由しお
補造される。具䜓的には、本発明者等が先に出願
した特願昭52−45492特開昭53−129247に䟋
瀺されおいる。即ち本質的に匏 −I−− (1) ここでIは炭玠数〜である䟡のアルキレ
ン基を衚わす で瀺される化孊的に結合した構造単䜍からな぀お
いる。このポリ゚ヌテルぱチレンオキシド、プ
ロピレンオキシド、ブテンオキシド、テトラヒド
ロフランなどを原料物質ずしおカチオン重合、ア
ニオン重合の方法を甚いお補造される。匏(1)で瀺
される化孊的に結合された構造単䜍には䟋えば、
−CH2CH2O−、
The present invention relates to a method for purifying high molecular weight alkylene oxide polymers. In general, known methods for purifying alkylene oxide polymers include treatment with an adsorbent, neutralization of residual catalyst with various acids and filtration, and extraction method. These methods cannot be applied to coalescence because its viscosity is very high, the amount of catalyst used in the production process is very large, and large amounts of salts are produced. For example, in the method of adsorbing and removing the catalyst with a solid acid such as aluminum silicate, the amount of catalyst is large, so a large amount of solid acid is required for neutralization, and therefore a large amount of cake is produced. In addition, the overspeed is slow due to clogging caused by finely dispersed salts, and the yield is reduced due to polymer adhesion to the cake, so it is practically impossible. The same applies to the method of neutralizing the remaining catalyst and then filtering it; simply neutralizing the catalyst would result in clogging because the salt produced would be too fine.
Another possible method is to make the salt agglomerate and thicken to make it easier to process, but this is not easy due to the high viscosity of the system. Regarding the extraction method, even if you simply try to wash it with water, the polymer layer becomes completely creamy, and even if you dilute it with a solvent, it becomes an emulsion and cannot be separated. Considering the above points, the present inventors have developed a method for purifying high-molecular-weight alkylene oxide polymers by reducing the viscosity of the polymer layer with an appropriate solvent and then lowering the pH of the aqueous layer to approximately The present invention was achieved by discovering that when the ratio is set to 3 or less, the interface between the polymer layer and the water layer becomes very sharp and liquid separation becomes easy. That is, the present invention provides high molecular weight alkylene oxide polymers used in the production process and/or
or in removing the generated alkali metal compounds, diluting the polymer with a solvent so that the solution has a density substantially different from that of water;
Furthermore, this is a purification method in which extraction is performed while ultimately maintaining the pH of the aqueous layer at about 3 or less. The high molecular weight alkylene oxide polymer to which the present invention is preferably applied has a molecular weight of 3,000 to 12,000.
Unlike conventional alkylene oxide polymers, high molecular weight alkylene oxide polymers with a molecular weight exceeding 3000 are produced through a reaction for molecular weight jumping. Specifically, this is exemplified in Japanese Patent Application No. 52-45492 (Japanese Unexamined Patent Publication No. 53-129247) previously filed by the present inventors. That is, it essentially consists of chemically bonded structural units represented by the formula -R I -O- (1) (where R I represents a divalent alkylene group having 2 to 4 carbon atoms). This polyether is produced using cationic polymerization or anionic polymerization using raw materials such as ethylene oxide, propylene oxide, butene oxide, and tetrahydrofuran. The chemically bonded structural unit represented by formula (1) includes, for example,
−CH 2 CH 2 O−,

【匏】【formula】

【匏】−CH2CH2CH2CH2O−などが 具䜓的に挙げられる。ポリ゚ヌテルずしおは、こ
れら構造単䜍が皮類だけで結合されるだけでな
く、皮類以䞊の構造単䜍が混合された圢で結合
されおいおもよいが、特にプロピレンオキシドを
原料物質ずしお補造されるポリ゚ヌテルが奜たし
い。たたポリ゚ヌテルは非氎溶性であるこずが必
芁である。 アルキレンオキシドのアニオン重合の際には開
始剀ずしお゚チレングリコヌル、プロピレングリ
コヌル、グリセリン、ペンタ゚リトリツトなどの
ような倚䟡アルコヌル類が䜿甚されるが、これら
倚䟡アルコヌル類の残基がアルキレンオキシド重
合䜓䞻鎖の䞭に含有されうる。又ポリ゚ヌテルず
しおは線状でも、枝わかれ構造をしおもよく、分
子量はは3000〜12000のものが䜿甚される。 匏 CH2CH−〓−−b (2) 〔匏䞭、−〓−は、−R′−、−R′−−R″−、
Specific examples include [Formula] -CH 2 CH 2 CH 2 CH 2 O-. As polyether, not only one type of these structural units may be combined, but also two or more types of structural units may be combined in a mixed form, but in particular, polyether is produced using propylene oxide as a raw material. Polyethers are preferred. It is also necessary that the polyether be water-insoluble. In the anionic polymerization of alkylene oxide, polyhydric alcohols such as ethylene glycol, propylene glycol, glycerin, pentaerythritol, etc. are used as initiators, and the residues of these polyhydric alcohols form alkylene oxide polymers. It can be contained within the main chain. The polyether used may have a linear or branched structure, and has a molecular weight of 3,000 to 12,000. Formula CH 2 =CH−R〓(−O−) b (2) [In the formula, −R〓− is −R′−, −R′−O−R″−,

