JPH02305819A - Purification of polyether polyol - Google Patents

Purification of polyether polyol

Info

Publication number
JPH02305819A
JPH02305819A JP12426489A JP12426489A JPH02305819A JP H02305819 A JPH02305819 A JP H02305819A JP 12426489 A JP12426489 A JP 12426489A JP 12426489 A JP12426489 A JP 12426489A JP H02305819 A JPH02305819 A JP H02305819A
Authority
JP
Japan
Prior art keywords
polyether polyol
double bond
phosphoric acid
component
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12426489A
Other languages
Japanese (ja)
Other versions
JP2644327B2 (en
Inventor
Kaoru Ueno
薫 上野
Kiyoshi Matsubara
清 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP12426489A priority Critical patent/JP2644327B2/en
Publication of JPH02305819A publication Critical patent/JPH02305819A/en
Application granted granted Critical
Publication of JP2644327B2 publication Critical patent/JP2644327B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a polyether polyol improved in quality, compatibility with another polymer, properties of a molding material, etc., by neutralizing a double bond-terminated polyether polyol by the addition of an aqueous phosphoric acid solution and dehydrating it in a vacuum under specified conditions. CONSTITUTION:A polyether polyol (a) which is an organic compound having at least one active hydrogen atom in the molecule and an MW of 700-7000 is reacted with a double bond-containing monoepoxy compound (b) in the presence of a catalyst which is an alkali metal hydroxide (c) to obtain a double bond-terminated polyether polyol (A). Component A is purified by neutralizing it by the addition of 0.95-1.05mol, per mol of component (c) in A, aqueous phosphoric acid solution (B) comprising 0.95-1.05mol, per mol of component (c) in component A, phosphoric acid (d) and 1.0-3.0wt.%, based on component A, water (e), and dehydrating the neutralized product in a vacuum at 80-150 deg.C at a pressure decreasing rate <=100mmHg/10min.

Description

【発明の詳細な説明】 〔従来の技術〕 本発明は、ポリエーテルポリオールにアルカリ金属水酸
化物を触媒として、二重結合含有モノエポキシ化合物を
付加して製造した末端二重結合含有ポリエーテルポリオ
ールから、アルカリ金属水酸化物を除去するための改良
精製法に関する。
[Detailed Description of the Invention] [Prior Art] The present invention provides a terminal double bond-containing polyether polyol produced by adding a double bond-containing monoepoxy compound to a polyether polyol using an alkali metal hydroxide as a catalyst. relates to an improved purification process for the removal of alkali metal hydroxides.

ポリエーテルポリオールは分子中に活性水素基を有する
有機化合物に、苛性カリ、苛性ソーダなどのアルカリ性
触媒の存在下でアルキレンオキサイドを付加重合させて
得られる。
Polyether polyols are obtained by addition polymerizing an alkylene oxide to an organic compound having an active hydrogen group in the molecule in the presence of an alkaline catalyst such as caustic potash or caustic soda.

これらのアルカリ性触媒もしくはその中和塩が、ポリエ
ーテルポリオール中に残存した場合には、ポリイソシア
ネートとの重付加反応に悪影古を及ぼすと同時に、発泡
又は非発泡ポリウレタンの物性を低下させるため、通常
イソシアネートと反応する際に、ポリエーテルポリオー
ル中のアルカリ性触媒又は、その中和塩濃度を10pp
m以下に減じることが必要である。
If these alkaline catalysts or their neutralized salts remain in the polyether polyol, they will adversely affect the polyaddition reaction with polyisocyanate and at the same time reduce the physical properties of foamed or non-foamed polyurethane. Normally, when reacting with isocyanate, the concentration of alkaline catalyst or its neutralized salt in polyether polyol is 10 pp.
It is necessary to reduce it to below m.

