JPS61256671A - Manufacture of thin film transistor - Google Patents

Manufacture of thin film transistor

Info

Publication number
JPS61256671A
JPS61256671A JP9855085A JP9855085A JPS61256671A JP S61256671 A JPS61256671 A JP S61256671A JP 9855085 A JP9855085 A JP 9855085A JP 9855085 A JP9855085 A JP 9855085A JP S61256671 A JPS61256671 A JP S61256671A
Authority
JP
Japan
Prior art keywords
electrode
gate electrode
self
layer
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9855085A
Other languages
Japanese (ja)
Inventor
Tomotaka Matsumoto
友孝 松本
Kenichi Oki
沖 賢一
Satoru Kawai
悟 川井
Yasuhiro Nasu
安宏 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9855085A priority Critical patent/JPS61256671A/en
Publication of JPS61256671A publication Critical patent/JPS61256671A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To improve the characteristics of a transistor by forming a silicon layer and source and drain electrodes doped by self-aligning by a light CVD method with a gate electrode as a mask in the same vacuum, thereby reducing the influence of a contamination with impurities. CONSTITUTION:A glass substrate 11 in which a gate electrode (Cr) 12 is patterned is disposed at the shown position, a gate insulating film 13 is accumulated, SiH4 gas is then fed, and an a-Si active layer 14 is accumulated. Then, Si2H6 and PH3 are fed in the same vacuum into a chamber 21, an ArF eximer laser 25 is emitted from a quartz substrate side 11, and an n<+> type Si layer 14a is formed by a light CVD method on the a-Si which is masked by the electrode 12 and removed at the top. An electrode metal material formed on the doped layer 14a are readily contacted. After being once evacuated, organic metal material gas such as TMA is fed and the laser 25 is emitted from the quartz substrate side. Then, it is decomposed by the light and aluminum is accumulated on the inadiated part. Accordingly, self-aligned source and drain electrodes (aluminum) 15 are formed.

Description

【発明の詳細な説明】 〔概要〕 液晶パネルの駆動などに用いる逆スタガード型薄膜トラ
ンジスタ(TPT)のソース・ドレイン電極を、ゲート
絶縁膜、活性層と同一真空中で光CVD法によりゲート
電極をマスクとして自己整合(セルファライン)で形成
することを可能にする。
[Detailed Description of the Invention] [Summary] The source and drain electrodes of an inverted staggered thin film transistor (TPT) used for driving a liquid crystal panel, etc. are masked by photo-CVD in the same vacuum as the gate insulating film and active layer. This allows for self-alignment (self-alignment) formation.

〔産業上の利用分野〕[Industrial application field]

本発明は薄膜トランジスタの製造方法に関するもので、
さらに詳しく言えば、真空を破ることなしに自己整合し
た薄膜トランジスタを製造する方法に関するものである
The present invention relates to a method for manufacturing a thin film transistor,
More specifically, the present invention relates to a method of manufacturing self-aligned thin film transistors without breaking a vacuum.

〔従来の技術〕[Conventional technology]

例えば液晶パネルの駆動のための第3図の断面図に示さ
れる逆スタガード型TPTは知られたものであり、同図
において、11はガラス基板、12はゲート電極、13
は例えば窒化シリコンのゲート絶縁膜、14はアモルフ
ァスシリコン(a−St)の活性層、15はソース電極
、16はドレイン電極を示す。
For example, an inverted staggered TPT shown in the cross-sectional view of FIG. 3 for driving a liquid crystal panel is known, and in the same figure, 11 is a glass substrate, 12 is a gate electrode, and 13 is a
14 is an active layer of amorphous silicon (a-St), 15 is a source electrode, and 16 is a drain electrode.

このようなTPTの性能について問題となる点は、ゲー
ト電極とソース・ドレイン電極とが重なるとその重なっ
た部分にリーク電流が流れることと、その部分が容量に
なってトランジスタの特性に影響を与えることである。
The problem with the performance of such TPTs is that when the gate electrode overlaps the source/drain electrode, leakage current flows through the overlapped area, and that area becomes capacitance, which affects the characteristics of the transistor. That's true.