【匏】たたは[expression] or

【匏】䜆し、 R′、R″は炭玠数〜20の䟡の炭化氎玠基〕 で瀺される末端オレフむン基を有するポリ゚ヌテ
ルは、最終的には 匏 CH2CH−〓− (3) 匏䞭、−〓は䞊蚘ず同じ、は塩玠、臭玠、ペ
り玠から遞ばれるハロゲン原子 を有する有機ハロゲン化合物をポリ゚ヌテルず反
応させる事により補造される。䟋えば、具䜓的に
は以䞋の補造法が挙げられる。 (a) ポリオキシプロピレングリコヌル、ポリオキ
シ゚チレングリコヌル、ポリテトラメチレング
リコヌルなどの劂きポリオキシアルキレンポリ
オヌルの末端ヒドロキシ基をNa、の劂きア
ルカリ金属NaHの劂き金属氎玠化物
NaOCH3の劂き金属アルコキシド苛性゜ヌ
ダ、苛性カリの劂き苛性アルカリなどず反応さ
せる事によりアルコキシド基に倉え、しかる
埌、匏(3)で瀺される有機ハロゲン化合物ず反応
させる事により、末端にオレフむン基を有する
ポリ゚ヌテルを埗る方法である。この䞊述した
方法では、出発原料ずしお䜿甚したポリオキシ
アルキレングリコヌルずほが同じ分子量をも぀
ポリ゚ヌテルが埗られおくるが、より高分子量
のポリ゚ヌテルを埗たい堎合には、匏(3)の有機
ハロゲン化合物ず反応させる前に、塩化メチレ
ン、ビスクロロメチルベンれン、ビスク
ロロメチル゚ヌテルなどの劂き、分子䞭に
ハロゲンを個以䞊含む倚䟡ハロゲン化合物ず
反応させれば分子量を増倧させる事ができ、そ
の埌、最終的に匏(3)の有機ハロゲン化合物ず反
応させれば、高分子量でか぀末端にオレフむン
基を有するポリ゚ヌテルを埗る事が出来る。 䞊述の反応で、末端ヒドロキシ基をアルコキ
シド基に倉える詊薬ずしおNa金属、匏(3)の有
機ハロゲン化合物ずしおアリルクロラむド、
分子䞭にハロゲンを個䞊含む倚䟡ハロゲン化
合物ずしお塩化メチレンを䜿甚した堎合、以䞋
のように図瀺される。 (b) 苛性゜ヌダ、苛性カリの劂き苛性アルカリを
觊媒に甚い、アリルアルコヌル、プロピレング
リコヌル、トリメチロヌルプロパンなどの劂き
アルコヌル類の存圚䞋にお゚チレンオキシド、
プロピレンオキシドなどの劂きアルキレンオキ
シドを重合させる。通垞苛性アルカリはアルキ
レンオキシドに察し、0.1〜1wt䜿甚し、重合
枩床は80〜160℃が䜿甚される。このようにし
お埗られる重合䜓の末端には、オレフむン゚ヌ
テル基が䞀郚導入されおいるが、たた倧郚分は
ヒドロキシ末端基である。該ヒドロキシ末端基
を(a)で瀺される方法におアルコキシド基に倉
え、続いお匏(3)の有機ハロゲン化合物ず反応さ
せお、末端をオレフむン基ずする方法である。
塩化メチレンの劂き分子䞭にハロゲンを個
以䞊含む倚䟡ハロゲン化合物を(a)の堎合ず同様
に䜿甚すれば曎に高分子量のポリ゚ヌテルを埗
るこずももちろん可胜である。 (c) 苛性カリを觊媒に甚い、アリルアルコヌル、
プロピレングリコヌル、トリメチロヌルプロパ
ンなどの劂きアルコヌル類の存圚䞋におプロピ
レンオキシドなどの劂きアルキレンオキシドを
䜎枩重合させる。苛性カリはアルキレンオキシ
ドに察し、〜20wt䜿甚し、重合枩床は20
〜70℃の䜎枩が䜿甚される。この方法では(b)の
方法よりもかなり分子量の倧きい重合䜓が埗ら
れ、続いお匏(3)の有機ハロゲン化合物ず反応さ
せれば容易に末端をオレフむン基ずする事がで
きる。匏(3)の有機ハロゲン化合物ず反応させる
前に塩化メチレン等の劂き、分子䞭にハロゲ
ンを個以䞊含む倚䟡ハロゲン化合物ず反応さ
せれば曎に高分子量物を埗るこずが出来る。 なお、䞊蚘に斌お、分子䞭に個以䞊のハロ
ゲンを有する倚䟡ハロゲン化合物を甚いお分子量
を増倧されたポリ゚ヌテルは、その䞻鎖䞭に倚䟡
ハロゲン化合物からハロゲン原子を陀去した残基
を含んでいる。 匏(3)で瀺される有機ハロゲン化合物においお
は塩玠、臭玠、ペり玠から遞ばれるハロゲン基で
ある。〓は匏−R′−、−R′−−R″−、
[Formula] (where R′ and R″ are divalent hydrocarbon groups having 1 to 20 carbon atoms)]] The polyether having a terminal olefin group has the final formula CH 2 CH−R〓 -Y (3) (wherein -R〓 is the same as above, Y is a halogen atom selected from chlorine, bromine, and iodine) It is produced by reacting an organic halogen compound having polyether with polyether. Specifically, the following production methods can be mentioned: (a) The terminal hydroxy group of a polyoxyalkylene polyol such as polyoxypropylene glycol, polyoxyethylene glycol, polytetramethylene glycol, etc. is treated with an alkali metal such as Na or K; metal hydrides such as;
Metal alkoxide such as NaOCH 3 : It is converted into an alkoxide group by reacting with a caustic alkali such as caustic soda or caustic potash, and then reacted with an organic halogen compound represented by formula (3) to form an alkoxide group with an olefin group at the end. This is a method of obtaining polyether. In this method described above, a polyether having approximately the same molecular weight as the polyoxyalkylene glycol used as a starting material can be obtained, but if it is desired to obtain a polyether with a higher molecular weight, organic halogen of formula (3) Before reacting with a compound, the molecular weight can be increased by reacting with a polyvalent halogen compound containing two or more halogens in one molecule, such as methylene chloride, bis(chloromethyl)benzene, bis(chloromethyl)ether, etc. Then, by finally reacting with the organic halogen compound of formula (3), a polyether having a high molecular weight and having an olefin group at the end can be obtained. In the above reaction, Na metal was used as the reagent to convert the terminal hydroxyl group into an alkoxide group, allyl chloride was used as the organic halogen compound of formula (3), and 1
When methylene chloride is used as a polyvalent halogen compound containing two or more halogens in the molecule, it is illustrated as follows. (b) Using a caustic alkali such as caustic soda or caustic potash as a catalyst and in the presence of an alcohol such as allyl alcohol, propylene glycol, trimethylolpropane, etc., ethylene oxide,
Polymerize an alkylene oxide such as propylene oxide. Usually, caustic alkali is used in an amount of 0.1 to 1 wt% based on alkylene oxide, and a polymerization temperature of 80 to 160°C is used. Although some olefin ether groups are introduced at the ends of the polymer thus obtained, the majority are hydroxy end groups. This is a method in which the hydroxy terminal group is converted into an alkoxide group by the method shown in (a), and then reacted with an organic halogen compound of formula (3) to convert the terminal into an olefin group.
It is of course possible to obtain a polyether with a higher molecular weight by using a polyvalent halogen compound containing two or more halogens in one molecule, such as methylene chloride, in the same manner as in (a). (c) Using caustic potash as a catalyst, allyl alcohol,
An alkylene oxide such as propylene oxide is polymerized at low temperature in the presence of an alcohol such as propylene glycol, trimethylolpropane, etc. Caustic potash is used in an amount of 3 to 20wt% based on alkylene oxide, and the polymerization temperature is 20%.
Low temperatures of ~70°C are used. This method yields a polymer with a considerably larger molecular weight than the method (b), and by subsequent reaction with the organic halogen compound of formula (3), the terminal can easily be converted into an olefin group. A higher molecular weight product can be obtained by reacting with a polyvalent halogen compound containing two or more halogens in one molecule, such as methylene chloride, before reacting with the organic halogen compound of formula (3). In addition, in the above, polyether whose molecular weight has been increased using a polyvalent halogen compound having two or more halogens in one molecule is the residue obtained by removing halogen atoms from the polyvalent halogen compound in its main chain. Contains a group. In the organic halogen compound represented by formula (3), Y
is a halogen group selected from chlorine, bromine, and iodine. R〓 is the formula −R′−, −R′−O−R″−,