アルカリ性触媒を含有するポリエーテルポリオールより
、アルカリ性触媒もしくはその中性塩を除去する精製法
としては、 ■アルカリ吸着剤のみを使用する方法(特公昭38−2
6158号、特公昭45−33194号、特公昭53−
123499号など)、 ■イオン交換樹脂を用いる方法(特公昭36−2214
8号、特開昭51−23211号など)、■炭酸ガスで
中和して、生じた炭酸塩を濾過する方法(特公昭52.
.33000号)等提案されているが、いずれも、アル
カリ触媒又はその中性塩を十分に除去するためには長時
間を要し、またこれら吸着剤、イオン交換樹脂等を大量
に使用せざるを得す、また濾過時間の経過、および濾過
圧の上昇とともに濾液の品質が劣化するため、実用に供
するためには多くの困罵を伴う。
Purification methods for removing alkaline catalysts or their neutral salts from polyether polyols containing alkaline catalysts include: ■ A method using only an alkaline adsorbent (Japanese Patent Publication No. 38-2
No. 6158, Special Publication No. 33194, Special Publication No. 1973-
123499, etc.), ■Method using ion exchange resin (Special Publication No. 36-2214)
No. 8, JP-A No. 51-23211, etc.); ■ A method of neutralizing with carbon dioxide gas and filtering the resulting carbonate (Japanese Patent Publication No. 52-1982);
.. 33000), but all of these methods require a long time to sufficiently remove the alkali catalyst or its neutral salt, and require the use of large quantities of adsorbents, ion exchange resins, etc. Moreover, the quality of the filtrate deteriorates as the filtration time passes and the filtration pressure increases, so there are many difficulties in putting it into practical use.

そこで工業的には、生成する塩の粒子が比較的大きく、
取扱い及び濾過が容易である等の理由で、燐酸水で中和
し、脱水前又は後に、酸又はアルカリ吸着剤を添加して
、過剰の酸又はアルカリを吸着後濾過する方法(例えば
特開昭51−101098号、特公昭62−36052
号、特公昭62−37048号など)が頻繁に実施され
ている。
Therefore, industrially, the particles of salt produced are relatively large,
For reasons such as ease of handling and filtration, a method of neutralizing with phosphoric acid water, adding an acid or alkali adsorbent before or after dehydration, and filtering after adsorbing excess acid or alkali (for example, Japanese Patent Application Laid-open No. No. 51-101098, Special Publication No. 62-36052
No., Special Publication No. 62-37048, etc.) are frequently implemented.

この時、添加水の量は、アルカリ性触媒を含むポリエー
テルポリオールに対して、0.5〜lO%、又、燐酸添
加量は、酸又はアルカリ吸着剤の使用蟹を少なくするた
め、アルカリ性触媒量に対して当モル程度使用すること
が望ましいが、0.5〜lO倍程度使用しても何ら問題
ない。
At this time, the amount of water added is 0.5 to 10% based on the polyether polyol containing an alkaline catalyst, and the amount of phosphoric acid added is the amount of alkaline catalyst in order to reduce the amount of acid or alkali adsorbent used. It is desirable to use the equivalent molar amount, but there is no problem even if it is used in an amount of about 0.5 to 10 times.

この様にして中和した後のポリエーテルポリオールを、
脱水、濾過することにより、容易にアルカリ性触媒又は
その中和塩を痕跡程度含むポリエーテルポリオールを得
ることができる。
After neutralizing the polyether polyol in this way,
By dehydration and filtration, a polyether polyol containing a trace amount of an alkaline catalyst or its neutralized salt can be easily obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、近年上記の様な通常のポリエーテルポリオール
に対して、アルカリ金属水酸化物を触媒として、二重結
合含有モノエポキシ化合物を付加して、そのポリマー分
子末端に二重結合を導入し、その二重結合を通じて、主
として付加重合的にグラフト重合を誘起させ、これらグ
ラフトポリマーを利用して、異種ポリマーの相溶化性向
上、又は成形材料の強度、耐衝撃性、耐熱性向上等の試
みがなされている。(例えば、特願昭62−31870
8、特公昭46−20508など) しかるに本発明者らの検討によると、これら末端二重結
合含有ポリエーテルポリオール中から、触媒として使用
したアルカリ金属水酸化物又は、その中和塩を除去する
ために、上記燐酸水を使用した中和精製法を採用したと
ころ、通常のポリエーテルポリオールとは異なり、濾過
時の閉塞、アルカリ金属水酸化物又はその中和塩の漏洩
等が発生し、安定した物性を有する製品を得ることが困
難であった。
However, in recent years, a double bond-containing monoepoxy compound is added to the above-mentioned ordinary polyether polyol using an alkali metal hydroxide as a catalyst, and a double bond is introduced at the end of the polymer molecule. Attempts have been made to induce graft polymerization mainly through addition polymerization through double bonds, and to use these graft polymers to improve the compatibility of different polymers, or to improve the strength, impact resistance, and heat resistance of molding materials. ing. (For example, patent application No. 62-31870
However, according to the studies of the present inventors, in order to remove the alkali metal hydroxide used as a catalyst or its neutralized salt from these terminal double bond-containing polyether polyols, However, when we adopted the above neutralization purification method using phosphoric acid water, unlike ordinary polyether polyols, clogging during filtration and leakage of alkali metal hydroxide or its neutralized salt occurred, resulting in a stable product. It has been difficult to obtain products with good physical properties.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記中和法の欠点を改良するため、鋭意
研究を重ねた結果、本発明を提供するに至ったものであ
る。
The present inventors have conducted extensive research in order to improve the drawbacks of the above-mentioned neutralization method, and as a result, have provided the present invention.

