JPS61256574A - Sodium-sulfur cell - Google Patents

Sodium-sulfur cell

Info

Publication number
JPS61256574A
JPS61256574A JP60097576A JP9757685A JPS61256574A JP S61256574 A JPS61256574 A JP S61256574A JP 60097576 A JP60097576 A JP 60097576A JP 9757685 A JP9757685 A JP 9757685A JP S61256574 A JPS61256574 A JP S61256574A
Authority
JP
Japan
Prior art keywords
conductive
solid electrolyte
area
sodium
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60097576A
Other languages
Japanese (ja)
Inventor
Kazuo Kogai
小貝 一夫
Kiyoshi Yamashita
清 山下
Hiroyuki Kawamoto
川本 広行
Hisamitsu Hatou
久光 波東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP60097576A priority Critical patent/JPS61256574A/en
Publication of JPS61256574A publication Critical patent/JPS61256574A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To achieve good discharge performance by arranging insulation areas and conductive areas alternately over the entire circumference on the surface of solid electrolyte thereby facilitating dispersion of sodium polysulfide to the portion other than the conductive section of solid electrolytic tube. CONSTITUTION:A solid electrolytic tube 5 made of selective ion conductivity having closed lower end and open upper end is provided on the outercircumference of cell in storing area of negative electrode active material or sodium. An area 12 where insulation area and conductive area will exist alternately is provided on the outercircumference at the outside of the electrolytic tube 5. A porous conductive material 10 such as a carbon mat impregnated with sulfur is provided on the outercircumference of said area 12 while metallic positive electrode container 4 is provided at the outside of the conductive member 10. Consequently, dispersion of sodium polysulfide is facilitated resulting in considerable improvement of initial discharge performance.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はナトリウム−硫黄電池(以下N a/S電池と
称する。)に係シ、特に固体電解質管と導電体との間に
絶縁体が設けられているN a / 8電池に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to sodium-sulfur batteries (hereinafter referred to as Na/S batteries), and particularly relates to sodium-sulfur batteries (hereinafter referred to as Na/S batteries). Regarding Na/8 batteries.

〔発明の背景〕[Background of the invention]

従来のN a / S電池は、ナトリウムイオンのみ選
択的に通過させる固体電解質(β、もしくはβ″−アル
ミナ)を介して一方に陰極活性物質であるナトリウムを
、他方に陽極活性物質である硫黄を配し、300〜35
0Cの温度で充放電を行なう高温形の二次電池として知
られている(例えば、M、 Baralc著[Elec
trochemical Power3ources 
、Primary and 5econdary Ba
tteriesJIEE Energy 5eries
 1. Peter peregrinusLtd、 
 ) 上記N a / 8電池の充放電にともなう電池反応の
式で表される。
Conventional Na/S batteries pass sodium, the cathode active material, on one side and sulfur, the anode active material, on the other through a solid electrolyte (β or β''-alumina) that selectively allows only sodium ions to pass through. Arrangement, 300-35
It is known as a high-temperature secondary battery that charges and discharges at a temperature of 0C (for example, M. Baralc [Elec
Trochemical Power3 sources
, Primary and 5 secondary Ba
tteriesJIEE Energy 5eries
1. Peter peregrinus Ltd.
) It is expressed by the equation of the battery reaction accompanying the charging and discharging of the above Na/8 battery.

すなわち、放電時には陰極活性物質であるナトリウムは
電子を遊離してナトリウムイオンとなバこのナトリウム
イオンは固体電解質隔壁を透過して陽極活性物質である
硫黄と反応し、多硫化ナトリウムを生成する。一方、充
電時には、電池の開路電圧よりも高い逆電圧を印加する
ことによって、前記放電時と逆の反応となる。
That is, during discharge, sodium, which is a cathode active material, liberates electrons and becomes sodium ions.The sodium ions pass through the solid electrolyte partition wall and react with sulfur, which is an anode active material, to produce sodium polysulfide. On the other hand, during charging, by applying a reverse voltage higher than the open circuit voltage of the battery, the reaction is opposite to that during discharging.

