JPS61256270A - Method and circuit for detecting position of robot - Google Patents

Method and circuit for detecting position of robot

Info

Publication number
JPS61256270A
JPS61256270A JP9777985A JP9777985A JPS61256270A JP S61256270 A JPS61256270 A JP S61256270A JP 9777985 A JP9777985 A JP 9777985A JP 9777985 A JP9777985 A JP 9777985A JP S61256270 A JPS61256270 A JP S61256270A
Authority
JP
Japan
Prior art keywords
robot
piping
ultrasonic
circuit
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9777985A
Other languages
Japanese (ja)
Inventor
Sakae Sugiyama
栄 杉山
Makoto Senoo
誠 妹尾
Chikara Sato
主税 佐藤
Kenji Tsuchida
健二 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9777985A priority Critical patent/JPS61256270A/en
Publication of JPS61256270A publication Critical patent/JPS61256270A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/14Systems for determining distance or velocity not using reflection or reradiation using ultrasonic, sonic, or infrasonic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To accurately detect the running position of a robot running along the inner or outer surface of piping, by transmitting an ultrasonic wave from the ultrasonic transmitter mounted to a robot through piping to be used as a medium and measuring the attenuation quantity of the ultrasonic wave at a reference point. CONSTITUTION:An ultrasonic wave containing several kinds of frequencies is transmitted from the ultrasonic transmitter 3 mounted to the robot 2 running along the inner surface (or outer surface) of piping 1 to be transmitted through the piping 1 being a medium and received by the ultrasonic receiver 14 mounted to the running start point of the robot 2 of the piping 1. The attenuation ratio of the ultrasonic wave is constant at certain frequency but changes if the piping has an elbow or the components of earth and soil on the way of the piping change. Hereupon, the absolute position of the robot 2 is calculated according to a specific formula by a calculation circuit 5 having an amplifying circuit, a frequency analysis circuit, a signal selection circuit and an operation circuit. By this method, the absolute position of the robot is calculated if the circumfer ential condition of the piping is different and, because the piping is used as the medium of an ultrasonic wave, the use as a wireless robot is enabled.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ロボットの位置検出方法に係シ、特にロボッ
トが配管の外面または内面を走行するときに、その位置
を検出するのに好適な方法とその回路に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for detecting the position of a robot, and in particular, a method suitable for detecting the position of a robot when it travels on the outer or inner surface of piping. and its circuit.

〔発明の背景〕[Background of the invention]

配管の内面または外面上を走行する装置またはロボット
の位置を検出するには(1)ロボットの車輪の回転数を
積算する、<2)tffポットに付けたケーブルの長さ
を計測する、などの方法がよく使われている。これらの
方法は簡単に測定できるという長所がある。しかし、ロ
ボットの車輪の回転数を積算する方法は、車輪が滑って
ロボットが走行していないときや、ロボットが直進しな
いときなどには、ロボットの位置を正確に測定してい7
1い。ケーブルの長さを計測する方法も、ケーブルのゆ
るみが生じるために、誤差が必ずしも小さくない。
To detect the position of a device or robot running on the inner or outer surface of piping, the following steps are required: (1) Integrating the number of rotations of the robot's wheels, <2) Measuring the length of the cable attached to the TFF pot, etc. method is often used. These methods have the advantage of being easy to measure. However, the method of accumulating the number of rotations of the robot's wheels does not accurately measure the robot's position when the wheels are slipping and the robot is not moving, or when the robot is not moving straight.
1. The method of measuring cable length also does not necessarily have small errors because the cable may become loose.

このような従来の方法では、ロボットの走行距離が長く
なるほど、誤差が累積されるという問題があった。なお
、超音波を用いた移動体の位置検出装置としては、特開
昭59−83076号公報に記載された技術などがある
Such conventional methods have a problem in that the longer the distance traveled by the robot, the more errors accumulate. Note that as a position detecting device for a moving object using ultrasonic waves, there is a technique described in Japanese Patent Application Laid-open No. 83076/1983.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、配管の内面や外面を走行するロボット
の走行位@を正確に検出する方法を提供することにある
。本発明の他の目的は、位置検出用の伝送ケーブルを使
用しなくても済む無線伝送全可能ならしめる位置検出方
法を提供することにある。
An object of the present invention is to provide a method for accurately detecting the running position of a robot running on the inner or outer surface of a pipe. Another object of the present invention is to provide a position detection method that allows wireless transmission without using a transmission cable for position detection.