すなわち本発明は、分子N700〜7000のポリエー
テルポリオールに、アルカリ金属水酸化物を触媒として
、二重結合含有モノエポキシ化合物を付加して製造した
末端二重結合含有ポリエーテルポリオールを燐酸水溶液
により中和精製するに際して、 (+)ポリエーテルポリオール中のアルカリ金属水酸化
物含有量に対して、0.95〜1.05モル倍の燐酸を
使用し、 (2)ポリエーテルポリオールに対して1.0〜3.0
重量パーセントの水を添加して中和後、 (3)80−150℃の温度で、100mm11g/1
0分以下の陣圧速度にて減圧脱水することを特徴とする
末端二重結合を含有するポリエーテルポリオールの精製
方法に関する。
That is, in the present invention, a terminal double bond-containing polyether polyol produced by adding a double bond-containing monoepoxy compound to a polyether polyol having a molecular weight of N700 to 7,000 using an alkali metal hydroxide as a catalyst is dissolved in a phosphoric acid aqueous solution. (+) Use 0.95 to 1.05 times the mole of phosphoric acid to the alkali metal hydroxide content in the polyether polyol, (2) 1. 0-3.0
After neutralization by adding weight percent water, (3) at a temperature of 80-150℃, 100mm 11g/1
The present invention relates to a method for purifying a polyether polyol containing terminal double bonds, which comprises dehydrating under reduced pressure at a pressure rate of 0 minutes or less.

本発明に使用される二重結合金有モノエボキシ化合物は
、アリルグリシジルエーテル及びグリシジルメタクリレ
ートが適当である。
Allyl glycidyl ether and glycidyl methacrylate are suitable for the double-bonded gold-containing monoepoxy compound used in the present invention.

二重結合含有モノエポキシ化合物の使用量は、ポリエー
テルポリオール1モルに対して、0.5〜5.0モル、
好ましくは1〜3モルが適当である。
The amount of double bond-containing monoepoxy compound used is 0.5 to 5.0 mol per mol of polyether polyol,
Preferably, 1 to 3 mol is appropriate.

使用量が0.5モル以下では、生成したグラフトポリマ
ーが異種ポリマーの相溶性向上、及び成型材料の物性向
上に不十分であり、5.0モル以上ではグラフト重合が
急速に起こり、グラフトポリマーの分子量制御が困難と
なる。
If the amount used is less than 0.5 mol, the resulting graft polymer will be insufficient to improve the compatibility of different polymers and the physical properties of the molding material, and if the amount is 5.0 mol or more, graft polymerization will occur rapidly and the graft polymer will Molecular weight control becomes difficult.

本発明の分子量700〜7,000のポリエーテルポリ
オールは、分子中に少くとも1個の活性水素基を有する
有機化合物が適当であり、例えばメタノール、エタノー
ル、ブタノール等の一価アルコール類、エチレングリコ
ール、プロピレングリコール、ジプロピレングリコール
等の二価アルコール類、グリセリン、ペンタエリスリト
ール、ソルビトール、蔗糖等の多価アルコール類、エチ
レンジアミン、トリエタノールアミン、ジエチレントリ
アミン等のアミン化合物に対してアルキレンオキサイド
、例えば、エチレンオキサイド、プロピレンオキサイド
、ブチレンオキサイド等を付加重合した化合物が挙げら
れる。
The polyether polyol of the present invention having a molecular weight of 700 to 7,000 is suitably an organic compound having at least one active hydrogen group in the molecule, such as monohydric alcohols such as methanol, ethanol, butanol, ethylene glycol, etc. , dihydric alcohols such as propylene glycol and dipropylene glycol, polyhydric alcohols such as glycerin, pentaerythritol, sorbitol, and sucrose, and amine compounds such as ethylenediamine, triethanolamine, and diethylenetriamine, and alkylene oxides such as ethylene oxide. Examples include compounds obtained by addition polymerization of propylene oxide, butylene oxide, and the like.

