JPS60148071A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPS60148071A
JPS60148071A JP59003477A JP347784A JPS60148071A JP S60148071 A JPS60148071 A JP S60148071A JP 59003477 A JP59003477 A JP 59003477A JP 347784 A JP347784 A JP 347784A JP S60148071 A JPS60148071 A JP S60148071A
Authority
JP
Japan
Prior art keywords
battery
sulfur
anode
sodium
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59003477A
Other languages
Japanese (ja)
Inventor
Naohisa Watabiki
錦引 直久
Hiromi Tokoi
博見 床井
Isao Sumida
隅田 勲
Tadashi Goto
忠 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59003477A priority Critical patent/JPS60148071A/en
Publication of JPS60148071A publication Critical patent/JPS60148071A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To reduce internal resistance of a battery and increase voltage performance and capacity by making a cathode matrix thin and moving cathode active material into a unit cell container. CONSTITUTION:A cathode current collector 20 is installed in a cathode container 8, and a battery reaction zone 21 comprising a 2mm. thick cathode matrix is arranged in a gap between beta''-alumina 3 and the cathode current collector 20. The cathode container 8 is separated into a sulfur chamber 22 and a sodium polysulfide chamber 23 by the cathode current collector 20. In this battery, sodium polysulfide is produced in the battery reaction zone 21 and new sulfur is supplied from the sulfur chamber 22. Sulfur is supplied by gas pressure difference in each gas line installed in the sulfur chamber 22 and sodium polysulfide chamber 23. Thereby, internal resistance of the battery is reduced and voltage performance and capacity are increased.

Description

【発明の詳細な説明】 〔抛明の利用分野〕 本発明はナトリウム−硫黄電池を用いた電力貯蔵システ
ムに係り・特に大容量貯蔵システムに適した電圧特性が
良く充放電容量の大きなす) IJウムー硫黄電池に関
する。
[Detailed Description of the Invention] [Fields of Application of 抛明] The present invention relates to a power storage system using a sodium-sulfur battery (IJ) which has good voltage characteristics and a large charge/discharge capacity and is particularly suitable for a large capacity storage system. Regarding Umu sulfur batteries.

〔発明の背景〕[Background of the invention]

す) IJウムー硫黄電池には単電池方式とループ方式
の2つの方式がある。最初に単電池方式の電池で原理と
特徴全説明する。容量100Ahのナトリウム−硫黄電
池の具体的な構造例を第1図に示す@この電池は陰極活
物質1として溶融す) IJウム、陽極活物質2として
溶融硫黄と多硫化ナトリウムを使用し、電解質としては
ナトリウムイオンの電導性を有する固体電解質3を用い
たものである。この固体電解質は、ガラスまたはセラミ
ックスにより構成されているが、特にβ“−アルミナ(
Na20.6At20g)はナトリウムイオンの伝導性
が大きいので、現在開発中の本電池の大部分がこれを電
解質として使用しており第1図もβ“−アルミナを用い
た例である。また、β“−アルミナは電子伝導性を持た
ないため、陽極4と陰極5とを分離するセパレータとし
ての役目も合せて果している。多硫化ナトリウムには、
イオン伝導性はあるが、電子伝導性がなく、また硫黄も
電子伝導性がないため、電気化学反応に伴う電子の授受
を助ける目的で、陽極活物質は導電材、主にグラファイ
トフェルト9に含浸されている。作動温度は陽極活物質
の融点を考慮し、300″C以上が有効とされており3
50℃が一般に用いられる。
) There are two types of IJ Umu sulfur batteries: single cell type and loop type. First, we will explain the principle and characteristics of single-cell batteries. A specific structural example of a sodium-sulfur battery with a capacity of 100 Ah is shown in Figure 1 (@This battery uses molten sulfur as the cathode active material 1), molten sulfur and sodium polysulfide as the anode active material 2, and the electrolyte In this example, a solid electrolyte 3 having sodium ion conductivity is used. This solid electrolyte is composed of glass or ceramics, but especially β“-alumina (
Since Na20.6At20g) has high conductivity for sodium ions, most of the batteries currently under development use this as the electrolyte, and Figure 1 also shows an example using β''-alumina. - Since alumina does not have electron conductivity, it also serves as a separator that separates the anode 4 and cathode 5. Sodium polysulfide has
Although it has ionic conductivity, it has no electronic conductivity, and sulfur also has no electronic conductivity, so the anode active material is impregnated into a conductive material, mainly graphite felt 9, in order to help transfer electrons during electrochemical reactions. has been done. Considering the melting point of the anode active material, an operating temperature of 300"C or higher is considered effective.
50°C is commonly used.

図において6はα−アルミナリングであり、電気的な絶
縁を維持している。7はモリブデン等の耐腐食性金属板
、8はステンレス製の陽極容器である。
In the figure, 6 is an α-alumina ring, which maintains electrical insulation. 7 is a corrosion-resistant metal plate made of molybdenum or the like, and 8 is an anode container made of stainless steel.