そこで、そのような重なり部分を少なくしなければなら
ないのであるが、全く重ならないというのではなく僅か
に重なることが必要である。つまり、ゲート電極とソー
ス・ドレイン電極が少しばかり重なっていることにより
図に符号17で示す部分に電子が蓄積され、ゲート電極
を十にしてソース・ドレイン電極に電圧をかけたときに
この蓄積した電子が流されるようにしなければならない
からである。かりにゲート電極とソース・ドレイン電極
が重なっていないとすると、符号17を示した部分は大
なる抵抗となり、・トランジスタの特性を劣化させるこ
とになる。
Therefore, it is necessary to reduce such overlapping portions, but it is not necessary that they overlap at all, but that they overlap slightly. In other words, because the gate electrode and the source/drain electrodes overlap a little, electrons are accumulated in the area shown by reference numeral 17 in the figure, and when a voltage is applied to the source/drain electrodes with the gate electrode set to This is because electrons must be allowed to flow. If the gate electrode and the source/drain electrodes do not overlap, the portion indicated by reference numeral 17 will have a large resistance, which will deteriorate the characteristics of the transistor.

本出願人は、第3図に示すTPTをゲート電極をマスク
として自己整合で形成する方法を開発した。
The applicant has developed a method for forming the TPT shown in FIG. 3 by self-alignment using the gate electrode as a mask.

この方法を第4図を参照して説明すると、ガラス基板1
1の上にゲート電極12を形成し、プラズマCVO法テ
(Sih +NH3)を用いて絶縁膜13を成長し、そ
の上にSiH@ガスを用いてa−Stの活性層14を成
長する。次いで、全面にレジストIl!!18を塗布形
成する。
To explain this method with reference to FIG. 4, the glass substrate 1
A gate electrode 12 is formed on the substrate 1, an insulating film 13 is grown using a plasma CVO method (Sih + NH3), and an a-St active layer 14 is grown thereon using SiH@gas. Next, resist Il! is applied to the entire surface! ! 18 is applied and formed.

次に第4図に矢印で示す如くガラス基板11の側から光
を照射すると、ゲート電極12がマスクになってレジス
ト膜の部分18aには光が照射されない。
Next, when light is irradiated from the glass substrate 11 side as shown by the arrow in FIG. 4, the gate electrode 12 acts as a mask and the resist film portion 18a is not irradiated with light.

次にレジストを現像し、第5図に示される如く全面に金
属膜19を付着し、リフトオフ法でレジスト膜18aと
その上の金属膜を除去して第3図に示したTPTを完成
する。
Next, the resist is developed, a metal film 19 is deposited on the entire surface as shown in FIG. 5, and the resist film 18a and the metal film thereon are removed by a lift-off method to complete the TPT shown in FIG.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記した如く、従来技術としては、プラズマCvO法で
ゲート絶縁膜、活性層を堆積したのちレジストプロセス
によって自己整合した薄膜トランジスタを製造している
が、これには真空を破ること及びレジストプロセスから
の汚染によってトランジスタの特性が劣化するという欠
点があった。
As mentioned above, in the conventional technology, a gate insulating film and an active layer are deposited using a plasma CvO method, and then self-aligned thin film transistors are manufactured using a resist process. However, this involves breaking the vacuum and preventing contamination from the resist process. This has the disadvantage that the characteristics of the transistor deteriorate.

すなわち、レジストの塗布のときに真空を破ること、お
よびレジストプロセスによって活性層が汚染されるため
TPT特性が劣化し、またレジストプロセスによって製
造歩留りが低下するという問題がある。
That is, there are problems in that the vacuum is broken during resist application, and the active layer is contaminated by the resist process, resulting in deterioration of TPT characteristics, and the resist process reduces manufacturing yield.

本発明はこのような点に鑑みて創作されたもので、光C
VD法を用いることにより同一真空中で自己整合した薄
膜トランジスタを製造する方法を提供することを目的と
する。
The present invention was created in view of these points, and
It is an object of the present invention to provide a method for manufacturing self-aligned thin film transistors in the same vacuum by using the VD method.

〔問題点を解決するための手段〕[Means for solving problems]

第1図の(a)ないしくC1は本発明の方法を実施する
工程におけるTPT要部の断面図である。
FIGS. 1A to 1C are cross-sectional views of the main parts of the TPT in the process of carrying out the method of the present invention.