また、このポリエーテルポリオールに、二重結合含有モ
ノエポキシ化合物を付加する際に使用されるアルカリ金
属水酸化物としては、水酸化ナトリウム、水酸化カリウ
ム等が適当であり、その使用量は特に制限されないが、
通常ポリエーテルポリオールに対して0.1〜1.0重
量%使用される。
In addition, as the alkali metal hydroxide used when adding the double bond-containing monoepoxy compound to this polyether polyol, sodium hydroxide, potassium hydroxide, etc. are suitable, and the amount used is particularly limited. Although it is not done,
It is usually used in an amount of 0.1 to 1.0% by weight based on the polyether polyol.

0.1[t%未満では、アルキレンオキサイドの付加速
度が著しく低下し、また1、0重量%以上では、アルキ
レンオキサイドの付加速度が頭打ちになると同時に、中
和精製に使用する燐酸、吸着剤の使用量が増加するため
、経済的に好ましくない。
If the amount is less than 0.1 t%, the alkylene oxide addition rate will decrease significantly, and if it is 1.0 wt% or more, the alkylene oxide addition rate will reach a plateau, and at the same time the phosphoric acid used for neutralization purification and the adsorbent will decrease. It is economically unfavorable because the amount used increases.

中和精製時に使用する燐酸の量は、ポリエーテルポリオ
ール中に含有するアルカリ金属水酸化物に対して0.9
5〜1.05モル倍が適当である。
The amount of phosphoric acid used during neutralization and purification is 0.9% relative to the alkali metal hydroxide contained in the polyether polyol.
A suitable amount is 5 to 1.05 moles.

0.95モル倍未満では中和反応が不十分であり、中和
精製後、アルカリ吸着剤を使用しても、未反応アルカリ
金属水酸化物が相当量、製品中に混入し、物性に悪影響
を及ぼす。
If it is less than 0.95 mole times, the neutralization reaction will be insufficient, and even if an alkali adsorbent is used after neutralization and purification, a considerable amount of unreacted alkali metal hydroxide will be mixed into the product, which will adversely affect the physical properties. effect.

また1、05モル倍より多いと、中和・脱水後の燐酸塩
の濾過が著しく困難となり、また製品中にも燐酸塩の結
晶が漏洩し、製品が白濁する。
If the amount exceeds 1.05 moles, it becomes extremely difficult to filter the phosphate after neutralization and dehydration, and phosphate crystals leak into the product, resulting in a cloudy product.

中和時の水添加!!k(燐酸同伴水+添加水)は、ポリ
エーテルポリオールに対して1.0〜3.0重量%であ
る。
Add water during neutralization! ! k (phosphoric acid-entrained water + added water) is 1.0 to 3.0% by weight based on the polyether polyol.

1.0重量%未満では、中和反応が円滑に進まず、製品
中に相当量の未反応アルカリ金属水酸化物が混入し、3
.0重量%より多いと、製品中に燐酸塩の結晶が漏洩し
、製品が白濁し、物性に悪影響を及ぼす。
If it is less than 1.0% by weight, the neutralization reaction will not proceed smoothly and a considerable amount of unreacted alkali metal hydroxide will be mixed into the product.
.. If it is more than 0% by weight, phosphate crystals will leak into the product, making the product cloudy and having an adverse effect on the physical properties.

中和後の脱水条件は、温度80〜150″C1降圧速度
を10On++m1lG 710分以下で行う。
The dehydration conditions after neutralization are a temperature of 80 to 150'', a C1 pressure reduction rate of 10On++mlG, and 710 minutes or less.

温度が80℃未満では、十分に脱水することが出来ず、
また+50’Cより高いと、製品に着色及び臭気等発生
するため好ましくない。
If the temperature is below 80°C, sufficient dehydration will not be possible.
Moreover, if it is higher than +50'C, it is not preferable because the product will be colored and odor will be generated.

また降圧速度を100mm1lG/ 10分より速くす
ると、製品中に燐酸塩の結晶が漏洩すると同時に燐酸塩
の濾過性も悪化する。
Furthermore, if the pressure reduction rate is faster than 100 mm 1 lG/10 minutes, phosphate crystals will leak into the product and at the same time the filterability of phosphate will deteriorate.

中和精製時に使用する酸又はアルカリ吸着剤は、燐酸中
和時、減圧脱水時、濾過時など、どの工程で添加しても
良いが、効率良(吸着を行うためには、燐酸中和後添加
し、次いで減圧脱水、濾過をすることが好ましい。
The acid or alkali adsorbent used during neutralization and purification may be added at any step, such as during phosphoric acid neutralization, vacuum dehydration, or filtration, but it is recommended to It is preferable to add the liquid, followed by dehydration under reduced pressure and filtration.