〔発明の概要〕[Summary of the invention]

本発明は、ロボットの位置を正確に検出し、なおかつ位
置信号全無線で伝送するために、超音波を用いる。本発
明の要点は、ロボットに超音波発信子を搭載し、同発信
子から配管全媒体にして、超音波を伝送し、基準点(ロ
ボットの走行開始点)に訃いて、超音波の減衰量を測定
することによってロボットの走行距離すなわち位置全測
定する。
The present invention uses ultrasonic waves to accurately detect the position of a robot and to transmit the position signal completely wirelessly. The key point of the present invention is to mount an ultrasonic transmitter on the robot, transmit ultrasonic waves from the transmitter to the entire piping medium, and then return to the reference point (the starting point of the robot) to determine the amount of attenuation of the ultrasonic waves. By measuring the distance traveled by the robot, the total position is measured.

この場合、超音波の周波数を多数用いることにより、位
置の測定種度を上げるようにする。
In this case, by using a large number of ultrasonic frequencies, the accuracy of position measurement is increased.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図乃至第4図により説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図は、鋼材中を超音波が伝播するときの距離Xに対
する振幅Aの変化を示す。図中、パラメータである周波
数fが高い穆、減衰が甚しいことを表わしている。この
現象は、既によく知られている。本発明は、この現象全
応用してロボットの位置を正確に検出するものである。
FIG. 1 shows a change in amplitude A with respect to distance X when an ultrasonic wave propagates through a steel material. In the figure, when the frequency f, which is a parameter, is high, it indicates that the attenuation is severe. This phenomenon is already well known. The present invention applies all of these phenomena to accurately detect the position of a robot.

噴出方法を説明するための構成の一実施例を第2図に示
す。同図中、配管1の内部をロボット2が走行するとき
、超音波発信子3から、数種類の周波数を含む超音波を
発信し、配管1’&介して受信子4に)いて超音ン反を
受信し、算定回路5においてロボットの位1直Xを算定
する。
FIG. 2 shows an example of a configuration for explaining the ejection method. In the figure, when the robot 2 travels inside the pipe 1, an ultrasonic transmitter 3 emits ultrasonic waves containing several types of frequencies, and the ultrasonic waves are transmitted to the receiver 4 via the pipe 1' and then reflected. is received, and the calculation circuit 5 calculates the robot's digit 1X.

位(ixの算定方法について数式を用いて以下、説明す
る。第1図の関係から、超音波の振幅Aは、(1)式の
如く表わされる。
The method for calculating the ix (ix) will be explained below using a mathematical formula. From the relationship shown in FIG. 1, the amplitude A of the ultrasonic wave is expressed as in formula (1).

At(X)=A+*−α(fI)・X   ・・・・・
・・・・(1)ここで、 A I(x) :距離Xにおける超音波の振幅A1゜:
発信波の振幅 α :超音波の減衰率 fl :超音波の周波数 X :距離 添字i :周波数成分の数 発信波の振幅A1.(i−1・・・・・・m)には、(
2)式の関係があり、超音波の発信子3を決めれば、定
数に、は予め分るものである。つまり、発信子の周波数
特性で決定される。
At(X)=A+*-α(fI)・X...
...(1) Here, A I(x): Ultrasonic amplitude A1° at distance X:
Amplitude α of the emitted wave: Attenuation rate fl of the ultrasonic wave: Frequency X of the ultrasonic wave: Distance subscript i: Number of frequency components Amplitude of the emitted wave A1. For (i-1...m), (
2) There is a relationship as shown in the formula, and if the ultrasonic transmitter 3 is determined, the constant is known in advance. In other words, it is determined by the frequency characteristics of the oscillator.

Ao + = k IAo +−−−(2)ここで、 An+:周波数f!の超音波の発信波の振幅(1)式に
おける減衰率α(fI )は、配管の場合、一般的に(
3)式のような多項式で表すことができる。
Ao + = k IAo +---(2) where, An+: frequency f! In the case of piping, the attenuation factor α (fI) in the amplitude equation (1) of the transmitted ultrasonic wave is generally (
3) It can be expressed as a polynomial such as Eq.