第1図において、ゲート電極12、ゲート絶縁膜13、
活性層14、ソース・ドレイン電極15からなるTPT
をガラス基板11上に形成するにおいて、ゲート絶縁膜
13、活性層14の堆積と同一真空中でガラス基板11
側から光を照射し、ゲート電極12をマスクとして自己
整合したドープしたa−3t 14aおよびソース・ド
レイン電極15を光CVD法によって形成する。
In FIG. 1, a gate electrode 12, a gate insulating film 13,
TPT consisting of active layer 14 and source/drain electrodes 15
is formed on the glass substrate 11 in the same vacuum as the deposition of the gate insulating film 13 and the active layer 14.
By irradiating light from the side and using the gate electrode 12 as a mask, self-aligned doped a-3t 14a and source/drain electrodes 15 are formed by photo-CVD.

〔作用〕[Effect]

上記方法は、光CVD法において光の照射した部分のみ
に膜が堆積することを利用してゲート絶縁膜・活性層の
堆積と同一真空中で、基板側からの光照射によって自己
整合したソース°・ドレイン電極を光CVD法によって
形成するようにしたものである。
The method described above takes advantage of the fact that a film is deposited only on the area irradiated with light in the photo-CVD method. - The drain electrode is formed by photo-CVD.

〔実施例〕〔Example〕

第1図(alないしくC)および第2図を参照して本発
明実施例を詳細に説明する。
Embodiments of the present invention will be described in detail with reference to FIG. 1 (al to C) and FIG. 2.

先ず、第1図(a)に示される如く、ゲート電極(Cr
) 12をパターニングしたガラス(石英)基板11上
に、プラズマCvD法によって窒化シリコンのゲート絶
縁膜13、a−3tの活性層14を従来例の場合と同様
に堆積する。
First, as shown in FIG. 1(a), a gate electrode (Cr
) A gate insulating film 13 of silicon nitride and an active layer 14 of a-3t are deposited on a glass (quartz) substrate 11 patterned with 12 by the plasma CVD method in the same manner as in the conventional example.

前記した光CVD法は第2図の断面図に示される装置を
用いて行うもので、同図において、21はチャンバ(0
,I Torrの真空に保たれる)、22は放電電極、
23は高周波電波、24は石英窓を示し、この石英窓を
通して後述するArFエキシマレーザ25が照射される
The photo-CVD method described above is carried out using the apparatus shown in the cross-sectional view of FIG. 2, in which 21 is a chamber (0
, I Torr), 22 is a discharge electrode,
Reference numeral 23 indicates a high frequency radio wave, and 24 indicates a quartz window, through which an ArF excimer laser 25, which will be described later, is irradiated.

ガラス基板11を図示の位置に配置してゲート絶縁I!
l!!13を堆積し、次にシラン(Sih )ガスを導
入してa−Stの活性層14を堆積する。
The glass substrate 11 is placed in the illustrated position and the gate insulation I!
l! ! 13 is deposited, and then silane (Sih) gas is introduced to deposit an active layer 14 of a-St.

次に同一真空中でジシラン(SizH6)とPH3をチ
ャンバ21内に導入し、石英基板側11からArFエキ
シマレーザ25を照射してゲート電極12によってマス
クされた上部を除いたa−3t上に第1図世)に示され
る如く光CVD法によってn”−St層14aを形成す
る。ジシランガスを用いる理由は、それがシランに比べ
て分子が大であるので分解エネルギーが小であり、かつ
、光エネルギーの吸収係数が大であるからである。なお
、ドープされたn”a−5t層14aを形成する理由は
、その上に形成される電極金属材料とのコンタクトをと
り易くするためである(ドープされないn型のa−3t
と金属材料とのコンタクトは良くない)。
Next, disilane (SizH6) and PH3 are introduced into the chamber 21 in the same vacuum, and ArF excimer laser 25 is irradiated from the quartz substrate side 11 to form a layer on a-3t excluding the upper part masked by the gate electrode 12. As shown in Figure 1), the n''-St layer 14a is formed by the photo-CVD method.The reason for using disilane gas is that its molecules are larger than silane, so the decomposition energy is small, and it is resistant to light. This is because the energy absorption coefficient is large.The reason for forming the doped n''a-5t layer 14a is to facilitate contact with the electrode metal material formed thereon ( undoped n-type a-3t
contact with metal materials is not good).