また、この酸又はアルカリ吸着剤としては例えば、キョ
ーワード100.200.300.500.600.7
00(協和化学工業製)、トミックスAD−200,3
00,500,600,700(富田製薬工業製)等の
市販の吸着剤をポリエーテルポリオールに対して0.0
1〜0.1重量%使用する。
In addition, examples of this acid or alkali adsorbent include Kyoward 100.200.300.500.600.7
00 (manufactured by Kyowa Chemical Industry), Tomix AD-200,3
Commercially available adsorbents such as 00,500,600,700 (manufactured by Tomita Pharmaceutical Industries) were used at 0.0% for polyether polyol.
1 to 0.1% by weight is used.

この欅にして得られた、末端に二重結合を有するポリエ
ーテルポリオールは、その二重結合を通じて付加重合的
にグラフト重合を誘起させ、これらグラフトポリヤーを
利用して異種ポリマーの相溶性向上、又は成形材料の物
性向上を促進する等、優れた性質を持つ。また、本発明
の燐酸中和法を適用することにより、品質の安定した製
品が容易に、又効率的に製造出来るため、産業上の利用
価値は高い。
The polyether polyol obtained from Keyaki, which has a double bond at the end, induces graft polymerization through addition polymerization through the double bond, and these graft polymers can be used to improve the compatibility of different polymers. Or, it has excellent properties such as promoting the improvement of physical properties of molding materials. In addition, by applying the phosphoric acid neutralization method of the present invention, products with stable quality can be easily and efficiently produced, so that the method has high industrial utility value.

〔実施例〕〔Example〕

以下、本発明を、更に具体的に説明するため、実施例及
び比較例をあげて説明するが、本発明はこれらの実施例
に限定されるものではない。
EXAMPLES Hereinafter, in order to explain the present invention more specifically, Examples and Comparative Examples will be given and explained, but the present invention is not limited to these Examples.

実施例1 グリセリンにプロピレンオキサイド及びエチレンオキサ
イドを付加重合して得られたOHH価337(分子ff
i 5000 )のポリエーテルポリオール1500g
(0,3モル)、アリルグリシジルエーテル41.0 
g(0,36モル)、及び水酸化カリウム7.5g (
0,13モル)を32オートクレーブ内に一括で装入し
、窒素置換後120″Cで6時間反応した。
Example 1 OHH value 337 (molecular ff
i5000) polyether polyol 1500g
(0.3 mol), allyl glycidyl ether 41.0
g (0.36 mol), and potassium hydroxide 7.5 g (
0.13 mol) was charged into a 32 autoclave at once and reacted at 120''C for 6 hours after purging with nitrogen.

反応終了後、反応液中の未反応アリルグリシジルエーテ
ルがtraceであることをガスクロマトグラフィーで
確認し、内温を90℃に下げ、85%燐酸15.0g 
(0,13モル)及び水27.8 gを添加して、30
分間撹(↑した。この時の添加水量(燐酸同伴水子添加
水)は、ポリエーテルポリオールの2.0%に相当する
6次いでキョーワード500 (協和化学工業製)7.
5gを加え、30分間さらに撹拌した後、真空ポンプに
より降圧速度50mm1lG/ 10分で、徐々に脱水
を行う。絶対圧30+nm1lGに到達後さらに90゛
Cで3時間脱水乾燥を続けた。
After the reaction was completed, it was confirmed by gas chromatography that unreacted allyl glycidyl ether in the reaction solution was traced, the internal temperature was lowered to 90°C, and 15.0 g of 85% phosphoric acid was added.
(0.13 mol) and 27.8 g of water to give 30
Stir for 1 minute (↑).The amount of water added at this time (water added with phosphoric acid and water molecules) was 6.5%, which corresponds to 2.0% of the polyether polyol.7.
After adding 5 g and further stirring for 30 minutes, dehydration was gradually performed using a vacuum pump at a pressure reduction rate of 50 mm 1 G/10 minutes. After reaching an absolute pressure of 30+nm 11G, dehydration and drying was continued at 90°C for 3 hours.

脱水終了後、濾過面積80cdの加圧型虐遇器に、A4
濾過紙を置き、濾過助剤としてラジオライト900を1
0.0 gをプレコートし、反応液を装入して窒素圧2
.0kg/dGで加圧濾過をした。
After the dehydration is completed, put the A4
Place a filter paper and add 1 part of Radiolight 900 as a filter aid.
0.0 g was precoated, the reaction solution was charged, and the nitrogen pressure was set to 2.
.. Pressure filtration was performed at 0 kg/dG.