【匏】および[expression] and

【匏】R′および R″は前述で瀺される䟡の有機基であるが、
R′、R″ずしおは、アルキレン基、シクロアルキ
レン基、アリヌレン基、アラルキレン基が奜たし
い。曎に〓は匏−CH2−、
[Formula] (R′ and R″ are the divalent organic groups shown above,
R' and R'' are preferably an alkylene group, a cycloalkylene group, an arylene group, or an aralkylene group. Furthermore, R〓 has the formula -CH 2 -,

【匏】は炭玠数〜10 の炭化氎玠基、又ぱヌテル結合を含む炭玠数
〜10の有機基から遞ばれる基および−R′−
OCH2−より遞ばれる䟡の基が特に奜たしい。
具䜓的に有機ハロゲン化合物を䟋瀺するず、アリ
ルクロラむド、アリルブロマむド、ビニルクロ
ロメチルベンれン、アリルクロロメチルベ
ンれン、アリルブロモメチルベンれン、アリ
ルクロロメチル゚ヌテル、アリルクロロメ
トキシベンれン、−ブテニルクロロメチ
ル゚ヌテル、−ヘキサニルクロロメトキ
シベンれン、アリルオキシクロロメチルベ
ンれンなどが挙げられる。安䟡か぀容易に反応す
るこずからアリルクロラむドが特に奜たしい。 分子量を増倧させるために䜿甚される分子䞭
に少なくずも個のハロゲン原子を有する倚䟡ハ
ロゲン化合物ずしおは、䞀般匏
[Formula] (R is a hydrocarbon group having 1 to 10 carbon atoms, or a carbon number 1 containing an ether bond.
~10 organic groups) and -R'-
A divalent group selected from OCH 2 - is particularly preferred.
Specific examples of organic halogen compounds include allyl chloride, allyl bromide, vinyl (chloromethyl) benzene, allyl (chloromethyl) benzene, allyl (bromomethyl) benzene, allyl (chloromethyl) ether, allyl (chloromethoxy) benzene, Examples include 1-butenyl (chloromethyl) ether, 1-hexanyl (chloromethoxy) benzene, allyloxy (chloromethyl) benzene, and the like. Allyl chloride is particularly preferred because it is inexpensive and reacts easily. The polyvalent halogen compound having at least two halogen atoms in one molecule used to increase the molecular weight has the general formula

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】 匏䞭、は〜の敎数、は〜の敎数、
は〜の敎数、は〜の敎数R5は−
−4-d基ず炭玠原子をずおしお結合し該炭玠
原子䞊に氎玠原子を有しない䟡の有機基、又は
氎玠原子R6は
[Formula] (In the formula, d is an integer of 0 to 2, h is an integer of 1 to 4,
l is an integer of 1 to 2, p is an integer of 2 to 4; R 5 is -
A monovalent organic group bonded to the C-Z 4-d group through a carbon atom and having no hydrogen atom on the carbon atom, or a hydrogen atom; R 6 is

【匏】基ず炭玠原子をず おしお結合し該炭玠原子䞊に氎玠原子を有しな
い、䟡の有機基、R7は䟡の有機基R3は
䟡の有機基Q1は−−、−−、
[Formula] An h-valent organic group that is bonded to a group through a carbon atom and has no hydrogen atom on the carbon atom; R 7 is an h-valent organic group; R 3 is a p-valent organic group; Q 1 is -O-, -S-,