一度排気した後、有機金属材料ガス、例えばトリメチル
アルミニウム(TMAIl)を導入し、同様に石英基板
側から^rFエキシマレーザ25を照射すると、同ガス
は光で分解し、光の当ったところにAIが堆積するから
、ゲート電極12をマスクとした自己整合したソース・
ドレイン電極(Al) 15が形成される(第1図(C
))。
Once exhausted, an organometallic material gas such as trimethylaluminum (TMAIl) is introduced, and when the ^rF excimer laser 25 is irradiated from the quartz substrate side, the gas is decomposed by the light and an AI is formed where the light hits. is deposited, so a self-aligned source electrode using the gate electrode 12 as a mask is formed.
A drain electrode (Al) 15 is formed (Fig. 1(C)
)).

このようにして、本実施例によれば、同一真空中で自己
整合した薄膜トランジスタを製造できるので不純物等に
よる汚染の影響が減少し、特性を向上させることができ
るのである。
In this way, according to this embodiment, self-aligned thin film transistors can be manufactured in the same vacuum, so that the influence of contamination due to impurities etc. can be reduced and the characteristics can be improved.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明によれば同一真空中で自
己整合した薄膜トランジスタを製造することができるの
で、不純物等による汚染の影響が減少でき、トランジス
タの特性の向上が図れ、また製造歩留りが向上する効果
がある。
As described above, according to the present invention, self-aligned thin film transistors can be manufactured in the same vacuum, so the influence of contamination due to impurities etc. can be reduced, the characteristics of the transistor can be improved, and the manufacturing yield can be improved. It has an improving effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)ないしくC)は本発明方法を実施する工程
における半導体装置要部の断面図、 第2図は第1図の工程を実施する装置の断面図である。 第3図は逆スタガード型TPTの断面図、第4図と第5
図は第3図のTPTを作る従来工程を示す断面図、 第1図ないし第5図において、 11はガラス(石英)基板、 12はゲート電極、 13はゲート絶縁膜、 14は活性層、 14aはドープされたn”a−5t層、15はソース・
ドレイン電極、 21は真空チャンバ、 22は放電電極、 23は高周波電源、 24は石英窓、 25はArFエキシマレーザである。 枦トR喫恍例断面団 第1図 丸CVO覧1 第2図 従来例跡面図 第3図 ↑↑  ↑↑ 従来例跡面図 第4図 従来例#面図 第5図
FIGS. 1A to 1C are cross-sectional views of essential parts of a semiconductor device in steps of carrying out the method of the present invention, and FIG. 2 is a cross-sectional view of an apparatus carrying out the steps of FIG. 1. Figure 3 is a cross-sectional view of an inverted staggered TPT, Figures 4 and 5
The figure is a cross-sectional view showing the conventional process for making the TPT shown in Figure 3. In Figures 1 to 5, 11 is a glass (quartz) substrate, 12 is a gate electrode, 13 is a gate insulating film, 14 is an active layer, 14a 15 is the doped n”a-5t layer, and 15 is the source layer.
21 is a vacuum chamber, 22 is a discharge electrode, 23 is a high frequency power source, 24 is a quartz window, and 25 is an ArF excimer laser. Figure 1 Circle CVO view 1 Figure 2 Remains of conventional example Figure 3 ↑↑ ↑↑ Remains of conventional example Figure 4 View of conventional example # View 5

Claims (1)

【特許請求の範囲】 ゲート電極(12)、ゲート絶縁膜(13)、活性層(
14)、ソース・ドレイン電極(15)から成る逆スタ
ガード型薄膜トランジスタの製造において、ゲート絶縁
膜(13)、活性層(14)の堆積と同一真空中で、 ゲート電極(12)をマスクとして光CVD法によって
自己整合したドープされたシリコン層(14_a)およ
びソース・ドレイン電極(15)を形成することを特徴
とする薄膜トランジスタの製造方法。
[Claims] Gate electrode (12), gate insulating film (13), active layer (
14) In the production of an inverted staggered thin film transistor consisting of source and drain electrodes (15), photo-CVD is performed using the gate electrode (12) as a mask in the same vacuum as the deposition of the gate insulating film (13) and the active layer (14). A method for manufacturing a thin film transistor, characterized in that a self-aligned doped silicon layer (14_a) and a source/drain electrode (15) are formed by a method.
JP9855085A 1985-05-09 1985-05-09 Manufacture of thin film transistor Pending JPS61256671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9855085A JPS61256671A (en) 1985-05-09 1985-05-09 Manufacture of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9855085A JPS61256671A (en) 1985-05-09 1985-05-09 Manufacture of thin film transistor