濾過終了に5分を要し、得られた製品は黄色透明であり
、元素分析の結果、K分4ppw1、P分5PPM 、
又、水分0.015%であった。
It took 5 minutes to complete the filtration, and the obtained product was yellow and transparent, and elemental analysis showed that the K content was 4 ppw1, the P content was 5 ppm,
Moreover, the water content was 0.015%.

実施例2〜9、比較例1〜16 添加水量と85%燐酸添加量を変える以外は、実施例1
と同様の手法で中和精製を行った。
Examples 2 to 9, Comparative Examples 1 to 16 Example 1 except that the amount of water added and the amount of 85% phosphoric acid added were changed.
Neutralization and purification was performed using the same method as above.

中和条件及び結果を表−1に示す。The neutralization conditions and results are shown in Table-1.

実施例10〜18、比較例17〜32 プロピレングリコールにプロピレンオキサイド及びエチ
レンオキサイドを付加して得られたO H価56.1 
(分子12000)のポリエーテルポリオール1500
g (0,75モル)、アリルグリシジルエーテル16
0.0g (1,4モル)を使用し、実施例1〜16と
同様の手法で中和精製を行った。
Examples 10 to 18, Comparative Examples 17 to 32 O H value obtained by adding propylene oxide and ethylene oxide to propylene glycol 56.1
(molecule 12000) polyether polyol 1500
g (0.75 mol), allyl glycidyl ether 16
Using 0.0 g (1.4 mol), neutralization and purification were performed in the same manner as in Examples 1 to 16.

中和条件及び結果を表−2を示す。Table 2 shows the neutralization conditions and results.

実施例!9〜27、比較例33〜48 グリシジルメククリレート85.2g (0,6モル)
を使用する以外は実施例1〜16と同様の手法で中和精
製を行った。
Example! 9-27, Comparative Examples 33-48 Glycidyl meccrylate 85.2g (0.6 mol)
Neutralization and purification was performed in the same manner as in Examples 1 to 16 except that .

中和条件及び結果を表−3を示す。Table 3 shows the neutralization conditions and results.

実施例28〜28、比較例49〜51 減圧脱水時の降圧速度及び温度を変える以外は実施例−
1と同様の方法で中Fa精製を行った。
Examples 28 to 28, Comparative Examples 49 to 51 Example - except for changing the pressure reduction rate and temperature during vacuum dehydration
Medium Fa purification was performed in the same manner as in 1.

脱水条件及び結果を表−4に示す。The dehydration conditions and results are shown in Table 4.

実施例30〜31.比較例52〜54 減圧脱水時の降圧速度及び温度を変える以外は実施例−
1Oと同様の手法で中和精製を行った。
Examples 30-31. Comparative Examples 52 to 54 Example except for changing the pressure lowering rate and temperature during vacuum dehydration
Neutralization and purification was performed in the same manner as for 1O.

脱水条件及び結果を表−5に示す。The dehydration conditions and results are shown in Table-5.

実施例32〜33、比較例55〜58 減圧脱水時の降圧速度及び温度を変える以外は実施例−
27と同様の手法で中和?#製を行った。
Examples 32 to 33, Comparative Examples 55 to 58 Example - except for changing the pressure lowering rate and temperature during vacuum dehydration
Neutralize using the same method as 27? # Made.

脱水条件及び結果を表−6に示す。The dehydration conditions and results are shown in Table-6.

参考例 実施例1で得られた、末端にアリル基を有するポリエー
テルポリオール1000部に対してラジカル開始剤とし
てジターシャリ−ブチルパーオキサイド5部を加え、1
50℃にて6時間反応した。
Reference Example 5 parts of di-tert-butyl peroxide was added as a radical initiator to 1000 parts of the polyether polyol having an allyl group at the end obtained in Example 1.
The reaction was carried out at 50°C for 6 hours.

反応終了後、150℃で20smHG、1時間減圧処理
を行い、ラジカル開始剤の分解生成物を除去した。
After the reaction was completed, decompression treatment was carried out at 150° C. and 20 smHG for 1 hour to remove decomposition products of the radical initiator.

粘度15.000CP/25℃、分子1i30.000
〜70,000の分布を有する。(ポリスチレン換算)
高分子量ポリエーテルポリオールを得た。
Viscosity 15.000CP/25℃, molecule 1i30.000
~70,000 distribution. (Polystyrene equivalent)
A high molecular weight polyether polyol was obtained.

飛11よで(U二止勿盟遣 温度計、攪装置付の耐圧容器に、グリセリンにプロピレ
ンオキサイドを付加重合して得られた、08価56.1
(分子量3000 )のポリエーテルポリオール(A)
  200部を充填し、数回窒素11換をした。
Tobi 11 Yode (U 2-stop thermometer, 08 value 56.1 obtained by addition polymerization of propylene oxide to glycerin in a pressure-resistant container equipped with a stirrer)
(molecular weight 3000) polyether polyol (A)
The flask was filled with 200 parts and replaced with 11 nitrogen gas several times.