【匏】 および【formula】 and

【匏】から遞ばれた䟡の基Q2は酞 玠原子もしくはむオり原子Q3〜Q6はハロゲン
原子、氎玠原子および䟡の有機基より遞ばれた
基であり、Q3〜Q6のち少なくずも個以䞊はハ
ロゲン原子であるはハロゲン原子を衚わす であらわされる化合物が適圓である。具䜓的に倚
䟡ハロゲン化合物を䟋瀺するず塩化メチレン、ク
ロロホルム、四塩化炭玠、臭化メチレン、ペり化
メチレン、モノクロロモノブロモメタン、・
−ゞクロル−・−ゞメチルプロパン、塩化ベ
ンゞザ、臭化ベンザル、ビスクロロメチルベ
ンれン、ビスブロモメチルベンれン、トリス
クロロメチルベンれン、・4′−ビスクロ
ロメチルビスプニル、・4′−ビスクロロ
メチルゞプニル゚ヌテル、ビスクロロメチ
ルナフタン、ビスゞクロロメチルベンれ
ン、ビスクロロメチル゚ヌテル、ビスクロ
ロメチルチオ゚ヌテル、ビスクロロメチル
ケトン、ビスクロロメチルホルマヌル、ビス
クロロメトキシベンれン、トリスクロロメ
トキシベンれン、テトラクロロ゚チレントリク
ロロ゚チレン、・−ゞクロロ゚チレン、・
−ゞクロル゚チレン、・−ゞブロモ゚チレ
ン、ホスゲン、蓚酞クロラむド、アゞピン酞クロ
ラむド、フタル酞クロラむドなどが挙げられる。 埓぀お、粗補高分子量アルキレンオキシド重合
䜓は苛性゜ヌダ、食塩等の倚量の通垞重量以
䞊のアルカリ金属化合物が含たれおいる。この粗
補重合䜓は、重合䜓の分子量が高いこずずアルカ
リ金属化合郚が倧量に存圚しおいるこずず盞た぀
お埓来の粟組技術の適甚を䞍可胜にしおいる。 溶剀又は溶剀混物は、氎、アルカリ金属化合物
類及び高分子量アルキレンオキシド重合䜓に察し
お比范的䞍掻性であり、氎ず実質的に異なる密床
を有し、か぀該重合䜓を溶解するものであれば劂
䜕なるものも䜿甚できる。䟋えば脂肪族、脂環
族、芳銙族炭化氎玠、ケトン類、アルコヌル類、
゚ヌテル類及びそれらのハロゲン化物で、具䜓的
にはブタン類、ペンタン類、ヘキサン類、ヘプタ
ン類、オクタン類、ノナン類、デカン類、ドデカ
ン類、シクロヘキサン、シクロペンタン、ベンれ
ン、トル゚ン、キシレン類、アセトン、メチル゚
チルケトン、む゜プロパノヌル、ブタノヌル、ペ
ンタノヌル、メチル゚ヌテル、゚チル゚ヌテル、
む゜プロピル゚ヌテル、塩化メチレン、メチルク
ロロホルム、四塩化炭玠、ゞクロルゞフルオロメ
タン、パヌクロロ゚チレン、クロロ、ブロモ、お
よびアむオドベンれン類およびトル゚ン類等が挙
げられる。これらは単独で甚いおも数皮類混合し
お甚いおもかたわない。 䜿甚する溶剀の量は高分子量アルキレンオキシ
ド重合䜓を溶解するには充分な量で、か぀、アル
カリ金属化合物類を抜出陀去した埌のポリマヌ溶
液の密床が実質的に氎の密床ず異なるようなる量
でなければならない。通垞溶液ず氎ずの密床差は
0.015/cm3以䞊、奜たしくは0.1/cm3以䞊必芁で
ある。それ以䞊の量を䜿甚する事は䜕らさし぀か
えないが、続いおの溶剀回収の工皋を考えるず、
䞊述した条件を満たす量であれば出来るだけ少な
い方が奜たしい。実甚的には高分子量アルキレン
オキシド重合䜓に察し、溶剀は重量郚から500
重量郚の範囲で䜿甚するのが奜たしい。 䜿甚する氎の量は䞭和工皋等も含め、最終的に
系内に存圚するアルカリ金属化合物類が溶解し埗
る量以䞊でなければならないが、それ以䞊の量を
䜿甚する事は䜕らさし぀かえない。実甚的には高
分子量アルキレンオキシド重合䜓100重量郚に察
し、100重量郚から500分量郚の範囲で䜿甚するの
が奜たしい。 䞭和工皋及び氎局のPHを玄以䞋に保持するた
めに䜿甚できる酞ずしおは、、硫酞、塩酞、リン
酞等の無機酞、氎に溶解しお酞性を瀺す亜硫酞ナ
トリりム、亜リン酞ナトリりム等の酞性塩類、蓚
酞、酢酞、ク゚ン酞、アゞピン酞等の䟡もしく
は䟡の有機酞、及び無氎酢酞、無氎マレむン酞
等の有機酞無氎物等が単独もしく䜵甚しお䜿甚す
るこずが出来るが、経枈性からみるず硫酞、塩酞
等が奜たしい。 具䜓的な操䜜手順ずしおは未粟補の高分子量ア
ルキレンオキシド重合䜓以䞋粗ポリ゚ヌテルず
略すを溶剀に溶解分散させた埌、氎を加え氎局
のPHが最終的に以䞋になるように、酞を添加撹
拌する方法が奜たしいが、粗ポリ゚ヌテル、溶
剀、氎の䞉者を同時に仕蟌み、所定量の酞を添加
し凊理しおもよいし、又、酞は最初から氎に溶解
しおおいおもかたわない。曎に、粗ポリ゚ヌテル
を溶媒に溶解しお又は溶解しない状態で酞で䞭和
した埌、氎及び所定量の酞、必芁な堎合は溶剀を
添加しおやる事も出来る。いずれの方法においお
も粗ポリ゚ヌテル䞭のアルカリ金属化合物類の抜
出が終぀た時点で氎局のPHが少なくずも以䞋に
保持されおいる事が必芁で、もしPHがをこえお
以䞋であれば氎局ずポリ゚ヌテル局ずは分離す
るが、PH以䞋の堎合ほど明瞭に分離しないの
で、十分に粟補されたポリ゚ヌテルを埗ようずす
るず界面付近のポリ゚ヌテル局は甚いられないの
でポリ゚ヌテルの回収率が䜎䞋する。PHが玄を
こえおおれば氎局ずポリ゚ヌテル局ずの界面がは
぀きりせず、続いおの分離操䜜に支障をきたす。 ポリ゚ヌテル局ず氎局ずの分離は、遠心分離、
デカンテヌシペン等䞀般に液々分離で甚いられお
いる方法が党お有効である。 分離したポリ゚ヌテル局はそのたた濃瞮しおも
かたわないが、ポリ゚ヌテル局に溶け蟌んでいる
埮量の氎分、曎にその䞭に含たれる埮量の酞を陀
去する目的で、濃瞮前に二次凊理を行う事も出来
る。䟋えば、脱氎のために、無氎の芒硝で凊理し
たり、モレキナラヌシヌブのカラムを通す事や、
埮量の酞を吞着陀去する目的で固䜓塩基で凊理し
たり塩基性充填剀のカラムを通す事が出来る。曎
に補品の品質改善のため、脱色・脱臭凊理等の操
䜜をその間に入れる事も可胜である。 このようにしお埗られた末端にオレフむン基を
有する高分子アルキレンオキシド重合䜓は、その
粘床及び末端のオレフむン基の反応性を利甚しお
所謂液状ゎムずしおの広い甚途に利甚する事が出
来る。䟋えば、そのたたでも高分子量可塑剀ずし
お、たた反応性ビニルモノマヌず共重合させる事
によるプラスチツクの物性改質等に利甚できる。 以䞋に実斜䟋を挙げお具䜓的に説明する。 参考䟋  粘床平均分子量3200であるポリオキシプロピレ
ングリコヌル䞉掋化成補PP−400320.0
を窒玠眮換されたの撹拌機付き耐圧反応溶噚
にずる。続いお粉末苛性゜ヌダ玔床98を
40.8加えた埌60℃に昇枩する。その埌ブロモク
ロロメタン7.76を添加しお60℃で10時間反応を
行なう。続いお反応系の枩床を50℃に䞋げお、ア
リルクロラむドを9.2加え、50℃で10時間反応
を行う。以䞊の操䜜により粗ポリ゚ヌテルを埗
る。 参考䟋  窒玠眮換された1.5の撹拌機付耐圧反応噚に
ポリオキシ゚チレングリコヌル平均分子量
20014.7、苛性カリ5.0玔床85をず぀
た埌、120℃に昇枩し、枛圧䞋で時間反応を行
う。続いお90℃に枩床を䞋げ、プロピレンオキシ
ドを34.6/hrの远加速床で添加し、20時間重合
を行なう。远加終了埌、曎に時間埌重合をす
る。この時点で平均分子量3900のプロピレンオキ
シド重合䜓が埗られる。 続いお反応噚䞭に粉末苛性゜ヌダ玔床98
を36、ブロモクロロメタン12.4を加え、60℃
で12時間反応を行う。曎に続いお反応系の枩床を
80℃に䞋げ、アリルクロラむド30.0を加え、12
時間反応を行なう。以䞊の操䜜により粗ポリ゚ヌ
テルを埗る。 実斜䟋  撹拌機付きのセパラブルフラスコに粗ポリ
゚ヌテルA600、−ヘキサン1.8Kgをずり、撹
拌しお苛性゜ヌダず塩類を充分分散させる。続い
お3wt硫酞氎1.8Kgを加え、時間撹拌しおPHが
箄1.5である事を確認した埌、撹拌を止める䞭
和に芁する硫酞の量は比范䟋にあるように50.4
である。玄時間静眮するず氎局、ポリ゚ヌ
テル局ずも透明ずなり、ポリ゚ヌテル局ず氎局の
界面にはほずんど泡状物が存圚せず、界面がは぀
きりずなる。ポリ゚ヌテル局をデカンテヌシペン
により分液しお、゚パポレヌタヌにお−ヘキサ
ンを陀去し透明な粟補ポリ゚ヌテルA1を埗る。
粟補ポリ゚ヌテルA1の分析倀を衚に瀺す。同
様に凊理により、PHを2.5にした堎合、PHをに
した堎合に぀いおも実斜したが、PH1.5の堎合ず
同様の氎局ずポリ゚ヌテル局の界面状態であ぀
た。 実斜䟋  撹拌機付きのセパラブルフラスコに粗ポリ
゚ヌテルA600、トル゚ン600をずり撹拌しお
苛性゜ヌダず塩類ずを充分分散させる。続いお䞭
和に芁する85硫酞氎溶液59.3硫酞ずしお
50.4を添加し、充分撹拌し䞭和する。曎に、
PHの塩酞氎溶液1.8Kgずトル゚ン1.2Kgを加え玄
時間撹拌し、その埌時間静眮するず氎局、ポ
リ゚ヌテル局ずもに透明で、ポリ゚ヌテル局ず氎
局の界面にはほずんど泡状物が存圚せず、界面が
は぀きりずする。ポリ゚ヌテル局をデカンテヌシ
ペンで分離しお、゚バポレヌタヌにおトル゚ンを
陀去し、透明な粟補ポリ゚ヌテルA2を埗る。分
析倀を衚に瀺した。 実斜䟋  撹拌機付きのセパラブルフラスコに粗ポリ
゚ヌテルB600、シクロヘキサン1.8Kg、氎1.8Kg
をずり、玄30分間撹拌する。この時点では氎局の
PHは13以䞊でポリ゚ヌテル局、氎局の界面は刀別
できない。次いで10塩酞氎溶液450添加しお
玄時間撹拌し、その埌玄時間静眮する。PHは
以䞋であ぀た。氎局、ポリ゚ヌテル局ずもに透
明で界面もは぀きりずする。ポリ゚ヌテル局をデ
カンテヌシペンにお分離しお、゚バポレヌタヌに
おシクロヘキサンを陀去しお粟補ポリ゚ヌテル
B3を埗た。分析倀を衚に瀺した。 実斜䟋  撹拌機付きのセパラブルフラスコに粗ポリ
゚ヌテルA600、−ヘキサン1.8Kgをずり撹拌
しお苛性゜ヌダず塩類を充分分散させおやる。続
いお粗ポリ゚ヌテルA600䞭の残存苛性゜ヌダ
を䞭和するに必芁な量の硫酞50.4を溶解し
た氎1.8Kgを加えお撹拌する。30分毎に撹拌を止
め静眮しお系の状態を芳察したずころ、氎局、ポ
リ゚ヌテル局ずもに濁りがあり、䞡者の界面がは
぀きりずしないため分液は出来なか぀た。氎局の
PHを枬定するず7.3であ぀た。 比范䟋  氎局のPHをおよびにする以倖は実斜䟋ず
同様の凊理を行぀た。時間静眮埌の氎局、ポリ
゚ヌテル局は分離しおいるが、実斜䟋の堎合ほ
どの濁りではないが倚少の濁りがあり、䞡局の界
面には泡状物が存圚しおいた。 比范䟋  PH3.5の塩酞氎溶液1.8Kgを甚いる以倖は実斜䟋
ず同様の凊理を行぀た。時間静眮埌の氎局、
ポリ゚ヌテル局はそれぞれ透明に分離しおいる
が、䞡局の界面には比范䟋の堎合ほどの量の泡
状物ではないが少量の泡状物が存圚しおいた。
A divalent group selected from [Formula]; Q 2 is an oxygen atom or a sulfur atom; Q 3 to Q 6 are groups selected from a halogen atom, a hydrogen atom, and a monovalent organic group; Q 3 to Q At least two of 6 are halogen atoms; Z represents a halogen atom) A compound represented by the following formula is suitable. Specific examples of polyvalent halogen compounds include methylene chloride, chloroform, carbon tetrachloride, methylene bromide, methylene iodide, monochloromonobromomethane, 1.1
-dichloro-2,2-dimethylpropane, benzal chloride, benzal bromide, bis(chloromethyl)benzene, bis(bromomethyl)benzene, tris(chloromethyl)benzene, 4,4'-bis(chloromethyl)bisphenyl, 4・4'-Bis(chloromethyl)diphenyl ether, bis(chloromethyl)naphthane, bis(dichloromethyl)benzene, bis(chloromethyl)ether, bis(chloromethyl)thioether, bis(chloromethyl)
Ketone, bis(chloromethyl) formal, bis(chloromethoxy)benzene, tris(chloromethoxy)benzene, tetrachloroethylenetrichloroethylene, 1,1-dichloroethylene, 1.