充放電反応は、 電池全体としては 但し・Xは通例2〜5の範囲にとる。The charge/discharge reaction is As for the battery as a whole However, ・X is usually in the range of 2 to 5.

第1図の100Ah単電池の電圧特性を第2図に示す。FIG. 2 shows the voltage characteristics of the 100Ah cell shown in FIG. 1.

図の電圧特性10は、β〃−アルミナの表面電流密度1
00mA/Crr12の特性である。端子電圧は放電初
期においてはほぼ一定であるが、放電末期には急激に低
下する傾向にある。端子電圧の低下は、!池反応の進行
に伴い、反応生成物が放電初期のNa285とSとの混
合物からN a 2 S 4 lNa25gへと変化し
ていくためである。ちなみに放電初期のl’Jazsg
 + 8の状態では開放電圧は2、07 Vである。
The voltage characteristic 10 in the figure is the surface current density 1 of β〃-alumina.
This is a characteristic of 00mA/Crr12. The terminal voltage is almost constant at the beginning of the discharge, but tends to drop rapidly at the end of the discharge. Terminal voltage drop! This is because as the pond reaction progresses, the reaction product changes from a mixture of Na285 and S at the initial stage of discharge to 25 g of Na2S41Na. By the way, l'Jazsg at the beginning of the discharge.
In the +8 state, the open circuit voltage is 2,07 V.

本電池は電解質が固体であり、陽極活物質が溶融液状で
あるため、特性的に以下のような特長がある。
This battery has the following characteristics because the electrolyte is solid and the anode active material is molten liquid.

(1)充放電時の副反応がないので自己放電がなく・充
電された容量全部を放電することができる。
(1) Since there are no side reactions during charging and discharging, there is no self-discharge and the entire charged capacity can be discharged.

(2)理論エネルギー密度が高く、従来の鉛蓄電池では
30〜50Wh/KV(理論値180Wh/Kg)であ
るのに対し、その数倍の値(理論値780Wh/Kg)
が可能と考えられる。
(2) High theoretical energy density, which is several times higher than that of conventional lead-acid batteries (theoretical value 180Wh/Kg), which is 30 to 50Wh/KV (theoretical value 780Wh/Kg)
is considered possible.

(3)活物質として使用されるナトリウムと硫黄は電気
化学当量が極めて小さく、かつ資源的にも豊富で安価で
あるため、省資源、省エネルギーに役立つ。
(3) Sodium and sulfur used as active materials have extremely small electrochemical equivalents and are abundant and inexpensive resources, so they are useful for resource and energy conservation.

このようにナトリウム−硫黄マ、池は多くの特長を有し
ているため、将来の電力貯蔵システムとして有望視され
ている。
As described above, sodium-sulfur ponds have many features and are therefore considered promising as future power storage systems.

しかし、第1図に示したような気密容器内に電池活物質
を密封した単電池方式では、1 ff5の電池に蓄えら
れるエネルギー(電池容量)が制限されてしまう。そこ
で考え出きれたのがループ型ナトリウム−硫黄電池であ
る。
However, in a single cell system in which a battery active material is sealed in an airtight container as shown in FIG. 1, the energy (battery capacity) that can be stored in a 1 ff5 battery is limited. What they came up with was a loop-type sodium-sulfur battery.

ループ型ナトリウム−硫黄電池の具体的な構造例を第3
図に示す。ループ型ナトリウム−硫黄電池の基本原理及
び特性は・前記のナトリウム−硫黄電池と同様であるた
め、ここではその構造及び特徴を述べる。固体電解質管
3内にナトリウム1を入れて陰極とし、固体電解質管と
外側の陽極容器8との間に硫黄2を注入して陽極とした
。ナトリウム1はナトリウム貯蔵タンク11からナトリ
ウム不純物除去槽14を通って陰極容器16へと供給さ
れる。必要に応じて、ドレインライン13を経てナトリ
ウム貯蔵タンク11と循環できる。
A specific structural example of a loop type sodium-sulfur battery is shown in Part 3.
As shown in the figure. The basic principle and characteristics of the loop type sodium-sulfur battery are the same as those of the sodium-sulfur battery described above, so the structure and characteristics will be described here. Sodium 1 was put into the solid electrolyte tube 3 to serve as a cathode, and sulfur 2 was injected between the solid electrolyte tube and the outer anode container 8 to serve as an anode. Sodium 1 is supplied from sodium storage tank 11 to cathode container 16 through sodium impurity removal tank 14 . If necessary, it can be circulated to the sodium storage tank 11 via the drain line 13.

硫黄2も硫黄貯蔵タンクから硫黄不純物除去槽15を通
って陽極容器8へと供給でき、必要に応じて硫黄貯蔵タ
ンク12へと循環できる。
Sulfur 2 can also be supplied from the sulfur storage tank through the sulfur impurity removal tank 15 to the anode container 8, and can be circulated to the sulfur storage tank 12 as required.