α(fI)=Σ CJf+      ・・・・・・・
・・(8)mO ここで、 CJ :係数 係数CjIl′!、超音波の伝播中の減衰量を決定する
値であり、配管の材質、配管の周囲条件、例えば土砂と
の接触状況等によって異なる。従って、未知数と考えた
方がよい。
α(fI)=Σ CJf+ ・・・・・・・・・
...(8)mO Here, CJ: coefficient coefficient CjIl'! , is a value that determines the amount of attenuation during propagation of ultrasonic waves, and varies depending on the material of the pipe, the surrounding conditions of the pipe, for example, the state of contact with earth and sand, etc. Therefore, it is better to consider it as an unknown quantity.

(1)〜(3)式から、ロボットの位置Xを求める。こ
のとき、未知数はX、 CJ 、 AOIの合計(、T
+3)個になるので、この数の連立式が必要となる。つ
まり、周波数成分の数mを(J+3 >とすればよい。
The position X of the robot is determined from equations (1) to (3). At this time, the unknown quantity is the sum of X, CJ, and AOI (, T
+3), so this number of simultaneous equations is required. In other words, the number m of frequency components may be (J+3>).

通常、J=1〜2であれば減衰率αを近似できるので、
周波数成分の数mは4〜5であれば十分である。
Normally, if J = 1 to 2, the attenuation rate α can be approximated, so
It is sufficient that the number m of frequency components is 4 to 5.

(1)式から距離Xを算定する場合、成る一定距離進ん
だところを新たな基準点としてもよい。これを数式で表
わせば、(4)式になる。
When calculating the distance X from equation (1), a point after a certain distance may be used as a new reference point. If this is expressed numerically, it becomes equation (4).

ΔA+(Δx)=ΔAl0−α(f−Δx  ・−・(
4)ここで、 ΔA I=A I(x+Δx ) −A I <X)Δ
Ago”lA+o (X+Δx)−Ato(X)ΔX 
m (X+Δx) −x (4)式で示した変化分ΔA1を用いる利点は、減衰率
αCf、)が配管の周囲の状況によって急激に変化する
ような場合でも測定誤差を小さくできることである。こ
のことを詳しく以下に説明する。
ΔA+(Δx)=ΔAl0−α(f−Δx ・−・(
4) Here, ΔAI=AI(x+Δx)−AI<X)Δ
Ago”lA+o (X+Δx)−Ato(X)ΔX
m (X+Δx) −x The advantage of using the variation ΔA1 shown in equation (4) is that the measurement error can be reduced even when the attenuation rate αCf,) changes rapidly depending on the surrounding conditions of the pipe. This will be explained in detail below.

減衰率αは、成る周波数f、においては第1図に示す如
く一定である。しかし、配管が直配管でないエルボであ
ったシ、配管の途中での土砂の成分が急変したときには
、αの値そのものも変る。
The attenuation factor α is constant at a frequency f, as shown in FIG. However, if the piping is not a straight pipe but an elbow, and the composition of earth and sand changes suddenly in the middle of the piping, the value of α itself changes.

すなわち、減衰率αの距離依存性がある。従って、ロボ
ットが成る一定の距離を進む度に(ΔXの間隔毎に)、
減衰率α及び距1ffI X を求めればよい。
That is, there is distance dependence of the attenuation rate α. Therefore, each time the robot travels a certain distance (every ΔX interval),
What is necessary is to find the attenuation rate α and the distance 1ffI X .

減衰率αは鋼管において約1dB/mゆえに、数1.0
 d Bの増幅器は簡単に使用できることから、数10
mの距離まで測定が可能である。増幅器の精度は0.1
 d B程度に容易にできるので、距@Xの算出精度は
実用的な咳である数10口以内に抑えられる。超音波の
波形の例を第3図に示す。これは波形が必ずしも単調で
はない例であるが、本発明は感幅を基本としているので
、同図中の最大値Aを取込めばよい。
The attenuation factor α is approximately 1 dB/m in steel pipes, so it is several 1.0
Since the dB amplifier is easy to use, the number 10
Measurements can be made up to a distance of m. The accuracy of the amplifier is 0.1
Since it can be easily done to the extent of d B, the calculation accuracy of the distance @X can be suppressed to within a few tens of mouths, which is a practical cough. An example of an ultrasonic waveform is shown in FIG. This is an example in which the waveform is not necessarily monotonous, but since the present invention is based on the sensitivity range, it is sufficient to take the maximum value A in the figure.