Examples include 2-dichloroethylene, 1,2-dibromoethylene, phosgene, oxalic acid chloride, adipic acid chloride, and phthalic acid chloride. Therefore, the crude high molecular weight alkylene oxide polymer contains a large amount of an alkali metal compound such as caustic soda or common salt, usually in an amount of 1% by weight or more. This crude polymer, together with the high molecular weight of the polymer and the presence of a large amount of alkali metal compound moieties, makes it impossible to apply conventional fine assembly techniques. The solvent or solvent mixture is relatively inert towards water, alkali metal compounds and the high molecular weight alkylene oxide polymer, has a density substantially different from water, and is capable of dissolving the polymer. You can use whatever you have. For example, aliphatic, alicyclic, aromatic hydrocarbons, ketones, alcohols,
Ethers and their halides, specifically butanes, pentanes, hexanes, heptanes, octanes, nonanes, decanes, dodecanes, cyclohexane, cyclopentane, benzene, toluene, xylenes, acetone , methyl ethyl ketone, isopropanol, butanol, pentanol, methyl ether, ethyl ether,
Examples include isopropyl ether, methylene chloride, methyl chloroform, carbon tetrachloride, dichlorodifluoromethane, perchloroethylene, chloro, bromo, iodobenzenes and toluenes. These may be used alone or in combination. The amount of solvent used is sufficient to dissolve the high molecular weight alkylene oxide polymer and such that the density of the polymer solution after extracting and removing the alkali metal compounds is substantially different from the density of water. Must. The density difference between normal solution and water is
The amount is required to be 0.015 g/cm 3 or more, preferably 0.1 g/cm 3 or more. There is nothing wrong with using a larger amount, but considering the subsequent solvent recovery process,
As long as the amount satisfies the above-mentioned conditions, it is preferable that the amount be as small as possible. Practically speaking, the amount of solvent used for high molecular weight alkylene oxide polymers is 5 parts by weight to 500 parts by weight.
It is preferable to use within the range of parts by weight. The amount of water used, including the neutralization step, must be at least the amount that can ultimately dissolve the alkali metal compounds present in the system, but there is nothing wrong with using a larger amount. Practically speaking, it is preferably used in an amount of 100 parts by weight to 500 parts by weight per 100 parts by weight of the high molecular weight alkylene oxide polymer. Acids that can be used for the neutralization process and for maintaining the pH of the aqueous layer at about 3 or less include inorganic acids such as sulfuric acid, hydrochloric acid, and phosphoric acid, sodium sulfite, and sodium phosphite, which are acidic when dissolved in water. Acidic salts such as oxalic acid, acetic acid, citric acid, adipic acid, monovalent or divalent organic acids, and organic acid anhydrides such as acetic anhydride and maleic anhydride can be used alone or in combination. However, from an economical point of view, sulfuric acid, hydrochloric acid, etc. are preferable. The specific operating procedure is to dissolve and disperse an unpurified high molecular weight alkylene oxide polymer (hereinafter referred to as crude polyether) in a solvent, then add water so that the pH of the aqueous layer is finally 3 or less. The method of adding and stirring an acid is preferable, but it is also possible to prepare the crude polyether, solvent, and water at the same time and add a predetermined amount of acid for treatment, or the acid may be dissolved in water from the beginning. You can leave it there. Furthermore, after neutralizing the crude polyether with an acid, with or without dissolving it in a solvent, water and a predetermined amount of acid, and if necessary, a solvent can be added. In either method, it is necessary that the pH of the aqueous layer is maintained at least 3 or less at the time the extraction of the alkali metal compounds in the crude polyether is completed, and if the PH exceeds 3 and is 6 or less. The aqueous layer and polyether layer are separated, but they are not separated as clearly as when the pH is below 3. Therefore, in order to obtain sufficiently purified polyether, the polyether layer near the interface is not used, so the polyether layer is separated. Recovery rate decreases. If the pH exceeds about 6, the interface between the aqueous layer and the polyether layer will not be sharp, which will impede the subsequent separation operation. Separation of the polyether layer and aqueous layer is done by centrifugation,
All methods commonly used for liquid-liquid separation, such as decantation, are effective. The separated polyether layer can be concentrated as is, but in order to remove the trace amount of water dissolved in the polyether layer and the trace amount of acid contained therein, it is necessary to perform a secondary treatment before concentration. You can also do it. For example, for dehydration, treatment with anhydrous mirabilite, passing through a column of molecular sieves,
In order to adsorb and remove trace amounts of acid, it can be treated with a solid base or passed through a column of basic packing material. Furthermore, in order to improve the quality of the product, it is also possible to perform operations such as decolorization and deodorization treatment in between. The high-molecular alkylene oxide polymer having an olefin group at the terminal end obtained in this manner can be used in a wide range of applications as a so-called liquid rubber by taking advantage of its viscosity and the reactivity of the olefin group at the terminal end. For example, it can be used as it is as a high molecular weight plasticizer, or by copolymerizing with a reactive vinyl monomer to modify the physical properties of plastics. This will be specifically explained below with reference to Examples. Reference example 1 320.0 g of polyoxypropylene glycol (manufactured by Sanyo Chemical: PP-400) with a viscosity average molecular weight of 3200