それぞれ活物質の循環には、容器やタンクに配管された
ガス系の圧力を制御して実施する。17はアルゴンガス
ボンベ、18.19は流!制御パルプを示す◇ 以上、ループ型す) IJウムー硫黄電池では電池活物
質を電池反応の進行に応じて電池反応領域に供給できる
ので電池容量を増大できる。しかし・ループ型電池でも
、電池反応領域部の陽極マ) IJラックス厚さが単電
池と同一では、実施例で詳述するごとく電圧特性は改善
できない。なおループ型す) IJウムー硫黄電池では
、放電深度を60%と浅くして、すなわち電池反応で生
成する多硫化ナトリウム中Na2S4およびNa2Sg
のような低硫化物の生成を防止して、第2図に示した端
子電圧の低下を防止し一定電圧に維持することができる
。しかし、この場合は、陽極活物質量が単電池に比べ1
.4倍程多く必要となるので、ここでは低硫化物まで電
池反応に利用する場合を想定して、以下の説明をする。
The circulation of each active material is carried out by controlling the pressure of the gas system piped to the container or tank. 17 is an argon gas cylinder, 18.19 is a flow! In the IJ Umu sulfur battery, the battery capacity can be increased because the battery active material can be supplied to the battery reaction region according to the progress of the battery reaction. However, even in a loop type battery, if the thickness of the anode layer in the battery reaction area is the same as that of a single battery, the voltage characteristics cannot be improved as will be detailed in the examples. In the IJ Umu sulfur battery (loop type), the depth of discharge is as shallow as 60%, that is, Na2S4 and Na2Sg in the sodium polysulfide produced in the battery reaction.
By preventing the formation of low-sulfide substances such as those shown in FIG. 2, it is possible to prevent the terminal voltage from decreasing as shown in FIG. However, in this case, the amount of anode active material is 1
.. Since about 4 times as much is required, the following explanation will be given assuming that even low sulfides are used for battery reactions.

以上、従来の単電池方式では気密封入方式なので取扱い
が容易ではあるが、電池容量が小さく電力貯蔵用には1
0万本単位の電池が必要となる◎一方、ループ型電池は
単電池方式に比べ容量の増大は期待できるが、電圧特性
の改善はできないし、また運転・制御が複雑となり、装
置も複雑となるので保守・管理が困難となる。
As mentioned above, the conventional single battery system is easy to handle because it is hermetically sealed, but the battery capacity is small and it is not suitable for power storage.
◎ On the other hand, loop type batteries can be expected to increase capacity compared to single battery systems, but they cannot improve voltage characteristics, and operation and control are complicated, and the equipment is also complicated. This makes maintenance and management difficult.

これらの問題点を解決するため・電池の電圧特性が良く
・また電池単体当りの容量が大きく一1運転・操作性の
良いナトリウム−硫黄電池の開発が望まれる。
In order to solve these problems, it is desired to develop a sodium-sulfur battery that has good voltage characteristics, a large capacity per battery, and is easy to operate and operate.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点をなくし、電
池の内部抵抗を減少せしめて、良好な電圧特性をもった
大容量のす) IJウムー硫黄電池を提供することにあ
る。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, reduce the internal resistance of the battery, and provide a large capacity IJ Umu sulfur battery with good voltage characteristics.

〔発明の概要〕[Summary of the invention]

本発明はす) IJウムー硫黄電池の内部抵抗の多くが
陽極マトリックス部で占められていること・および陽極
マトリックスを薄くすると内部抵抗が減少することを実
験的に確認し、陽極マトリックスを薄くした場合には電
池容量が極端に減少するが、この容量減少を解消する手
段として陽極活物質を単電池容器内で移動させることを
特徴としたナトリウム−硫黄電池である。
The present invention has experimentally confirmed that most of the internal resistance of IJ Umu sulfur batteries is accounted for by the anode matrix portion, and that the internal resistance decreases when the anode matrix is made thinner, and when the anode matrix is made thinner. However, as a means to overcome this decrease in capacity, the sodium-sulfur battery is characterized by moving the positive electrode active material within the cell container.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第4図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