Publications (1)

Publication Number Publication Date
JPS61256671A true JPS61256671A (en) 1986-11-14

Family

ID=14222796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9855085A Pending JPS61256671A (en) 1985-05-09 1985-05-09 Manufacture of thin film transistor

Country Status (1)

Country Link
JP (1) JPS61256671A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187620A (en) * 1987-01-30 1988-08-03 Sony Corp Manufacture of semiconductor device
KR100271897B1 (en) * 1991-05-13 2000-11-15 이데이 노부유끼 Semiconductor device and method for manufacturing thereof
KR100397875B1 (en) * 2000-05-18 2003-09-13 엘지.필립스 엘시디 주식회사 Thin Film Transistor and method for fabricating the same
US20090236593A1 (en) * 2005-10-10 2009-09-24 Stmicroelectronics S.R.L. Organic thin film transistor and process for manufacturing same
RU2606248C2 (en) * 2015-05-14 2017-01-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Method of making a semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187620A (en) * 1987-01-30 1988-08-03 Sony Corp Manufacture of semiconductor device
KR100271897B1 (en) * 1991-05-13 2000-11-15 이데이 노부유끼 Semiconductor device and method for manufacturing thereof
KR100397875B1 (en) * 2000-05-18 2003-09-13 엘지.필립스 엘시디 주식회사 Thin Film Transistor and method for fabricating the same
US20090236593A1 (en) * 2005-10-10 2009-09-24 Stmicroelectronics S.R.L. Organic thin film transistor and process for manufacturing same
US8653505B2 (en) * 2005-10-10 2014-02-18 Stmicroelectronics S.R.L. Organic thin film transistor and process for manufacturing same
RU2606248C2 (en) * 2015-05-14 2017-01-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Method of making a semiconductor device

Similar Documents

Publication Publication Date Title
US6846728B2 (en) Semiconductor thin film, semiconductor device employing the same, methods for manufacturing the same and device for manufacturing a semiconductor thin film
US20090137103A1 (en) Method for manufacturing semiconductor device
US5888855A (en) Method of manufacturing active matrix display
JPS62259471A (en) Manufacture of thin film transistor
US20200176612A1 (en) Thin-film transistor and manufacturing method therefor, array substrate and display device
JPH0640550B2 (en) Method of manufacturing thin film transistor
US5696387A (en) Thin film transistor in a liquid crystal display having a microcrystalline and amorphous active layers with an intrinsic semiconductor layer attached to same
US6166400A (en) Thin film transistor of liquid crystal display with amorphous silicon active layer and amorphous diamond ohmic contact layers
US20100301339A1 (en) Method of producing thin film transistor and thin film transistor
JPH08242005A (en) Amorphous silicon thin film transistor and its manufacture
JPS61256671A (en) Manufacture of thin film transistor
JP3596188B2 (en) Method for manufacturing thin film transistor
WO2012068752A1 (en) Methods for manufacturing passivation layer and thin film transistor array substrate
Kim et al. Excimer-laser crystallized poly-Si TFT's with transparent gate
JPH07120806B2 (en) Method of manufacturing thin film field effect transistor
JPS63169767A (en) Manufacture of thin film transistor
US5686320A (en) Method for forming semiconductor layer of thin film transistor by using temperature difference
JP3492710B2 (en) Thin film transistor and method for manufacturing the same
JP2004241784A (en) Method of manufacturing thin film transistor
JPH065627A (en) Manufacture of semiconductor device
JPH02196470A (en) Thin film transistor and manufacture thereof
JPH02305475A (en) Thin film semiconductor element and manufacture thereof
JPS62299084A (en) Manufacture of thin film transistor
JPH09246181A (en) Method for forming polycrystal thin film, polycrystal thin film formation device and method for manufacturing thin film transistor
JP2648784B2 (en) Insulated gate field effect semiconductor device for liquid crystal display panel