was placed in a pressure-resistant reaction vessel equipped with a stirrer and purged with nitrogen. Next, add powdered caustic soda (98% purity).
After adding 40.8g, raise the temperature to 60℃. Thereafter, 7.76 g of bromochloromethane was added and the reaction was carried out at 60°C for 10 hours. Subsequently, the temperature of the reaction system was lowered to 50°C, 9.2g of allyl chloride was added, and the reaction was carried out at 50°C for 10 hours. Crude polyether A is obtained by the above operations. Reference Example 2 Polyoxyethylene glycol (average molecular weight:
After taking 14.7 g of 200) and 5.0 g of caustic potassium (purity 85%), the temperature was raised to 120°C and the reaction was carried out under reduced pressure for 2 hours. Subsequently, the temperature is lowered to 90° C., propylene oxide is added at an additional rate of 34.6 g/hr, and polymerization is carried out for 20 hours. After the addition was completed, polymerization was continued for another 2 hours. At this point, a propylene oxide polymer with an average molecular weight of 3900 is obtained. followed by powdered caustic soda (98% purity) into the reactor
and 12.4 g of bromochloromethane, and heated to 60℃.
Carry out the reaction for 12 hours. Furthermore, the temperature of the reaction system is
Lower the temperature to 80℃, add 30.0g of allyl chloride,
Perform a time reaction. Crude polyether B is obtained by the above operations. Example 1 600 g of crude polyether A and 1.8 kg of n-hexane are placed in an 8-separable flask equipped with a stirrer and stirred to sufficiently disperse the caustic soda and salts. Next, add 1.8 kg of 3wt% sulfuric acid water, stir for 1 hour, and after confirming that the pH is approximately 1.5, stop stirring (the amount of sulfuric acid required for neutralization is 50.4 kg as in Comparative Example 1).
g). When left to stand for about 1 hour, both the water layer and the polyether layer become transparent, and there is almost no foam at the interface between the polyether layer and the water layer, and the interface becomes sharp. The polyether layer is separated by decantation, and n-hexane is removed using an evaporator to obtain transparent purified polyether A1 .
The analytical values of purified polyether A 1 are shown in Table 1. Similar treatments were carried out in cases where the pH was set to 2.5 and when the pH was set to 1, but the interfacial state between the aqueous layer and the polyether layer was the same as in the case of pH 1.5. Example 2 600 g of crude polyether A and 600 g of toluene were placed in an 8-separable flask equipped with a stirrer and stirred to sufficiently disperse the caustic soda and salts. Next, add 59.3 g of 85% sulfuric acid aqueous solution (as sulfuric acid) required for neutralization.
50.4g) and stir thoroughly to neutralize. Furthermore,
Add 1.8 kg of hydrochloric acid aqueous solution with pH 2 and 1.2 kg of toluene, stir for about 1 hour, and then leave it for 1 hour. Both the water layer and the polyether layer are transparent, and there are almost no bubbles at the interface between the polyether layer and the water layer. The interface is sharp. The polyether layer is separated by decantation and toluene is removed by an evaporator to obtain transparent purified polyether A2 . The analytical values are shown in Table 1. Example 3 600g of crude polyether B, 1.8Kg of cyclohexane, and 1.8Kg of water in an 8-separable flask equipped with a stirrer.
and stir for about 30 minutes. At this point, the water layer
When the pH is 13 or higher, the interface between the polyether layer and water layer cannot be distinguished. Next, 450 g of 10% aqueous hydrochloric acid solution was added, stirred for about 1 hour, and then left to stand for about 1 hour. The pH was below 1. Both the water layer and polyether layer are transparent and the interface is sharp. Separate the polyether layer by decantation and remove cyclohexane with an evaporator to obtain purified polyether.
Got B3 . The analytical values are shown in Table 1. Example 1 600 g of crude polyether A and 1.8 kg of n-hexane were placed in an 8-separable flask equipped with a stirrer and stirred to sufficiently disperse the caustic soda and salts. Subsequently, 1.8 kg of water in which the amount of sulfuric acid (50.4 g) necessary to neutralize the remaining caustic soda in 600 g of crude polyether A was dissolved was added and stirred. When stirring was stopped every 30 minutes and the system was allowed to stand still to observe the state of the system, it was found that both the water layer and the polyether layer were cloudy, and the interface between the two was not sharp, making it impossible to separate the layers. water layer
When I measured the pH, it was 7.3. Comparative Example 2 The same treatment as in Example 1 was performed except that the pH of the aqueous layer was adjusted to 5 and 6. After standing for 1 hour, the water layer and polyether layer were separated, but there was some turbidity, although not as turbid as in Example 1, and foam-like substances were present at the interface between both layers. . Comparative Example 3 The same treatment as in Example 2 was carried out except that 1.8 kg of an aqueous hydrochloric acid solution with a pH of 3.5 was used. Water layer after standing for 1 hour,
Although the polyether layers were transparently separated, a small amount of foam was present at the interface between both layers, although not as much as in Comparative Example 2.