しかし、実際の電池反応は(1)式で示されるようにN
aとSが反応して直接Nag’sになるのではなく 、
Nag 86  と8が共存する、いわゆる2成分域の
反応である。
However, in the actual battery reaction, as shown in equation (1), N
Instead of a and S reacting directly to Nag's,
This is a so-called two-component region reaction in which Nag 86 and 8 coexist.

と、いわれる−成分域の反応である とを介して、上記NaとSがNa、 S、に変化する。It is said to be a reaction in the component range. The above Na and S change to Na, S, and so on.

陽極として多孔質電子導電体であるカーボン。Carbon, which is a porous electronic conductor, as an anode.

もしくはグラファイトフェルトに硫黄をモールドし、多
孔質電子導電体を電子集電子として機能させることによ
って、放電時の上記電池反応は問題なく進行する。しか
しながら、充電時においては式(3)で示される反応ま
では問題なく進行するものの、式(2)で示される反応
は進行しない。その理由として、充電時に生成される硫
黄が固体電解質表面に集中して生じ、該硫黄によってイ
オン導電性が疎外されることが知られている。
Alternatively, by molding sulfur into graphite felt and making the porous electron conductor function as an electron collector, the above battery reaction during discharge will proceed without problems. However, during charging, although the reaction shown by equation (3) proceeds without any problem, the reaction shown by equation (2) does not proceed. It is known that the reason for this is that sulfur generated during charging is concentrated on the surface of the solid electrolyte, and the sulfur impairs ionic conductivity.

特に、式(2)で示される反応は全電池反応の約60%
を占めるものであるので、式(2)の反応を有効に行な
わせない限シ、式(1)で示される充電深度の理論量の
約40%しか実容量として利用できないことになる。
In particular, the reaction represented by formula (2) accounts for approximately 60% of the total battery reaction.
Therefore, unless the reaction of equation (2) is effectively carried out, only about 40% of the theoretical depth of charge shown by equation (1) can be used as an actual capacity.

そこで、このような問題点を解決するための従来例とし
て、特公昭59−10539号では固体電解質管と接す
る陽極面にガラス繊維セラミックフェルト、アルミナフ
ェルト、あるいはジルコンフェルトから成る絶縁体で覆
い、固体電解質管表面での硫黄の析出を防止している。
Therefore, as a conventional example to solve such problems, in Japanese Patent Publication No. 59-10539, the anode surface in contact with the solid electrolyte tube is covered with an insulator made of glass fiber ceramic felt, alumina felt, or zircon felt. Prevents sulfur precipitation on the electrolyte tube surface.

また、上記従来例では固体電解質管の全面を絶縁体で覆
ったのでは陽/陰極は完全に絶縁されてしまい放電反応
が進行しないために、片側が閉じた円筒形状固体電解質
の底面部のみは絶縁体を設けないで電子伝導性であるグ
ラファイトフェルトを設けることが示されている。
In addition, in the above conventional example, if the entire surface of the solid electrolyte tube was covered with an insulator, the anode/cathode would be completely insulated and the discharge reaction would not proceed. It has been shown to provide a graphite felt that is electronically conductive without an insulator.

との特公昭59−10539号の電池では初期の放電反
応を固体電解質管底部のみで進行させて、この底部で生
成されたイオン導電性のある多硫化ナトリウムを、固体
電解質管の上中部に配設された絶縁領域に拡散吸収させ
その後の放電反応を行なわせている。
In the battery disclosed in Japanese Patent Publication No. 59-10539, the initial discharge reaction proceeds only at the bottom of the solid electrolyte tube, and the ionically conductive sodium polysulfide produced at the bottom is placed in the upper middle of the solid electrolyte tube. It is diffused and absorbed into the provided insulating region and a subsequent discharge reaction takes place.