第2図における算定回路5の具体的一実施例を第4図に
示す。眉音波の受信信号A (X)を増幅する増幅回路
51、周波数分析回路52、信号選択回路53及び演算
回@54で構成する。増幅回路51は、超音波の減衰分
を補償する増幅率数10dBの感度があればよい。周波
数分析回路52では、受信信号の周波数スペクトルを求
めるもので、例えば(5)式の演算をする。
A specific embodiment of the calculation circuit 5 in FIG. 2 is shown in FIG. 4. It is composed of an amplifier circuit 51 for amplifying the received eyebrow sound wave signal A (X), a frequency analysis circuit 52, a signal selection circuit 53, and a calculation circuit @54. The amplifier circuit 51 only needs to have a sensitivity with an amplification factor of 10 dB to compensate for the attenuation of the ultrasonic waves. The frequency analysis circuit 52 determines the frequency spectrum of the received signal, and calculates, for example, equation (5).

・・・・・・・・・(5) (5)式の積分時間は実際には受信信号A(x、t)が
消滅する時間まででよい。選択回路53においては、別
途予め定めておいた周波数f+ + f2 +・・・・
・・f、、aに対応する受信信号の振幅AH、At 。
(5) The integration time in equation (5) may actually be up to the time when the received signal A(x, t) disappears. In the selection circuit 53, a separately predetermined frequency f+ + f2 +...
...Amplitude AH, At of the received signal corresponding to f,,a.

・・・・・・A、を周波数分析回路52から取出す。演
算回路54では、当該振幅AI、A2 H・・・・・・
A、並びに別途外部設定した定数kl + k2 +・
・・・・・k、。
...A is taken out from the frequency analysis circuit 52. In the arithmetic circuit 54, the amplitude AI, A2H...
A, as well as a constant externally set kl + k2 +・
・・・・・・k.

(探触子または発信子3及び受信子4の組合せによって
一義的に決定できる既知の値)を用いて(1)式を解き
、ロボットの位置Xを求める。
(a known value that can be uniquely determined by the combination of the probe or transmitter 3 and receiver 4) is used to solve equation (1) to find the position X of the robot.

第4図の一実施例は、1組の発信子3及び受信子4の場
合を示した。1組の発信子と受信子を用いるのは、探触
子と配管との接触状態が変化しても定数kl + k2
 +・・・・・・k、が不変の関係を維持することがで
きるからである。接触状態を同一に維持できるのであれ
ば、複数の発信子3及び受信子4の組を使用してもよい
。このような構成の場合には、第4図の構成(Cおいて
周波数分析回路52及び信号選択回路53は不要になる
One embodiment in FIG. 4 shows a case of one set of transmitter 3 and receiver 4. The reason why one set of transmitter and receiver is used is that even if the contact state between the probe and the pipe changes, the constant kl + k2
This is because +...k can maintain an unchanging relationship. A plurality of pairs of transmitters 3 and receivers 4 may be used as long as the contact state can be maintained the same. In the case of such a configuration, the frequency analysis circuit 52 and signal selection circuit 53 in the configuration of FIG. 4 (C) become unnecessary.

発信子3を1個としても、複数個としても、配管1との
接触状態を良好に維持することが安定な信号を受信する
上で必要である。このための装置の構成例を第5図に示
す。発信子3と配管1とのめにスカート32を発信子3
の周囲に取付ける。
Whether there is one transmitter 3 or a plurality of transmitters 3, it is necessary to maintain a good contact state with the pipe 1 in order to receive a stable signal. An example of the configuration of a device for this purpose is shown in FIG. Connect the skirt 32 between the transmitter 3 and the pipe 1 to the transmitter 3.
Install around the area.