本発明例は第1図の100Ah電池とβ“−アルミナの
寸法を変えずに電池容量を200Ahにしたものである
。本発明の特徴の1つは第1図の単電池方式のナトリウ
ム−硫黄電池の陽極容器8に陽極集電極板20を取り付
け、β“−アルミナ3と、陽極電極板20とのギャップ
部に厚さ2111111の陽極マ) IJソックスらな
る電池反応領域21f:設けた点にある。第2の特徴は
陽極容器8は陽極集電管20によって硫黄室22と多硫
化ナトリウム室23とに分離されている点にある。本発
明電池では電池反応領域21で硫黄がβ“−アルミナを
通過してきたナトリウムイオンと反応して多硫化ナトリ
ウムが生成され、多硫化ナトリウムで反応領域が充満さ
れると新しい硫黄が硫黄室22から供給される。硫黄の
供給には硫黄室と多硫化ナトリウム室にそれぞれガス系
を設はガス圧の差を利用する。なお充電時に多硫化ナト
リウム34を硫黄室22にもどすために、隔壁27を設
けた0陰極側については第1図の100Ah従来型単電
池と構造上特に変化した点はないが・第4図では電池容
量’k 200 Ahと従来の単電池の2倍にしたため
ナトリウム量が2倍となり・陰極容器16が大きくなっ
た。
The example of the present invention has a battery capacity of 200 Ah without changing the dimensions of the β"-alumina compared to the 100 Ah battery shown in FIG. The anode collector plate 20 is attached to the anode container 8 of the battery, and the anode collector plate 21 with a thickness of 2111111 is placed in the gap between the β"-alumina 3 and the anode electrode plate 20. The battery reaction area 21f made of IJ socks is placed at the provided point. be. The second feature is that the anode container 8 is separated into a sulfur chamber 22 and a sodium polysulfide chamber 23 by an anode current collector tube 20. In the battery of the present invention, sulfur reacts with sodium ions passing through β"-alumina in the battery reaction region 21 to generate sodium polysulfide. When the reaction region is filled with sodium polysulfide, new sulfur is introduced from the sulfur chamber 22. To supply sulfur, gas systems are installed in the sulfur chamber and the sodium polysulfide chamber, and the difference in gas pressure is utilized.In addition, in order to return the sodium polysulfide 34 to the sulfur chamber 22 during charging, the partition wall 27 is installed. Regarding the 0 cathode side, there is no particular difference in structure from the 100Ah conventional cell shown in Figure 1.In Figure 4, the battery capacity is 200Ah, which is twice that of the conventional cell, so the amount of sodium has changed. This has doubled the size of the cathode container 16.

本発明′電池の電圧特性を第5図に示す。図中28が本
発明電池の電圧特性であり・比較の意味で第2図に示し
た従来型単電池の電圧特性10を並記した。なおβ“−
アルミナ単位表面積当りの電流fi度は1OOcrrI
A/crn2である。第5図から。
The voltage characteristics of the battery of the present invention are shown in FIG. In the figure, reference numeral 28 indicates the voltage characteristics of the battery of the present invention.For comparison, the voltage characteristics 10 of the conventional cell shown in FIG. 2 are also shown. Note that β“−
The current fi degree per unit surface area of alumina is 1OOcrrI
A/crn2. From Figure 5.

本発明では、端子電圧が高筐9v!圧特性が従来の単電
池に比べ改善された。これは本発明電池の内部抵抗が減
少したためにはか4らない。また電池容量も200Ah
と従来の単電池に比べ2倍にできた0ここで・本発明の
方法で電池容量を増大させ・かつ内部抵抗が減少工きた
事情について詳細に説明する。
In the present invention, the terminal voltage is high at 9V! The pressure characteristics have been improved compared to conventional single cells. This is attributable to the decreased internal resistance of the battery of the present invention. Also, the battery capacity is 200Ah.
This is twice as much as a conventional single battery.Here, we will explain in detail the circumstances in which the method of the present invention increased the battery capacity and reduced the internal resistance.

単電池方式で電池容量を増大させるには次の2つの方法
が考えられる。第1は固体電解質の容量を増大し1面積
増加にみあって活物質量も増加させる。第2は固体電解
質を変えることなく・活物質it増加する。しかし前者
は現状の固体電解質製造技術では、直径50=、長さ6
00M以上の固体電解質の製作は困難であシ、将来も固
体電解質の材料強度上の問題から一層の大型化を期待で
きない。
The following two methods can be considered to increase the battery capacity in a single cell system. First, the capacity of the solid electrolyte is increased, and the amount of active material is also increased in proportion to the increase in area. Second, the amount of active material is increased without changing the solid electrolyte. However, with the current solid electrolyte manufacturing technology, the former has a diameter of 50 and a length of 6.
It is difficult to produce a solid electrolyte with a size of 00M or more, and further enlargement cannot be expected in the future due to problems with the material strength of the solid electrolyte.

後者の方法では、固体電解質の表面積が変わらないので
・仮に第1図に示した従来の単電池で容量t2倍の20
0Ahにした場合を考えると第6図のような形状となる
。すなわち陽極側では陽極容器8の径が大きくなり1陽
極活物質とグラファイトフェルトで形成された陽極マト
リックスの厚みが100Ah電池の7mから12mmへ
と増大する@また陰極側はす) IJウム量が2倍とな
ったため陰極容器が大きくなり陰極集電管5が長くなる
In the latter method, since the surface area of the solid electrolyte does not change, suppose that the conventional cell shown in Figure 1 has a capacity of 20 times the capacity t.
If we consider the case of setting it to 0Ah, the shape will be as shown in FIG. 6. That is, on the anode side, the diameter of the anode container 8 becomes larger, and the thickness of the anode matrix formed of the anode active material and graphite felt increases from 7 m of a 100Ah battery to 12 mm. Since the size is doubled, the cathode container becomes larger and the cathode current collector tube 5 becomes longer.