しかし、上記従来例のNa/S電池では、電池の大形化
、とりわけ長軸化にともなって、絶縁領域が長くなり、
電池底部で生じた多硫化ナトリウムは容易に絶縁領域全
部に拡散しないために、絶縁領域が導電領域に変化しな
いまま残り、良好な放電性能が得られないという問題点
があった。
However, in the above-mentioned conventional Na/S battery, as the battery becomes larger, especially its axis becomes longer, the insulation region becomes longer.
Since the sodium polysulfide generated at the bottom of the battery does not easily diffuse into the entire insulating region, the insulating region remains unchanged into a conductive region, resulting in a problem in that good discharge performance cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、固体電解質管表面に設けられた導電領
域で生じた多硫化ナトリウムが固体電解質管の導電部以
外、すなわち絶縁領域へ容易に拡散し、良好な放電性能
を有するNa/S電池を提供することにある。
An object of the present invention is to provide an Na/S battery which has good discharge performance by easily diffusing sodium polysulfide generated in the conductive region provided on the surface of the solid electrolyte tube to other than the conductive portion of the solid electrolyte tube, that is, to the insulating region. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

本発明は従来のNa/S電池のように、固体電解質管の
下部に導電領域を設け、一方、その上中部に絶縁領域を
設けるというような分割構造を採るのではなく、固体電
解質表面の全周部に絶縁、領域と導電領域を交互に配置
した構成を持つことを特徴とするN a / S電池で
ある。
The present invention does not adopt a divided structure in which a conductive region is provided at the bottom of the solid electrolyte tube and an insulating region is provided at the upper middle part of the solid electrolyte tube, as in conventional Na/S batteries, but the entire surface of the solid electrolyte is This is an Na/S battery characterized by having a structure in which insulating regions and conductive regions are alternately arranged around the periphery.

上記本発明の構成によれば、絶縁領域の長さを従来のN
 a / S電池に比べて短くすることができるために
、導電性領域で生じた多硫化ナトリウムの絶縁領域への
拡散が円滑に行なわれる。
According to the above structure of the present invention, the length of the insulating region is reduced from the conventional length N
Since it can be made shorter than an a/S battery, the sodium polysulfide generated in the conductive region can diffuse smoothly into the insulating region.

上記本発明における絶縁領域と導電領域の交互の配置は
、絶縁体を従来のN a / S電池のよりに固体電解
質管表面に配される円筒形のものにするのではなく、そ
の円筒形の絶縁体を所定間隔に分割して用いることによ
って実現できる。また、絶縁性の繊維(例えばガラス繊
維)と導電性の繊維(炭素繊維)を同時に織り込んだフ
ェルトを固体電解質管表面に設けることによっても可能
となる。
The alternating arrangement of insulating regions and conductive regions in the present invention does not make the insulator cylindrical, which is disposed on the surface of the solid electrolyte tube, as in conventional Na/S batteries; This can be achieved by dividing the insulator into predetermined intervals. This can also be achieved by providing felt, which is woven with insulating fibers (for example, glass fibers) and conductive fibers (carbon fibers), on the surface of the solid electrolyte tube.

質 さらに、絶縁体として固体電解ヌの外周面の一部領域を
囲繞するような空隙部を形成し、この空隙部を交互に設
けることによって上記絶縁領域と導電領域の交互配置を
実現することもできる。
Furthermore, it is also possible to form voids surrounding a part of the outer peripheral surface of the solid electrolyte as an insulator, and to provide the voids alternately to realize the alternating arrangement of the insulating regions and conductive regions. can.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の好ましい実施例を添付図面に従って詳説す
る。
Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings.

第1図は本発明に係る円筒形のN a / 8電池の全
体の構成を示す断面図である。
FIG. 1 is a sectional view showing the overall structure of a cylindrical Na/8 battery according to the present invention.