さらに、発信子3を配管1に対して適度に押付けるため
に、押付は機構33をロボット2に設ける。
Further, in order to appropriately press the transmitter 3 against the pipe 1, a pressing mechanism 33 is provided in the robot 2.

当該押付は機構33としては、例えば良く知られている
パンタグラフ機構、ソレノイド機構などを用いればよい
The pressing mechanism 33 may be, for example, a well-known pantograph mechanism or a solenoid mechanism.

超音波の発信から、ロボットの位置Xを求めるまでのタ
イミングの例を第6図に示す。超音波を周期Tで発信す
る。この間に受信子4にて超音波を受信し、その後、周
波数分析回路52で各周波数成分の振幅AII A2H
・・・・・・A、を求め、その後に、ロボットの位置X
を演算する。
FIG. 6 shows an example of the timing from the transmission of ultrasonic waves to the determination of the position X of the robot. Ultrasonic waves are transmitted with a period T. During this time, the receiver 4 receives the ultrasonic wave, and then the frequency analysis circuit 52 calculates the amplitude AII A2H of each frequency component.
・・・・・・Find A, and then find the robot's position
Calculate.

周期Tは、(6)式を満足するように央めておく。The period T is centered so as to satisfy equation (6).

そうでないと、受信波と発信波の寸志が111!l!握
できなくなる。
Otherwise, the size of the received wave and the transmitted wave is 111! l! I can't hold it anymore.

T>L/C・・・・・・・・・(6) ここで、 T:発信波の周期 L:ロボット位置の測定範囲 C:超音波の伝播速度 また一方では、位置の測定の許容誤差の関係から、周期
Tは(7)式を満たすように短くしなければならない。
T>L/C・・・・・・・・・(6) Where, T: Period of emitted wave L: Measuring range of robot position C: Propagation speed of ultrasonic wave On the other hand, permissible error of position measurement From the relationship, the period T must be shortened so as to satisfy equation (7).

Tくδx / v     ・・・・・・・・・(7)
ここで、 δX:位置測定の許容誤差 V :ロボットの速度 (6)式と(7)式を満足する具体的な周期は、ロボッ
ト位置の測定範囲L=100m、超音波の伝播速度C=
6Km/s、位置測定の許容誤差δx=10鋸、ロボッ
トの速度2!b/hとすれば、約0.2sであυ、現実
的に設定が可能な値である。この間に周波数分析ならび
に位f〆の演算は十分に実行できる。
Tku δx / v ・・・・・・・・・(7)
Here, δX: Position measurement tolerance V: Robot speed The specific period that satisfies equations (6) and (7) is as follows: robot position measurement range L = 100 m, ultrasonic propagation speed C =
6Km/s, position measurement tolerance δx = 10 saws, robot speed 2! If it is b/h, it is approximately 0.2 s, which is a value that can be set realistically. During this time, frequency analysis and calculation of the position f〆 can be fully executed.

本発明においては、位置Xの測定だけでなく、各種情報
の伝送、例えば配管肉厚や欠陥を超音波によって検査し
た値を超音波発信子3及び受信子4を使って伝送するこ
とが可能で、検査用ロボットの無線走査ができる。具体
的な信号伝送のタイミングとしては、第6図における位
置測定用の発信の直後に例えば2通信号の情報を発信し
てやればよい。このときに、位置測定用の発信子2を利
用してもよいし、或いは別途情報伝送用の発信子を設け
てもよい。
In the present invention, it is possible not only to measure the position , wireless scanning of inspection robots is possible. As for the specific timing of signal transmission, for example, the information of two communication signals may be transmitted immediately after the transmission for position measurement shown in FIG. At this time, the transmitter 2 for position measurement may be used, or a separate transmitter for information transmission may be provided.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく、本発明によれば、超音波の発信子
の接触状態がロボットの走行時に変動した場合や、配管
の周囲条件(±砂との接触状態など)が異った場合でも
、ロボットの絶対位置が測定できるので、配管の検査や
修理をロボツ)Kよって行なうときには、作契の対象個
所を確実に把握できるという効果がある。また、配管を
超音波の媒体として使うので、無線ロボットの実現が可
能となる。
As explained above, according to the present invention, the robot Since the absolute position of the piping can be measured, when the piping is inspected or repaired by a robot, it is possible to reliably grasp the target location of the contract. Furthermore, since piping is used as a medium for ultrasonic waves, it becomes possible to realize a wireless robot.