第6図に示すような構造では電池容量は増大するが下記
のごとく内部抵抗が増加してしまう。
In the structure shown in FIG. 6, the battery capacity increases, but the internal resistance increases as described below.

ff1r! 1図に示した100Ah電池の内部抵抗の
内訳けをみると、β“−アルミナ部の抵抗々工単位面積
轟り1.2Ω、陽極マトリックス部が2,8Ωである。
ff1r! Looking at the breakdown of the internal resistance of the 100Ah battery shown in Figure 1, the resistance per unit area of the β''-alumina portion is 1.2Ω, and the anode matrix portion is 2.8Ω.

他の電池容器や電極の引き出し部は、上記2者に比べ無
視できる。従ってナトリウム−硫黄電池の抵抗、はβ〃
−アルミナ部分で30%、陽極マトリックス部の抵抗が
残り70%といえる。、なお陽極マトリックス部が大部
分の抵抗を占めている理由は・β“−アルミナと陽極マ
トリックスとの厚みの相異にある。β“−アルミナの抵
抗率は電池使用温度350 ”cにおいて60・αであ
り、硫黄と多硫化ナトリウムおよびグラファイトフェル
トからなる陽【柩マトリックスの抵抗率は3〜4ΩQn
である。陽極マトリックスの厚さが71HJn−β“−
アルミナの厚さが約2mmである。従って陽極マトリッ
クスは抵抗率が小さいにもがかわらず・電池内部抵抗の
70%’ii占める結果となる。
Other battery containers and electrode extensions can be ignored compared to the above two cases. Therefore, the resistance of a sodium-sulfur battery is β
- It can be said that the resistance of the alumina part is 30%, and the remaining 70% is the resistance of the anode matrix part. The reason why the anode matrix portion accounts for most of the resistance is the difference in thickness between β"-alumina and the anode matrix. The resistivity of β"-alumina is 60 at the battery operating temperature of 350"C. α, and the resistivity of the positive coffin matrix made of sulfur, sodium polysulfide, and graphite felt is 3 to 4ΩQn
It is. The thickness of the anode matrix is 71HJn-β“-
The thickness of the alumina is approximately 2 mm. Therefore, although the anode matrix has a low resistivity, it accounts for 70%'ii of the battery's internal resistance.

従って第6図に示した構造で、電池容量を2倍にした場
合には陽極マトリックス厚みが7間から12職へと1.
7倍増加し、陽極マトリックス部の抵抗が増加し、を池
全体の内部抵抗がほぼ1.5倍に増加する。従って第6
図で示した′こ池の電圧特性を第5図に追記すれば29
とかり、極端な端子電圧の低下がみられる。
Therefore, in the structure shown in FIG. 6, when the battery capacity is doubled, the anode matrix thickness increases from 7 to 12 layers to 1.
The resistance of the anode matrix increases by 7 times, and the internal resistance of the entire pond increases by approximately 1.5 times. Therefore, the sixth
If the voltage characteristics of the pond shown in the figure are added to Figure 5, it becomes 29.
An extreme drop in terminal voltage can be seen.

これにひきかえ、本発明の第4図では陽極マトリックス
の厚みが2 Termとなるので、単位面積当りの陽極
マトリックスの抵抗は0.8Ωとなり、電池全体の内部
抵抗は200Ah電池であるにもかかわらず単位面積当
り2Ωと第1図の100Ahの単電池の内部抵抗の1/
2となる。従って電圧特性は先に第5図の28に示した
ごとく改善される。
In contrast, in Figure 4 of the present invention, the thickness of the anode matrix is 2 Term, so the resistance of the anode matrix per unit area is 0.8Ω, and the internal resistance of the entire battery is 200Ah. 2Ω per unit area and 1/of the internal resistance of the 100Ah cell in Figure 1.
It becomes 2. Therefore, the voltage characteristics are improved as previously shown at 28 in FIG.

なお本実施例で陽極マトリックスの厚さを2論に選択し
たのは、現状のβ“−アルミナの抵抗率を考えると・陽
極マトリックスが2〜31mでほぼβ“−アルミナの抵
抗と同程度の抵抗値となる。
The reason for choosing the thickness of the anode matrix in this example is based on the current resistivity of β''-alumina. It becomes the resistance value.

これ以上陽極マトリックスの厚みを薄くしてもその効果
は小さい。しかし将来さらにβ“−アルミナの抵抗率を
低下できた際には、陽極マトリックスをさらに薄くする
のが望ましい。また従来の単電池の陽極マトリックスの
厚みは、放電時間と固体電解質表面当りの電流密度の選
択から決まる。
Even if the thickness of the anode matrix is made thinner than this, the effect is small. However, in the future, if the resistivity of β"-alumina can be further reduced, it will be desirable to make the anode matrix even thinner. Furthermore, the thickness of the anode matrix in conventional single cells depends on the discharge time and the current density per solid electrolyte surface. It is determined by the selection of

例えば、第1図の例では放電時間8時間、電流密度10
0 nl A / tyn”の場合陽極マトリックスの
厚さが7mmとなる。
For example, in the example shown in Figure 1, the discharge time is 8 hours and the current density is 10
0 nl A/tyn'', the thickness of the anode matrix is 7 mm.