図において、陰極活性物質であるす) IJウム貯留領
域9の電池外周面にはN a+にだけ選択的にイオン導
電性を有する材料(β、もしくはβ//−アルミナ)か
ら成り、下端が閉鎖され、上端が開口した固体電解質管
5が設けられている。該固体電解質管5の外側外周面に
は、絶縁領域と導電領域が交互に存在する領域(以下交
圧領域という)12が設けられている。この交圧領域1
2の外側外周面には硫黄が含浸されたガーボンマント、
あるいはグラファイトマットの多孔質導電材10が設け
られておシ、この多孔質導電材10の外側には金RHの
陽極容器4が設けられている。前記ナトリウム貯留領域
9内には集電子としての機能を果すための金属製の集電
管6が設けられておシ、この集電管6の上部は金属製の
陰極キャップ2に接続されている。前記陽極容器4の下
部には陽極キャンプ8が設けられており、この陽極キャ
ップ8には希ガス注入管8が設けられている。前記固体
電解質5の上開口部には絶縁体であるα−アルミナ製リ
ング3に接続されており、前記陰極キャップ2と陽極容
器4はリング3の上下面でシールされている。前記陰極
キャップ2にはナトリウム注入管1が設けられている。
In the figure, the outer circumferential surface of the battery in the IJ storage region 9 (which is the cathode active material) is made of a material (β or β//-alumina) that has ion conductivity selectively only for Na+, and the lower end is closed. A solid electrolyte tube 5 with an open upper end is provided. A region 12 (hereinafter referred to as an alternating pressure region) in which insulating regions and conductive regions exist alternately is provided on the outer peripheral surface of the solid electrolyte tube 5. This exchange pressure area 1
The outer peripheral surface of 2 is a garbon cloak impregnated with sulfur,
Alternatively, a porous conductive material 10 of graphite mat is provided, and an anode container 4 of gold RH is provided outside the porous conductive material 10. A metal current collector tube 6 is provided in the sodium storage region 9 to function as a current collector, and the upper part of this current collector tube 6 is connected to a metal cathode cap 2. . An anode camp 8 is provided in the lower part of the anode container 4, and a rare gas injection tube 8 is provided in this anode cap 8. An upper opening of the solid electrolyte 5 is connected to a ring 3 made of α-alumina, which is an insulator, and the cathode cap 2 and anode container 4 are sealed at the upper and lower surfaces of the ring 3. The cathode cap 2 is provided with a sodium injection tube 1 .

このす) IJウム注入管1はナトリウムを注入し、ま
た、注入後封じ切シを行なうものであり、前記希ガス注
入管8は陽極内を不活性な希ガスで満した後密封するた
めのものである。
The IJ injection tube 1 is used to inject sodium and seal off after injection, and the rare gas injection tube 8 is used to seal the anode after filling it with an inert rare gas. It is something.

本実施例における交圧領域12の一実施例を明示すると
第2図に示す様になる。第2図は第1図のA−A断面図
である。
An example of the exchange pressure area 12 in this embodiment is shown in FIG. 2. FIG. 2 is a sectional view taken along the line AA in FIG. 1.

図において、ガラス繊維セラミックスフェルト、アルミ
ナフェルト、あるいはジルコンフェルトからなる多孔質
の絶縁体22は縦方向に4分割されている。従って、初
期放電反応は多孔質導電体11が固体電解質管5に接し
た領域21で開始される。
In the figure, a porous insulator 22 made of glass fiber ceramic felt, alumina felt, or zircon felt is divided into four parts in the vertical direction. Therefore, the initial discharge reaction is initiated in the region 21 where the porous conductor 11 is in contact with the solid electrolyte tube 5.

この領域21で生じた多硫化ナトリウムが分割された多
孔質絶縁体22に拡散して、その後絶縁体22は全百が
導電性となシその後の放電反志が円滑に進行する。一方
、充電時には前記多孔質導電体11と固体電解質管5の
接する領域21に硫黄が析出し部分的に充電反応を阻害
するが、この領域210表面積を絶縁体22が固体電解
質管5に接する部分の表面積の1/10以下、好ましく
は1/100にまで少なくすることによって充電電反応
全体に及ぼす悪影響を無視しうる程にまで少さくできる
。特に、流電性能は、上記比が小さければ小さい程良好
なものとなる。
The sodium polysulfide generated in this region 21 diffuses into the divided porous insulator 22, and thereafter the insulator 22 becomes entirely conductive, and the subsequent discharge progresses smoothly. On the other hand, during charging, sulfur is precipitated in the area 21 where the porous conductor 11 and the solid electrolyte tube 5 are in contact, partially inhibiting the charging reaction, but the surface area of this area 210 is divided into the area where the insulator 22 is in contact with the solid electrolyte tube 5. By reducing the surface area to 1/10 or less, preferably 1/100, the negative effect on the overall charging reaction can be reduced to a negligible level. In particular, the smaller the above ratio is, the better the current performance becomes.