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  末端に氎酞基を有する非氎溶性アルキレンオ
キシド重合䜓を該氎酞基ず圓量以䞊のアルカリ觊
媒の存圚䞋に反応させお埗られる末端オレフむン
基を有する、分子量が3000〜12000である、粗補
非氎溶性高分子量アルキレンオキシド重合䜓から
アルカリ金属化合物を陀去するにあたり、該重合
䜓を溶剀で凊理しお、氎ず実質的に異る密床の溶
液ずし、曎に氎溶液で凊理しお氎局のPHを以䞋
に保持しお抜出するこずを特城ずする粗補高分子
量アルキレンオキシド重合䜓の粟補法。
1. A crude water-insoluble alkylene oxide polymer having a terminal olefin group and having a molecular weight of 3,000 to 12,000, obtained by reacting a water-insoluble alkylene oxide polymer having a hydroxyl group at the end with the hydroxyl group in the presence of an equivalent or more alkaline catalyst. To remove an alkali metal compound from a molecular weight alkylene oxide polymer, the polymer is treated with a solvent to form a solution with a density substantially different from that of water, and further treated with an aqueous solution to reduce the pH of the aqueous layer to 3 or less. A method for purifying a crude high molecular weight alkylene oxide polymer, characterized by retention and extraction.
JP6688977A 1977-06-06 1977-06-06 Purification of high-molecular-weight alkylene oxide polymer Granted JPS541365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6688977A JPS541365A (en) 1977-06-06 1977-06-06 Purification of high-molecular-weight alkylene oxide polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6688977A JPS541365A (en) 1977-06-06 1977-06-06 Purification of high-molecular-weight alkylene oxide polymer