以上により本発明の方法により電池の容量を増大させ、
かつ内部抵抗を減少でき電圧特性が改善できることを明
らかにした。
As described above, the capacity of the battery is increased by the method of the present invention,
It was also revealed that internal resistance could be reduced and voltage characteristics could be improved.

さらに本発明電池で取り出せる電力を第7図に示した。Furthermore, the electric power that can be extracted by the battery of the present invention is shown in FIG.

図から本発明電池では内部抵抗が従来単電池に比べ1/
2になるので・同一電池電流に対し電力損失が172と
なり、゛電池のエネルギー効率が改善される。例えばβ
“−アルミナ表面電流密度100 m A/crn” 
(従来単電池での放電仕様)では′電力は・第1図の従
来単電池の1.2倍の出力電力かえられる。また電池の
最大電力を比較すると第7図の電力カーブのピーク値か
ら1本発明電池が従来の単電池の2倍の出力電力が得ら
れることがわかる。このように瞬時の出力を大きくとれ
ることは・電力貯蔵用のす) IJウムー硫黄電池ばか
りでなく、瞬時出力を要求される自動車用などにも有効
である。
From the figure, the internal resistance of the battery of the present invention is 1/1 compared to the conventional single battery.
2, the power loss is 172 for the same battery current, and the energy efficiency of the battery is improved. For example β
“-Alumina surface current density 100 mA/crn”
(Discharging specifications using a conventional single cell) The output power can be changed to 1.2 times that of the conventional single cell shown in Fig. 1. Furthermore, when comparing the maximum power of the batteries, it can be seen from the peak value of the power curve in FIG. 7 that one battery of the present invention can obtain twice the output power of a conventional single battery. The ability to obtain a large instantaneous output is effective not only for IJ sulfur batteries (for power storage) but also for automobiles, etc., which require instantaneous output.

第4図に示した本発明の電池では、陽極マ) IJック
ス厚さが2tcnと薄くなるため・高粘度の硫黄および
多硫化す) IJウムの流動性が懸念されたが。
In the battery of the present invention shown in FIG. 4, there were concerns about the fluidity of the anode (IJ) because the thickness of the anode was as thin as 2tcn, and the IJ (highly viscous sulfur and polysulfide).

第8図に示したように、その心配はなかった。本発明例
の200Ah電池では0.25 (77+”/mjnの
流量が必要であるが、粘性の大きい硫黄でも0.03K
SI / cm ”以下の圧力損失で流動させることが
可能であり、非常に低圧力で運転できる。なお硫黄の粘
度は350 ’cで500CP、多硫化ナトリウムは2
0CPである。
As shown in Figure 8, there was no need to worry. The 200Ah battery of the present invention requires a flow rate of 0.25 (77+"/mjn, but even with highly viscous sulfur, the flow rate is 0.03K
It is possible to flow with a pressure drop of less than SI/cm" and can be operated at very low pressure.The viscosity of sulfur is 500CP at 350'c, and the viscosity of sodium polysulfide is 2
It is 0CP.

以上本発明のナトリウム−硫黄電池を詳細に説明したが
・陽極容器内に陽極集電管を挿入することにより、陽極
マトリックス部の厚みを薄くし、内部抵抗を減少させて
電圧特性を改善できること。
The sodium-sulfur battery of the present invention has been described in detail above. By inserting an anode current collector tube into the anode container, the thickness of the anode matrix portion can be reduced, internal resistance can be reduced, and voltage characteristics can be improved.

および・電池容量を大きくしても、内部抵抗が増加しな
いことが明らかとなった◇ 第9図は本発明の他の実施例を示す。第6図は第4図の
実施例の上下関係を逆転して、陽極容器8内に設けた陽
極集電管の構造を簡単にすると共に、多硫化す) IJ
ウム室23の隔壁27を除去し、α−アルミナと金属と
の接合箇所を少なくして製作コストの低減を計ったもの
である。また陰極側については、ナ) IJウム1の液
面が低下した場合にメツシュ32でナトリウムを吸い上
げて供給しようとしたものである。電池の運転操作は第
4図の実施例と変わらない。
and - It has become clear that even if the battery capacity is increased, the internal resistance does not increase. ◇ FIG. 9 shows another embodiment of the present invention. In FIG. 6, the vertical relationship of the embodiment shown in FIG. 4 is reversed to simplify the structure of the anode current collector tube provided in the anode container 8 and to make it polysulfurized.)
The partition wall 27 of the aluminum chamber 23 is removed and the number of joints between α-alumina and metal is reduced to reduce manufacturing costs. Regarding the cathode side, n) When the liquid level of the IJium 1 drops, an attempt is made to suck up and supply sodium with the mesh 32. The operation of the battery is the same as in the embodiment shown in FIG.