従って、多孔質絶縁体220分割数は、導電領域と絶縁
領域が表面積比で1/工0〜1/100になるようにす
ることが望ましい。
Therefore, it is desirable that the number of divisions of the porous insulator 220 is such that the surface area ratio of the conductive region to the insulating region is 1/0 to 1/100.

本実施例では多孔質絶縁体22を4分割としているが、
2分割、3分割、あるいは5分割以上にすることもでき
る。製作技術の許す範囲で分割数が多いほど、多孔質絶
縁体の長さが短くなり多硫化ナトリウムの拡散速度が速
くなる。従って、良好な放電性能を得ることができる。
In this embodiment, the porous insulator 22 is divided into four parts,
It can also be divided into two, three, or five or more parts. The greater the number of divisions within the range permitted by the manufacturing technology, the shorter the length of the porous insulator and the faster the diffusion rate of sodium polysulfide. Therefore, good discharge performance can be obtained.

上記多孔質絶縁体22は多孔質導電体11が直接固体電
解質管5に接触するのを避けるためのものであり、薄い
ほど陽極の内部抵抗を低下せしめることかできて好適で
ある。望ましい厚さは0.1曙以下である。
The porous insulator 22 is used to prevent the porous conductor 11 from coming into direct contact with the solid electrolyte tube 5, and the thinner the porous insulator 22, the more preferable it is because it can lower the internal resistance of the anode. A desirable thickness is 0.1 mm or less.

絶縁性領域と導電性領域が交互に存在する交圧領域12
の他の実施例を明示すると第3図のようになる。
AC pressure region 12 in which insulating regions and conductive regions exist alternately
Another embodiment is shown in FIG. 3.

第3図は第1図のNa/S電池の中央部B−B間の縦断
面図である。
FIG. 3 is a longitudinal cross-sectional view of the Na/S battery shown in FIG. 1, taken along the central portion B--B.

図において、多孔質絶縁体22は横方向に分割されリン
グ状に構成されておシ、部分的な領域31で多孔質導電
体11と固体電解質管5が接している。この領域31の
数が少ないほど、多孔質絶縁体220分割幅が小さいほ
ど、多孔質絶縁体22が薄いほど好適であること等は前
記第2図に示した実施例と同一である。また使用材質に
ついても同様である。
In the figure, the porous insulator 22 is laterally divided into ring shapes, and the porous conductor 11 and the solid electrolyte tube 5 are in contact with each other in a partial region 31. The smaller the number of regions 31, the smaller the division width of the porous insulator 220, and the thinner the porous insulator 22, the better, as in the embodiment shown in FIG. 2 above. The same applies to the materials used.

また、第2図に示した絶縁体12の縦分割と、第3図に
示した絶縁体12の横分割を組み合せて、絶縁体12を
Vンガ状にして用いることもできる。
Further, the insulator 12 can be formed into a V-ring shape by combining the vertical division of the insulator 12 shown in FIG. 2 and the horizontal division of the insulator 12 shown in FIG. 3.

この場合絶縁体12の大きさはより小さぐなるので、多
硫化ナトリウムの拡散が一層容烏となる。
In this case, the size of the insulator 12 becomes smaller, so that the diffusion of the sodium polysulfide becomes more efficient.

上記分割された絶縁体22を固体電解質管5表面に設け
ることは、通常のN a / 5電池の製造従い固体電
解質管表面に上記絶縁体を配置することによって行なう
ことができる。
The above-mentioned divided insulator 22 can be provided on the surface of the solid electrolyte tube 5 by arranging the above-mentioned insulator on the surface of the solid electrolyte tube in accordance with the manufacturing of a normal Na/5 battery.