以上の説明では配管内または配管外をロボットが移動す
る場合に限った。しかし、本発明の如き超音波による位
置検出ができれば、超音波を発生する物体(例えば嘴造
物内部における部品)のゆるみの位置を正確に検出する
ことができる。
The above explanation is limited to the case where the robot moves inside or outside the piping. However, if the position can be detected using ultrasonic waves as in the present invention, it is possible to accurately detect the position of loosening of an object that generates ultrasonic waves (for example, a component inside a beak structure).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は超音波の距離に対する減衰特性、第2図は位置
測定の具体的一実施例、第3図は超音波の波形の一例、
第4図は位置演算の一実施例、第5図は発信子と配管と
の接触の保持機構の例、第6図は位置測定の信号のタイ
ミングの例を示す。 fl・・・周波数、AI・・・受信信号の振幅、X・・
・ロボットの位置(または発信子と受信子間の距離)、
1・・・配管、2・・・ロボット、3・・・発信子、4
・・・受信子、5・・・算定回路、51・・・増幅器、
52・・・周波数分析回路、53・・・選択回路、54
・・・演算回路、31・・・接触媒質、32・・・スカ
ート、33・・・押付は機構。
Fig. 1 shows the attenuation characteristics of ultrasonic waves over distance, Fig. 2 shows a specific example of position measurement, Fig. 3 shows an example of the ultrasonic waveform,
FIG. 4 shows an example of position calculation, FIG. 5 shows an example of a mechanism for maintaining contact between the transmitter and the pipe, and FIG. 6 shows an example of timing of position measurement signals. fl...frequency, AI...amplitude of received signal, X...
・Robot position (or distance between transmitter and receiver),
1... Piping, 2... Robot, 3... Transmitter, 4
...Receiver, 5...Calculation circuit, 51...Amplifier,
52... Frequency analysis circuit, 53... Selection circuit, 54
...Arithmetic circuit, 31... Couple material, 32... Skirt, 33... Pressing mechanism.

Claims (1)

【特許請求の範囲】 1、配管などの構造物の内面または外面を走行する機構
に取付けた超音波発信子と、該構造物に取付けた超音波
受信子とを用いて、複数の周波数成分の超音波の伝播中
の減衰量から走行機構の位置を測定することを特徴とす
るロボットの位置検出方法。 2、前記特許請求の範囲第1項において、周波数成分の
数を超音波の減衰に関する未知の定数の個数に2個加え
た数にして、走行機構の位置を測定することを特徴とす
るロボットの位置検出方法。 3、前記特許請求の範囲第1項において、多数の周波数
成分が含まれる超音波発信子の数を1個として、測定す
ることを特徴とするロボットの位置検出方法。 4、前記特許請求の範囲第1項において、単一の周波数
成分を含む超音波発信子を複数個用いることを特徴とす
るロボットの位置検出方法。 5、配管などの構造物の内面または外面を走行する機構
に取付けた超音波発信子と該構造物に取付けた超音波受
信子とから成り、受信した超音波の周波数成分を分析す
る回路、別途定めた周波数成分の振幅を選択する回路、
当該周波数成分の振幅と発信波の振幅との関係を示す連
立式から、上記走行機構の位置を演算する回路で構成し
たことを特徴とするロボットの位置検出回路。 6、前記特許請求の範囲第5項において、単一の周波数
成分を含む超音波発信子を複数個用いる場合には、走行
機構の位置を演算する回路だけで構成することを特徴と
するロボットの位置検出回路。
[Claims] 1. Using an ultrasonic transmitter attached to a mechanism that travels on the inner or outer surface of a structure such as piping, and an ultrasonic receiver attached to the structure, a plurality of frequency components can be transmitted. A robot position detection method characterized by measuring the position of a traveling mechanism from the amount of attenuation during propagation of ultrasonic waves. 2. The robot according to claim 1, characterized in that the position of the traveling mechanism is measured by adding two frequency components to the number of unknown constants related to attenuation of ultrasonic waves. Location detection method. 3. The method for detecting the position of a robot according to claim 1, characterized in that the measurement is carried out using one ultrasonic transmitter that includes a large number of frequency components. 4. The robot position detection method according to claim 1, characterized in that a plurality of ultrasonic transmitters each containing a single frequency component are used. 5. A separate circuit that consists of an ultrasonic transmitter attached to a mechanism that travels on the inner or outer surface of a structure such as piping and an ultrasonic receiver attached to the structure, and that analyzes the frequency components of the received ultrasonic wave. a circuit that selects the amplitude of a defined frequency component;
A robot position detection circuit comprising a circuit that calculates the position of the traveling mechanism from a simultaneous equation showing the relationship between the amplitude of the frequency component and the amplitude of the transmitted wave. 6. In claim 5, the robot is characterized in that, when a plurality of ultrasonic transmitters each containing a single frequency component are used, the robot is configured only with a circuit that calculates the position of the traveling mechanism. Position detection circuit.
JP9777985A 1985-05-10 1985-05-10 Method and circuit for detecting position of robot Pending JPS61256270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9777985A JPS61256270A (en) 1985-05-10 1985-05-10 Method and circuit for detecting position of robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9777985A JPS61256270A (en) 1985-05-10 1985-05-10 Method and circuit for detecting position of robot