Publications (2)

Publication Number Publication Date
JPS541365A JPS541365A (en) 1979-01-08
JPS6125739B2 true JPS6125739B2 (en) 1986-06-17

Family

ID=13328915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6688977A Granted JPS541365A (en) 1977-06-06 1977-06-06 Purification of high-molecular-weight alkylene oxide polymer

Country Status (1)

Country Link
JP (1) JPS541365A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176527A (en) * 1987-01-14 1988-07-20 Shigeru Tanaka Steep slope protection work by planting
JP3949260B2 (en) * 1998-03-11 2007-07-25 株匏䌚瀟トクダマ Purification method of nonionic surfactant
JP4957001B2 (en) * 2006-01-30 2012-06-20 日油株匏䌚瀟 Process for producing terminal alkenyl group-containing polyoxyalkylene sterol derivative

Also Published As

Publication number Publication date
JPS541365A (en) 1979-01-08

Similar Documents

Publication Publication Date Title
JP2969275B2 (en) Method for extracting double metal cyanide complex catalyst from polymer
US6376625B1 (en) Process for purifying polyethers
JPH07113059B2 (en) Process for preparing difunctional and monofunctional perfluoropolyethers having brominated end groups and controlled molecular weight
JPH03168212A (en) Manufacture of polyether glycol
US8367876B2 (en) Method for producing polyether
JPS6125739B2 (en)
JP2568251B2 (en) Method for removing inorganic salt of basic alkali metal compound and inorganic acid from crude polyether
US3585227A (en) Trialkyl oxonium salts of the hpf6,hasf6 and hsbf6 acids
JPS6129371B2 (en)
JP3140109B2 (en) Purification method of polyethers
CN103221369B (en) Process for preparing adamantane polyol
JP3105019B2 (en) Purification method of polyethers
JPS6362524B2 (en)
JP2002030144A (en) Process for producing polyether compound
JPS58168623A (en) Purification of high-molecular weight alkylene oxide polymer
JPH02305819A (en) Purification of polyether polyol
EP1303554B1 (en) Polyol processing
DE2146231A1 (en) Process for the polymerization of tetrahydrofuran
JPS6129372B2 (en)
JP5095950B2 (en) Method for producing polyether
JP2003313289A (en) Process for producing polyether from which metal compound is removed
US3903121A (en) Telomers containing 1,3-dioxane, vinyl acetate, chlorine and vinyl alcohol
JP2647716B2 (en) Recovery method of porphyrin aluminum halogeno complex
JPH0432095B2 (en)
JP5189259B2 (en) Method for producing polyether