上記絶縁体22の代シに、多孔質絶縁繊維に導電性の繊
維を混入したものを固体電解質管5に貼り付けて用いる
こともできる。
Instead of the insulator 22, porous insulating fibers mixed with conductive fibers may be attached to the solid electrolyte tube 5.

このとき導電性繊維の量はわずかでよく、全体の1/1
0以下、好適には1/100程度が望ましい。また導電
性繊維の材質は多孔質導電体11と同じゲラファルトで
も良いが、グラファイトにくちぺて若干抵抗率の大きい
カーボンフェルトの方がよシ好適である。
At this time, the amount of conductive fibers may be small, 1/1 of the total.
0 or less, preferably about 1/100. The conductive fibers may be made of gelafalt, which is the same material as the porous conductor 11, but carbon felt, which has a slightly higher resistivity than graphite, is more suitable.

導電性繊維の混入方法は絶縁繊維内に織込むこと繊維を
混合した後にフェルト、あるいはシート状に成形する等
の方法がある。
The conductive fibers can be mixed in by weaving them into insulating fibers, or by mixing the fibers and then forming them into a felt or sheet shape.

第4図は絶縁性領域と導電性領域が交互に存在する、交
圧領域12の他の実施例を示すものである。
FIG. 4 shows another embodiment of the alternating pressure region 12, in which insulating regions and conductive regions are alternately present.

本実施例では絶縁領域を上記の他の実施例のように、多
孔質絶縁体を用いて構成するのではなく、固体電解質管
の外周面の一部を囲繞する空隙部42(本実施例ではの
こぎシ歯状)でもって形成している。なお、本実施例で
の導電領域は空隙部6を形成する囲繞線が固体電解質管
5に接する領域41でおる。
In this embodiment, the insulating region is not constructed using a porous insulator as in the other embodiments described above, but instead is constructed using a cavity 42 (in this embodiment) surrounding a part of the outer peripheral surface of the solid electrolyte tube. It is formed with a sawtooth shape. Note that the conductive region in this embodiment is a region 41 where the surrounding line forming the cavity 6 is in contact with the solid electrolyte tube 5.

次に第2図に示し九交圧領域12を有するNa/S電池
と従来のNa/8電池の放電性能の比較の結果について
説明する。
Next, the results of a comparison of the discharge performance of the Na/S battery shown in FIG. 2 and having nine alternating pressure regions 12 and the conventional Na/8 battery will be explained.

第5図はその比較の結果の概略を示すグラフであシ、時
間の変化にともなう放電々圧の変化を示すものである。
FIG. 5 is a graph schematically showing the results of the comparison, and shows the change in discharge pressure with time.

図によれば、従来のN a / 8電池(図中のA)の
放電々圧は初期電圧値(Vzt”=0)から開路電圧値
(Vt >にまで徐々に増加していくのに対し、第2図
で図示した種類のNa/S電池(図中のB)の放電々圧
はv2からVlへ急速増加している。
According to the figure, the discharge voltage of a conventional Na/8 battery (A in the figure) gradually increases from the initial voltage value (Vzt''=0) to the open circuit voltage value (Vt > , the discharge voltage of the Na/S battery (B in the figure) of the type shown in FIG. 2 increases rapidly from v2 to Vl.