Publications (1)

Publication Number Publication Date
JPS61256270A true JPS61256270A (en) 1986-11-13

Family

ID=14201315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9777985A Pending JPS61256270A (en) 1985-05-10 1985-05-10 Method and circuit for detecting position of robot

Country Status (1)

Country Link
JP (1) JPS61256270A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284257A (en) * 2005-03-31 2006-10-19 Nec Corp Method and apparatus for estimating propagation distance of sonic wave
JP2015507172A (en) * 2011-11-10 2015-03-05 アルカテル−ルーセント Distance estimation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284257A (en) * 2005-03-31 2006-10-19 Nec Corp Method and apparatus for estimating propagation distance of sonic wave
JP2015507172A (en) * 2011-11-10 2015-03-05 アルカテル−ルーセント Distance estimation

Similar Documents

Publication Publication Date Title
US6446494B2 (en) Method and apparatus for determining the viscosity of a fluid in a container
US6209388B1 (en) Ultrasonic 2-phase flow apparatus and method
CA2677516A1 (en) Apparatus for determining transverse velocity or temperature of a fluid in a pipe
MY130258A (en) Method for determining the distance between an object and a device of varying location, in particular a motor vehicle
US8531329B2 (en) Method and device for determining the thickness of material using high frequency
FR2781048B1 (en) CROSS MEASUREMENTS OF THE ACOUSTIC SIGNALS OF A FLOWMETER
US6422094B1 (en) Method for determining the flow rate and/or the molecular mass of liquid or gaseous media
CN113008338B (en) DAC compensation method for ultra-long range magnetostrictive liquid level meter
JPS61256270A (en) Method and circuit for detecting position of robot
JPH039405B2 (en)
US6308570B1 (en) Method and apparatus for ultrasonic characterization through the thickness direction of a moving web
SU992897A1 (en) Analog apparatus for locating pressure pipeline damages
JP2001343365A (en) Thickness resonance spectrum measuring method for metal sheet and electromagnetic ultrasonic measuring method for metal sheet
JP2697508B2 (en) Ultrasonic thickness measurement method of furnace wall
RU2620023C1 (en) Method of determining the place of the flow in the pipeline and the device for its implementation
JPH0729447Y2 (en) Ultrasonic measuring device
KR100482226B1 (en) Method and apparatus for measuring the amount of flowing in gas pipe using sonic waves
SU538223A1 (en) Ultrasonic method for measuring film thickness
JPH0365608A (en) Method and apparatus for measuring thickness of scale in piping
GB1371173A (en) Coordinate measuring apparatus
SU1004863A1 (en) Device for measuring ultrasound speed and damping factor
SU1104408A1 (en) Method of determination of acoustic emission source coordinates
JPH02300684A (en) Speed detecting device
JPH04157359A (en) Apparatus for measuring gas density
SU415577A1 (en)