1′A拌下に内温を100℃まで昇温し、温度到達後、
ポリエーテルポリオール られた高分子量ポリエーテルポリオール50部、スチレ
ン279部、アクリロニトリル120部、アゾビスイソ
ブチロニトリル8部の混合物をポンプで4時間を嬰して
連続的に装入した。
Raise the internal temperature to 100℃ while stirring for 1'A, and after reaching the temperature,
A mixture of 50 parts of high molecular weight polyether polyol, 279 parts of styrene, 120 parts of acrylonitrile, and 8 parts of azobisisobutyronitrile was continuously charged using a pump over a period of 4 hours.

更に同温度で30分攪拌を継続した後、2t)mdgで
3時間、減圧処理を行ない、08価33.8mgKOl
l/ g、粘度4 、900CP/25℃,K分0.3
ppm 、P分0.4ppmの分散安定良好な白色乳濁
状のポリマーポリオールを得た。
After further stirring at the same temperature for 30 minutes, vacuum treatment was performed at 2t) mdg for 3 hours to obtain 33.8mgKOl of 08 value.
l/g, viscosity 4, 900CP/25℃, K min 0.3
A white emulsion-like polymer polyol with good dispersion stability and a P content of 0.4 ppm was obtained.

比較のために、上記高分子量ポリエーテルポリオール無
添加で同様の試験を行ったところ、原料の連続装入終了
直後に攪拌機がオーバーロードのため停止した。耐圧容
器を開けたところ、攪拌翼部及び、容器天井部に塊状の
固型物が大量に付着していた。
For comparison, a similar test was conducted without the addition of the above-mentioned high molecular weight polyether polyol, and the stirrer stopped due to overload immediately after the continuous charging of raw materials was completed. When the pressure container was opened, a large amount of solid matter was found adhering to the stirring blades and the ceiling of the container.

〔発明の効果〕〔Effect of the invention〕

本発明の方法は、従来の方法に比べ、効率的に製造(濾
過時間が短縮)でき、且つ、本発明により得られたポリ
エーテルポリオールは、従来品に比べ、着色が少な(、
K及びP分が少ない、品質の安定した製品が容易に得ら
れることが、表1〜6及び参考例から明らかである。
The method of the present invention can be produced more efficiently (shorter filtration time) than conventional methods, and the polyether polyol obtained by the present invention has less coloring (,
It is clear from Tables 1 to 6 and the reference examples that products with stable quality and low K and P content can be easily obtained.

Claims (1)

【特許請求の範囲】 1、分子量700〜7,000のポリエーテルポリオー
ルに、アルカリ金属水酸化物を触媒として、二重結合含
有モノエポキシ化合物を付加して製造した末端二重結合
含有ポリエーテルポリオールを、燐酸水溶液により中和
精製するに際して、 (1)ポリエーテルポリオール中のアルカリ金属水酸化
物含有量に対して0.95〜1.05モル倍の燐酸を使
用し、 (2)ポリエーテルポリオールに対して1.0〜3.0
重量パーセントの水を添加して中和後、 (3)80〜150℃の温度で、100mmHg/10
分以下の降圧速度にて減圧脱水することを特徴とする末
端二重結合を含有するポリエーテルポリオールの精製方
法。 2、二重結合含有モノエポキシ化合物が、アリルグリシ
ジルエーテル、グリシジルメタクリレートである請求項
1記載の末端二重結合を含有するポリエーテルポリオー
ルの精製方法。 3、二重結合含有モノエポキシ化合物の使用量が、ポリ
エーテルポリオール1モルに対して、0.5〜5.0モ
ルである請求項1記載の末端二重結合を含有するポリエ
ーテルポリオールの精製方法。
[Claims] 1. A terminal double bond-containing polyether polyol produced by adding a double bond-containing monoepoxy compound to a polyether polyol having a molecular weight of 700 to 7,000 using an alkali metal hydroxide as a catalyst. When neutralizing and purifying with a phosphoric acid aqueous solution, (1) using phosphoric acid in an amount of 0.95 to 1.05 times the mole of alkali metal hydroxide in the polyether polyol, (2) polyether polyol 1.0-3.0 for
After neutralization by adding weight percent water, (3) 100mmHg/10 at a temperature of 80-150℃.
1. A method for purifying a polyether polyol containing terminal double bonds, the method comprising dehydrating under reduced pressure at a pressure reduction rate of less than 1 minute. 2. The method for purifying a polyether polyol containing terminal double bonds according to claim 1, wherein the double bond-containing monoepoxy compound is allyl glycidyl ether or glycidyl methacrylate. 3. Purification of polyether polyol containing terminal double bonds according to claim 1, wherein the amount of the double bond-containing monoepoxy compound used is 0.5 to 5.0 mol per 1 mol of polyether polyol. Method.
JP12426489A 1989-05-19 1989-05-19 Purification method of polyether polyol Expired - Fee Related JP2644327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12426489A JP2644327B2 (en) 1989-05-19 1989-05-19 Purification method of polyether polyol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12426489A JP2644327B2 (en) 1989-05-19 1989-05-19 Purification method of polyether polyol