従って、初期放電性能の大幅な向上が得られていること
がわかる。
Therefore, it can be seen that the initial discharge performance was significantly improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、固体電解質管表面
に小さく分割された絶縁領域と導電領域とが交互に設け
られていることによシ、絶縁領域における多硫化ナトリ
ウムの拡散が迅速かつ円滑に行なわれる。従って、初期
放電性能が大幅に向上するという効果を有する。
As explained above, according to the present invention, the insulating regions and conductive regions divided into small parts are alternately provided on the surface of the solid electrolyte tube, so that sodium polysulfide can diffuse quickly and smoothly in the insulating regions. It will be held in Therefore, it has the effect of significantly improving initial discharge performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るN a / S電池の一実施例を
示す全体断面図、第2図ないし第4図は固体電解質管表
面に絶縁領域と導電領域が交互に設けられている状態を
示す錫トへ第5図は従来のNa/S電池と本発明に係る
Na/8電池の放電性能の比較を示すグラフである。 4・・・陽極容器、5・・・固体電解質管、9・・・す
) IJウム貯留槽、10・・・多孔質導電体、12・
・・絶縁体、21.31.41・・・導電領域、42・
・・空隙部。
FIG. 1 is an overall sectional view showing an embodiment of the Na/S battery according to the present invention, and FIGS. 2 to 4 show a state in which insulating regions and conductive regions are alternately provided on the surface of a solid electrolyte tube. FIG. 5 is a graph showing a comparison of the discharge performance of a conventional Na/S battery and an Na/8 battery according to the present invention. 4... Anode container, 5... Solid electrolyte tube, 9... IJium storage tank, 10... Porous conductor, 12...
...Insulator, 21.31.41...Conductive region, 42.
...Void area.

Claims (1)

【特許請求の範囲】[Claims] 1、陰極活性物質が内部に配置された固体電解質管と、
前記陰極活性物質と充放電反応を起す陽極活性物質が内
部に配置された導電体とを備えてなるナトリウム−硫黄
電池において、前記固体電解質管と前記導電体との間に
複数個の絶縁領域と導電領域が交互に設けられているこ
とを特徴とするナトリウム−硫黄電池。
1. A solid electrolyte tube in which a cathode active material is disposed;
In a sodium-sulfur battery comprising the cathode active material and a conductor disposed inside of which an anode active material that causes a charge/discharge reaction, a plurality of insulating regions are provided between the solid electrolyte tube and the conductor. A sodium-sulfur battery characterized in that conductive regions are provided alternately.
JP60097576A 1985-05-08 1985-05-08 Sodium-sulfur cell Pending JPS61256574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60097576A JPS61256574A (en) 1985-05-08 1985-05-08 Sodium-sulfur cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60097576A JPS61256574A (en) 1985-05-08 1985-05-08 Sodium-sulfur cell

Publications (1)

Publication Number Publication Date
JPS61256574A true JPS61256574A (en) 1986-11-14

Family

ID=14196064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60097576A Pending JPS61256574A (en) 1985-05-08 1985-05-08 Sodium-sulfur cell

Country Status (1)

Country Link
JP (1) JPS61256574A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478435A (en) * 1977-12-05 1979-06-22 Yuasa Battery Co Ltd Sodiummsulfer cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478435A (en) * 1977-12-05 1979-06-22 Yuasa Battery Co Ltd Sodiummsulfer cell

Similar Documents

Publication Publication Date Title
US4216273A (en) Electrochemical device with solid separator and solid electrolyte
US5472806A (en) Electrochemical cell
US3972727A (en) Rechargeable battery which combats shape change of the zinc anode
US2614138A (en) Sealable storage battery construction
US3117033A (en) Sealed alkaline storage battery with hydrogen absorbing electrode
JPH04351B2 (en)
US3765945A (en) Electric cells and batteries
KR101275812B1 (en) electrochemical storage cell
US4137375A (en) Button type electric cells
US5658694A (en) Simplified zinc negative electrode with multiple electrode assemblies
EP0213828A1 (en) Sodium-sulphur storage battery
JPS61256574A (en) Sodium-sulfur cell
US4230780A (en) Sodium-sulphur electric cell
JPH02165573A (en) Sodium-sulfur battery
JP2568622B2 (en) Sodium-sulfur battery
KR20120117412A (en) Electrochemical cell
JPH0351066B2 (en)
JP2612894B2 (en) Sodium-sulfur battery
JPS6226768A (en) Sodium-sulfur battery
JP2614262B2 (en) Sodium-sulfur battery
JP2667551B2 (en) Method for forming high resistance layer used in sodium-sulfur battery
JP2574516B2 (en) Method for manufacturing sodium-sulfur battery
JP2526285Y2 (en) Sodium-sulfur battery
JPH0552631B2 (en)
JPS60148071A (en) Sodium-sulfur battery