第10図は本発明の他の実施例を示す。図ではβ“−ア
ルミナ内に陽極活物質を入れたもので5第4図や第9図
の本発明例とは、活物質の配置が逆転している。これま
で、図1に示すような単電池方式ではβ“−アルミナ内
に陽極活物質を入れる方式は次の2つの理由からほとん
ど採用されていない。第1に電池容量が大きくとれない
、第2にβ“−アルミナが電池温度の上昇時に破損する
ことが多いためである。しかし、本発明の方式によれば
・β“−アルミナ内部に陽極物質を入れても容量低下を
招くことはないし、β“−アルミナの破損対策には・電
池温度を下げる場合に、ガス圧でβ“−アルミナ内にあ
る硫黄を硫黄室22に流し出して貯蔵すれば、電池温度
上昇時のトラブルは解消される。
FIG. 10 shows another embodiment of the invention. In the figure, the anode active material is placed in β''-alumina, and the arrangement of the active material is reversed from the examples of the present invention shown in Figures 4 and 9. In the single cell system, the method of placing the positive electrode active material in β''-alumina is rarely adopted for the following two reasons. Firstly, the battery capacity cannot be increased, and secondly, β"-alumina is often damaged when the battery temperature rises. However, according to the method of the present invention, the anode material is inside the β"-alumina. Even if the sulfur in the β"-alumina is added, it will not cause a decrease in capacity. To prevent damage to the β"-alumina, when lowering the battery temperature, the sulfur in the β"-alumina can be flushed out into the sulfur chamber 22 using gas pressure and stored. For example, troubles caused when the battery temperature rises are eliminated.

第10図では本発明電池で・電力貯蔵用の集合電池を形
成することを考え、電池容器の周囲に不要な突起物や配
管・電極などが存在するのは好ましくないので、陽極側
活物質を流動させるためのガス系配管をすべて電池上端
部から・また電極端子は電池の上下端部から取り出す構
造とした。
In Figure 10, considering that the battery of the present invention is used to form an assembled battery for power storage, it is undesirable to have unnecessary protrusions, piping, electrodes, etc. around the battery container, so the active material on the anode side is All the gas piping for flowing the battery was constructed from the upper end of the battery, and the electrode terminals were taken out from the upper and lower ends of the battery.

第11図は本発明のす) IJウムーー硫黄電池を用い
て・集合電池を構成した図である。本集合電池の特徴は
、本発明の電池容器の外形を六角柱として六角稠密構造
に配列して空間利用率を高めたことである。電極端子3
3は電池上下端に集中した。
FIG. 11 is a diagram showing an assembled battery constructed using IJ Umu sulfur batteries according to the present invention. The feature of this assembled battery is that the outer shape of the battery container of the present invention is a hexagonal column, and the cells are arranged in a hexagonal close-packed structure to improve space utilization. Electrode terminal 3
3 was concentrated at the top and bottom ends of the battery.

々お第11図ではそれぞれの電池間をリード線で結線し
たが、電池間の接触を密にすれば、それぞれの陰極容器
16や陽極容器8自体がリード線の役目を果し、必ずし
も結線は必要ではない。この際・陽極側と陰極側とを電
気絶縁しているα−アルミナ6は、集合電池の両極の絶
縁にも有効に機能している。
In Figure 11, each battery is connected with a lead wire, but if the batteries are in close contact, each cathode container 16 and anode container 8 themselves will serve as a lead wire, so the connection is not necessarily necessary. Not necessary. At this time, α-alumina 6, which electrically insulates the anode side and the cathode side, also functions effectively to insulate both electrodes of the assembled battery.

〔発明の効果〕〔Effect of the invention〕

本発明によれば・電池容量を増大しても電池の内部抵抗
を減少できるので、電圧特性の追好な大容量のす) I
Jウムー硫黄電池がえられる。
According to the present invention, even if the battery capacity is increased, the internal resistance of the battery can be reduced, resulting in a large capacity with good voltage characteristics.
You can get a Jumu sulfur battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の100Ah単電池型す) IJウムー硫
黄電池の断面図・第2図は第1図の電池電圧特性図、第
3図は従来のループ屋ナトリウムー硫黄電池の断面図、
第4図は本発明のナチリウムー硫黄電池の断面図、第5
図は本発明電池の電圧特性と従来電池との比較線図、纂
6図は従来の単電池のβ“−アルミナを用いて電池容量
を2倍にした従来型単電池の例を示す断面図、第7図は
本発明電池と従来型電池との電力特性比較図、第8図は
陽極活物質の流動特性のグラフ・第9図、第10図は本
発明電池の変形例の断面図、第11図は本発明電池を集
合電池に適用した例を示す斜視図である。 1・・・陰極活物質、2・・・陽極活物質、3・・・固
体電解質、4・・・陽極・5・・・陰極・7・・・耐食
性金属板・8陽極容器、9・・・導電材・11・・・す
) IJウム貯蔵タンク212・・・硫黄貯蔵タンク、
13・・・ドレインライン、16・・・陰極容器、20
・・・陽極集電管、22・・・硫黄室、23・・・多硫
化す) IJウム室、27・・・隔壁、33・・・電極
端子。 先 1 閃 も2の 容 量C7=) =F]30 第4図 第50 容量 (幻 第 60 箔q口 電5t!!、電流 毛80 圧力k ムP(勺/C祇2) 佑9邑 第10[]
Figure 1 is a cross-sectional view of a conventional 100Ah single cell type IJ Umu sulfur battery. Figure 2 is a battery voltage characteristic diagram of Figure 1. Figure 3 is a cross-sectional view of a conventional Loopya sodium-sulfur battery.
FIG. 4 is a cross-sectional view of the sodium-sulfur battery of the present invention, and FIG.
The figure is a comparison diagram of the voltage characteristics of the battery of the present invention and a conventional battery. Figure 6 is a cross-sectional view showing an example of a conventional unit cell with double the battery capacity using β"-alumina of the conventional unit cell. , FIG. 7 is a comparison diagram of the power characteristics of the battery of the present invention and a conventional battery, FIG. 8 is a graph of the flow characteristics of the anode active material, FIGS. 9 and 10 are cross-sectional views of modified examples of the battery of the present invention, Fig. 11 is a perspective view showing an example in which the battery of the present invention is applied to an assembled battery. 1... Cathode active material, 2... Anode active material, 3... Solid electrolyte, 4... Anode. 5... Cathode, 7... Corrosion-resistant metal plate, 8 Anode container, 9... Conductive material, 11...) IJum storage tank 212... Sulfur storage tank,
13... Drain line, 16... Cathode container, 20
...Anode current collector tube, 22...Sulfur chamber, 23...Polysulfide) IJ chamber, 27...Partition wall, 33...Electrode terminal. Destination 1 Flash 2 Capacity C7=) =F] 30 Fig. 4 50 Capacity (Phantom No. 60 Foil q mouthpiece 5t!!, Current hair 80 Pressure k Mu P (Tsu/C G2) Yu 9 10th []

Claims (1)

【特許請求の範囲】[Claims] 1、 ナトリウムイオンが通過可能な固体電解質を境に
して・す) IJウムを必須成分とする陰極活物質と、
硫黄または多硫化ナトリウムを必須成分とする陽極活物
質が接するす) IJウムー硫黄電池において・上記陽
極活物質の容器内に固体電解質の表面に対面した陽極集
電管を設けたことを特徴とするナトリウム−硫黄電池@
1. With a solid electrolyte through which sodium ions can pass as a boundary, a cathode active material containing IJium as an essential component,
In an IJ Umu sulfur battery (in which an anode active material containing sulfur or sodium polysulfide as an essential component is in contact), an anode current collector tube facing the surface of the solid electrolyte is provided in the container of the anode active material. Sodium-sulfur battery @
JP59003477A 1984-01-13 1984-01-13 Sodium-sulfur battery Pending JPS60148071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59003477A JPS60148071A (en) 1984-01-13 1984-01-13 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59003477A JPS60148071A (en) 1984-01-13 1984-01-13 Sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JPS60148071A true JPS60148071A (en) 1985-08-05

Family

ID=11558412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59003477A Pending JPS60148071A (en) 1984-01-13 1984-01-13 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPS60148071A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021511628A (en) * 2018-01-16 2021-05-06 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se A method for producing a molded product made of a porous material impregnated with polysulfide.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021511628A (en) * 2018-01-16 2021-05-06 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se A method for producing a molded product made of a porous material impregnated with polysulfide.

Similar Documents

Publication Publication Date Title
US3679480A (en) Electrical cell assembly
US3864167A (en) Non-aqueous battery using chalcogenide electrode
US3887396A (en) Modular electrochemical cell
US3476602A (en) Battery cell
US3160531A (en) Galvanic cell electrode
US5156935A (en) Lead-acid battery
US4003753A (en) Electrode structure for electrical energy storage device
KR810000921B1 (en) High temperature battery
US4861690A (en) Lightweight battery construction
JPH01235167A (en) Rechargeable cell
US4070527A (en) Efficient sodium/sulfur battery
US5728331A (en) Method of preparing a battery separator
US3060256A (en) Low temperature dry cell
US3672995A (en) Solid electrolyte for electrical cells
JPS60148071A (en) Sodium-sulfur battery
US20200006813A1 (en) High temperature batteries
JPH0665071B2 (en) Fluid sodium-sulfur battery
HU196533B (en) Lead accumulator, preferably for long-lasting uniform employment
US4945013A (en) Capillary mixing of immiscible liquids in a battery cell
JP2667551B2 (en) Method for forming high resistance layer used in sodium-sulfur battery
JPH0414758A (en) Lead-acid accumulator
JPH0415989B2 (en)
JPS61161672A (en) Sodium-sulfur battery
JPH0516149B2 (en)
JPH0351066B2 (en)