Publications (2)

Publication Number Publication Date
JPH02305819A true JPH02305819A (en) 1990-12-19
JP2644327B2 JP2644327B2 (en) 1997-08-25

Family

ID=14881031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12426489A Expired - Fee Related JP2644327B2 (en) 1989-05-19 1989-05-19 Purification method of polyether polyol

Country Status (1)

Country Link
JP (1) JP2644327B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608034A (en) * 1994-01-18 1997-03-04 Eastman Chemical Company Polyether polymers derived from 3,4-epoxy-1-butene
KR970010830A (en) * 1995-08-18 1997-03-27 클라우스 로이터, 귄터 슈마허 Molecular weight polyether polyol with weak odor, process for its production, and its use in the production of polymers, cosmetics and pharmaceuticals synthesized from polyether polyols
GB2351085A (en) * 1999-06-08 2000-12-20 Shell Int Research Process for the preparation of polyether polyols
WO2007037466A1 (en) * 2005-09-29 2007-04-05 Nippon Shokubai Co., Ltd. Hydrophilized polyalkylene glycol, production method thereof, and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608034A (en) * 1994-01-18 1997-03-04 Eastman Chemical Company Polyether polymers derived from 3,4-epoxy-1-butene
US5652328A (en) * 1994-01-18 1997-07-29 Eastman Chemical Company Polyether polymers derived from 3,4-epoxy-1-butene and hydroxyl initiator
KR970010830A (en) * 1995-08-18 1997-03-27 클라우스 로이터, 귄터 슈마허 Molecular weight polyether polyol with weak odor, process for its production, and its use in the production of polymers, cosmetics and pharmaceuticals synthesized from polyether polyols
GB2351085A (en) * 1999-06-08 2000-12-20 Shell Int Research Process for the preparation of polyether polyols
WO2007037466A1 (en) * 2005-09-29 2007-04-05 Nippon Shokubai Co., Ltd. Hydrophilized polyalkylene glycol, production method thereof, and application thereof

Also Published As

Publication number Publication date
JP2644327B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
KR0147818B1 (en) Recovery of double metal cyanide complex catalyst from a polymer
JP3397392B2 (en) Method for purifying polyol produced using double metal cyanide catalyst
TW530070B (en) Process for rapid activation of double metal cyanide catalysts
US4029879A (en) Process for the removal of catalysts from polyether polyols employing water and adsorbent
JPH093186A (en) Production of ethylene-oxide-capped polyol
US4129718A (en) Process for the removal of catalyst from polyether polyol
EP1409567B1 (en) Double metal complex catalyst
JP3773963B2 (en) Method for producing polyether polyol
US4166172A (en) Production of polyether polyol compositions
JPH07238161A (en) Method of refining polyether polyol manufactured by using double metal cyanide catalyst
US5410093A (en) Method for removing transesterification catalyst from polyether polyols
WO2010145899A1 (en) A process for neutralizing an unneutralised polyether polyol
JPH02305819A (en) Purification of polyether polyol
US5962749A (en) Process for the removal of alkalinity in the manufacture of polyether polyols and the reuse of this alkalinity in the manufacture of polyether polyols
US4535189A (en) Polyol purification process
JP3140109B2 (en) Purification method of polyethers
EP1303554B1 (en) Polyol processing
US20050215831A1 (en) Method for the preparation of polyether alcohols
JP2003313289A (en) Process for producing polyether from which metal compound is removed
JPH10204171A (en) Polyether polyol and its production
JPS6220970B2 (en)
JP2003105078A (en) Method for eliminating metal compound from crude polyether
KR20020003872A (en) Crystallising Polyether Polyols, a Method for Producing Them and Use of the Same
JPH0388823A (en) Purification of polyethers
JPH04311722A (en) Method for purifying polyethers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees